首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crude preparations of cyclic adenosine 3′, 5′-monophosphate phosphodiesterase were activated 1.5 to 2 fold by incubation with ATP, Mg2+ and cyclic AMP in a reaction which was both, time and temperature dependent. Cyclic AMP phosphodiesterase remained in an activated state upon filtration of the enzymatic preparation through Sephadex G-25 and ion-exchange chromatography. Activation of the enzyme in the presence of [γ 32P]ATP resulted in a significant amount of [32P] protein-bound radioactivity. Reversible deactivation of cyclic AMP phosphodiesterase was enhanced by Mg2+ and was accompanied by the release of [32P] protein bound radioactivity. The evidence is consistent with a mechanism for controlling cyclic AMP phosphodiesterase through phosphorylation-dephosphorylation sequence.  相似文献   

2.
The ionophore A23187 stimulated adenylate cyclase activity in intact macrophages within 1 min. This action was blocked by pretreatment with indomethacin (25 μmol/l) suggesting the involvement of a prostaglandin (PG). PGE2 (500 nmol/l) also stimulated adenylate cyclase activity in intact cells, but this was not prevented by indomethacin pretreatment. Colchicine (100 μmol/l) potentiated the increases in macrophage cyclic AMP production seen after addition of PGE2 or A23187. The high affinity form of cyclic AMP phosphodiesterase (PDE) was activated within 1 min of the addition of A23187 to intact macrophages. The data suggest that the increase in macrophage cyclic AMP production after A23187 is a consequence of adenylate cyclase activation and not PDE inhibition. The endogenous production of a prostaglandin probably mediates this effect of A23187, emphasizing the importance of arachidonic acid metabolites in the regulation of macrophage functions.  相似文献   

3.
Centrifugal fractionation showed that 70% of the cyclic nucleotide phosphodiesterase activity of Phaseolus vulgaris seedlings is recovered in the 1  相似文献   

4.
SYNOPSIS. Cyclic nucleotide phosphodiesterase [EC 3.1.4.17] was examined in Tetrahymena pyriformis strain NT-1. Enzymic activity was associated with the soluble and the particulate fractions, whereas most of the cyclic GMP phosphodiesterase activity was localized in the soluble fraction: the activities were optimal at pH 8.0–9.0. Although very low activities were detected in the absence of divalent cations, they were significantly increased by the addition of either Mg2+ or Mn2-. A kinetic analysis of the properties of the enzymes yielded 2 apparent KIII values ranging in concentration from 0.5 to 50 μM and from 0.1 to 62 μ M for cyclic AMP and GMP. respectively. A Ca2+-dependent activating factor for cyclic nucleotide phosphodiesterase was extracted from Tetrahymena cells, but this factor did not stimulate guanylate cyclase [EC 4.6.1.2] activity in this organism. On the other hand, Tetrahymena also contained a protein activator which stimulated guanylate cyclase in the presence of Ca2+, although this activator did not stimulate the phosphodiesterase. the results suggested that Tetrahymena might contain 2 types of Ca2+-dependent activators, one specific for phosphodiesterase and the other for guanylate cyclase.  相似文献   

5.
Summary Adenosine 3′,5′-cyclic monophosphate (cyclic AMP) phosphodiesterase activity in mouse neuroblastoma cells in culture markedly increased during exponential growth and reached a maximal level at confluency; whereas guanosine 3′, 5′-cyclic monophosphate (cyclic GMP) phosphodiesterase activity only slightly but significantly increased under a similar experimental condition. The increase in cyclic AMP phosphodiesterase activity was blocked by both cycloheximide and dactinomycin, whereas the increase in cyclic GMP phosphodiesterase was blocked by only cycloheximide. When the confluent cells were replated at low density, the cyclic nucleotide phosphodiesterase activity decreased; however, when they were plated at high cell density which equaled confluency, the enzyme activity did not decrease. Unlike cyclic AMP phosphodiesterase activity, cyclic GMP phosphodiesterase activity did not change significantly in prostaglandin E1-treated cells, but decreased in cells treated with the inhibitor of phosphodiesterase. Like cyclic AMP phosphodiesterase activity, cyclic GMP phosphodiesterase activity also did not change in cells treated with serum-free medium, X-irradiation, sodium butyrate and 6-thioguanine. This work was supported by USPHS NS-09230, and DRG-1273 from Damon Runyon-Walter Winchell Cancer Fund.  相似文献   

6.
    
Genome analysis of Shewanella oneidensis, a Gram‐negative bacterium with an unusual repertoire of respiratory and redox capabilities, revealed the presence of six glutathione S‐transferase‐like genes (sogst1sogst6). Glutathione S‐transferases (GSTs; EC 2.5.1.18) are found in all kingdoms of life and are involved in phase II detoxification processes by catalyzing the nucleophilic attack of reduced glutathione on diverse electrophilic substrates, thereby decreasing their reactivity. Structure–function studies of prokaryotic GST‐like proteins are surprisingly underrepresented in the scientific literature when compared with eukaryotic GSTs. Here, the production and purification of recombinant SoGST3 (SO_1576) and SoGST6 (SO_4697), two of the six GST‐like proteins in S. oneidensis, are reported and preliminary crystallographic studies of crystals of the recombinant enzymes are presented. SoGST3 was crystallized in two different crystal forms in the presence of GSH and DTT that diffracted to high resolution: a primitive trigonal form in space group P31 that exhibited merohedral twinning with a high twin fraction and a primitive monoclinic form in space group P21. SoGST6 yielded primitive orthorhombic crystals in space group P212121 from which diffraction data could be collected to medium resolution after application of cryo‐annealing protocols. Crystal structures of both SoGST3 and SoGST6 have been determined based on marginal search models by maximum‐likelihood molecular replacement as implemented in the program Phaser.  相似文献   

7.
    
The metal‐reducing bacterium Shewanella oneidensis is capable of reducing various metal(loid)s and produces nanoparticles (NPs) extracellularly, in which outer membrane c‐type cytochromes (OMCs) have been suggested to play important roles. The objective of this study was to investigate the influence of the OMCs, that is, MtrC and OmcA, on the size and activity of the extracellular silver NPs (AgNPs) and silver sulfide NPs (Ag2S NPs) produced by S. oneidensis MR‐1. We found that (i) the lack of OMCs on S. oneidensis cell surface decreased the particle size of the extracellular biogenic AgNPs and Ag2S NPs; (ii) the biogenic AgNPs from the mutant lacking OMCs showed higher antibacterial activity; and (iii) the biogenic Ag2S NPs from the mutant lacking OMCs exhibited higher catalytic activity in methylviologen reduction. The results suggest that it may be possible to control particle size and activity of the extracellular biogenic NPs via controlled expression of the genes encoding surface proteins. In addition, we also reveal that in extracellular biosynthesis of NPs the usually neglected non‐cell‐associated NPs could have high catalytic activity, highlighting the need of novel methods that can efficiently retain extracellular NPs in the biosynthesis processes. Biotechnol. Bioeng. 2013; 110: 1831–1837. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Cyclic AMP phosphodiesterase has been extracted from Phycomyces sporangiophore. The material is stable at ?20° for several months. Activity depends on the presence of a divalent metal ion (e.g. magnesium. The enzyme may be multiple; at pH 8, two Kms are observed, 3 and 12.5 μM, and an Arrhenius plot has a ‘break’ at ca 21°. No cooperativity is seen. Inhibition by dibutyryl cyclic AMP is marked, but cyclic GMP is not inhibitory (except at lower pH and high concentration) and cyclic GMP is not hydrolysed. The enzyme is thermolabile above 30°. Calcium is not stimulatory. Millimolar concentrations of pyrophosphate and nucleoside triphosphates are required for significant inhibition. Reductants, ascorbic acid, cysteine, dithiothreitol, glutathione, β-mercaptoethanol, NADH, sodium dithionite, sodium suifite and the mild oxidant, ferricyanide, have little or no effect. Gallic acid, an abundant endogenous reducing agent, is inhibitory. Histamine and imidazole are slightly inhibitory. Methylxanthines are inhibitory but at high concentrations. Inhibition to 50% required 15, 15, 30 and > 4 mM for aminophylline, theophylline, caffeine and 3-isobutyl-l-methylxanthine, respectively. The enzyme may be involved in the behavioral responses of the organism.  相似文献   

9.
The α6β4 integrin promotes carcinoma in-vasion by its activation of a phosphoinositide 3-OH (PI3-K) signaling pathway (Shaw, L.M., I. Rabinovitz, H.H.-F. Wang, A. Toker, and A.M. Mercurio. Cell. 91: 949–960). We demonstrate here using MDA-MB-435 breast carcinoma cells that α6β4 stimulates chemotactic migration, a key component of invasion, but that it has no influence on haptotaxis. Stimulation of chemotaxis by α6β4 expression was observed in response to either lysophosphatidic acid (LPA) or fibroblast conditioned medium. Moreover, the LPA-dependent formation of lamellae in these cells is dependent upon α6β4 expression. Both lamellae formation and chemotactic migration are inhibited or “gated” by cAMP and our results reveal that a critical function of α6β4 is to suppress the intracellular cAMP concentration by increasing the activity of a rolipram-sensitive, cAMP-specific phosphodiesterase (PDE). This PDE activity is essential for lamellae formation, chemotactic migration and invasion based on data obtained with PDE inhibitors. Although PI3-K and cAMP-specific PDE activities are both required to promote lamellae formation and chemotactic migration, our data indicate that they are components of distinct signaling pathways. The essence of our findings is that α6β4 stimulates the chemotactic migration of carcinoma cells through its ability to influence key signaling events that underlie this critical component of carcinoma invasion.  相似文献   

10.
Proteomes are dynamic, i.e., the protein components of living cells change in response to various stimuli. Protein changes can involve shifts in the abundance of protein components, in the interactions of protein components, and in the activity of protein components. Two-dimensional gel electrophoresis (2-DE) coupled with peptide mass spectrometry is useful for the analysis of relative protein abundance, but the denaturing conditions of classical 2-DE do not allow analysis of protein interactions or protein function. We have developed a nondenaturing 2-DE method that allows analysis of protein interactions and protein functions, as demonstrated in our analysis of the cytosol and crude membrane fractions of the facultative anaerobe Shewanella oneidensis MR-1. Our experiments demonstrate that enzymatic activity is retained under the sample and protein separation methods described, as shown by positive malate dehydrogenase activity results. We have also found protein interactions within both the soluble and membrane fractions. The method described will be useful for the characterization of the functional proteomes of microbial systems.  相似文献   

11.
AIM: To determine if the outer membrane (OM) cytochromes of the metal-reducing bacterium Shewanella oneidensis MR-1 are exposed on the cell surface. METHODS AND RESULTS: MR-1 cells were incubated with proteinase K or buffer and the resulting degradation of the OM cytochromes was examined by Western blotting. The periplasmic fumarate reductase (control) was not degraded. The OM cytochromes OmcA and OmcB were significantly degraded by proteinase K (71 and 31%, respectively). Immunofluorescence confirmed a prominent cell surface exposure of OmcA and a partial exposure of OmcB and the noncytochrome OM protein MtrB. CONCLUSIONS: The cytochromes OmcA and OmcB are exposed on the outer face of the OM. SIGNIFICANCE AND IMPACT OF THE STUDY: The cell surface exposure of these cytochromes could allow them to directly contact extracellular insoluble electron acceptors (e.g. manganese oxides) and is consistent with their in vivo role.  相似文献   

12.
Changes in the activities of adenyl cyclase, cyclic AMP phosphodiesterase, protein phosphokinase, RNase, protease, DNA, RNA and protein synthesis during the initial imbibition phase of the germination cycle of Cicer arietinum (chick pea, Bengal gram) are reported. Activation of adenyl cyclase and phosphorylation of cellular proteins appears to precede RNA and protein synthesis in the imbibed seeds.  相似文献   

13.
Summary The rat ovary produces an apparently low molecular weight substance that mimics the action of follitropin (FSH) on ovarian granulosa cells in culture. Similar to FSH action, the ovarian substance (OS) induces temporal cell rounding and, later on, intensive progestin production. However, unlike FSH, OS does not induce accumulation of cyclic AMP (cAMP) in the granulosa cells. The ovarian factor cannot be cAMP as its action is not abolished by phosphodiesterase (PDE) treatment. Neither is it a possible PDE inhibitor, as it does not augment cAMP accumulation in granulosa cells or Friend erythroleukemic cells induced by FSH or PGE1, respectively. The factor is still active after heating for 20 min at 90° C but is rapidly inactivated by alkali treatment. In addition, treatment with various proteases did not abolish the steroidogenic activity. These findings suggest a possible novel intraovarian regulator of the granulosa cell function. Presented in the symposium on Plant and Animal Physiology in Vitro at the 33rd Annual Meeting of the Tissue Culture Association, San Diego, California, June 6–10, 1982. This work was supported by the United States-Israel Binational Science Foundation, Grant 2656/81. This symposium was supported in part by the following organizations: Bellco Glass, Inc., California Branch of the Tissue Culture Association, Collaborative Research, Hana Media, Hybridtech, K C Biological, Inc., and Millipore Corporation.  相似文献   

14.
AIM: To determine if the outer membrane (OM) cytochromes OmcA and OmcB of the metal-reducing bacterium Shewanella oneidensis MR-1 are lipoproteins, and to assess cell surface exposure of the cytochromes by radioiodination. METHODS AND RESULTS: In anaerobic MR-1 cells grown with (3)H-palmitoleic acid, both OmcA and OmcB were radiolabelled. The identities of these bands were confirmed by the absence of each radiolabelled band in the respective mutants lacking individual OM cytochromes. Radioiodination of cell surface proteins in anaerobic cells resulted in (125)I-labelled OmcA. The identity of this band was confirmed by its absence in an OmcA-minus mutant. A ubiquitous radioiodinated band that migrates similarly to OmcB precluded the ability to determine the potential cell surface exposure of OmcB by this method. CONCLUSIONS: Both OmcA and OmcB are lipoproteins, and OmcA is cell surface exposed. SIGNIFICANCE: The lipoprotein modification of these OM cytochromes could be important for their localization or incorporation into the OM. The cell surface exposure of OmcA could allow it to directly transfer electrons to extracellular electron acceptors (e.g. manganese oxides) and is consistent with its in vivo role.  相似文献   

15.
    
Shewanella oneidensis is an environmentally versatile Gram‐negative γ‐proteobacterium that is endowed with an unusually large proteome of redox proteins. Of the four old yellow enzyme (OYE) homologues found in S. oneidensis, SYE4 is the homologue most implicated in resistance to oxidative stress. SYE4 was recombinantly expressed in Escherichia coli, purified and crystallized using the hanging‐drop vapour‐diffusion method. The crystals belonged to the orthorhombic space group P212121 and were moderately pseudo‐merohedrally twinned, emulating a P422 metric symmetry. The native crystals of SYE4 were of exceptional diffraction quality and provided complete data to 1.10 Å resolution using synchrotron radiation, while crystals of the reduced enzyme and of the enzyme in complex with a wide range of ligands typically led to high‐quality complete data sets to 1.30–1.60 Å resolution, thus providing a rare opportunity to dissect the structure–function relationships of a good‐sized enzyme (40 kDa) at true atomic resolution. Here, the attainment of a number of experimental milestones in the crystallographic studies of SYE4 and its complexes are reported, including isolation of the elusive hydride–Meisenheimer complex.  相似文献   

16.
A promising attempt in the field of tumour therapy is the modulation of intracellular, proliferation-associated signalling pathways. The role of cyclic nucleotide phosphodiesterases (PDEs), key enzymes in cAMP/cGMP signal transduction, was investigated in two human CNS tumour cell lines as well as in the rat glioblastoma cell line C6 in comparison with rat cerebellar astrocytes with the emphasis on target evaluation. We found differential PDE expression patterns in human CNS tumour cell lines as well as in CNS cells of rat origin. In human glioblastoma cells, intracellular cAMP and Ca(2+) levels correlated well with the PDE expression pattern. There were, however, marked differences in PDE expression and Ca(2+) kinetics between the human glioblastoma cell lines. In contrast to human epithelial tumour cells, shown earlier by us to express significantly enhanced cAMP-specific PDE activity, this was not the case in rat glioblastoma cells compared with non-malignant rat astrocytes. Despite different levels of PDE1 and PDE4 expression and activity, cyclic nucleotide and Ca(2+) levels in non-malignant and malignant rat CNS cells were similar. These in vitro data do not support the concept of PDE1C representing a target exploitable for drug treatment of malignant CNS tumours.  相似文献   

17.
The effect of regucalcin, a novel Ca2+-binding protein, on Ca2+/ calmodulin-dependent cyclic adenosine monophosphate (AMP) phosphodiesterase activity in the cytosol of rat renal cortex was investigated. Regucalcin with physiologic concentration (10-7 M) in rat kidney had no effect on cyclic AMP phosphodiesterase activity in the absence of CaCl2 and calmodulin. However, the activatory effect of both CaCl2 (10 µM) and calmodulin (20 U/ml) on cyclic AMP phosphodiesterase was markedly inhibited by the addition of regucalcin (10-8 to 10-6 M) in the enzyme reaction mixture. The inhibitory effect of regucalcin on the enzyme activity was also seen in the presence of CaCl2 (5-50 µM) or calmodulin (5-50 U/ml) with increasing concentrations. The presence of trifluoperazine (10 µM), an antagonist of calmodulin, caused a partial inhibition of Ca2+ /calmodulin-dependent cyclic AMP phosphodiesterase activity. This inhibition was further enhanced by the addition of regucalcin (10-7 M). The inhibitory effect of regucalcin (10-7 M) was not seen in the presence of 20 µM trifluoperazine. Moreover, the activatory effect of calmodulin (20 U/ml) on cyclic AMP phosphodiesterase was not entirely seen, when calmodulin was added 10 min after incubation in the presence of CaCl2 (10 µM) and regucalcin (10-7 M). The present results demonstrates that regucalcin has an inhibitory effect on Ca2+ /calmodulin-dependent cyclic AMP phosphodiesterase activation in the cytosol of rat renal cortex.  相似文献   

18.
AIM: To determine if the outer membrane (OM) cytochromes OmcA and OmcB of the metal-reducing bacterium Shewanella oneidensis MR-1 have distinct or overlapping roles in the reduction of insoluble manganese(IV) oxide. METHODS AND RESULTS: The gene replacement mutant (OMCA1) which lacks OmcA was partially deficient in Mn(IV) reduction. Complementation of OMCA1 with a vector (pVK21) that contains omcB but not omcA restored Mn(IV) reduction to levels that were even greater than those of wild-type. Examination of the OM of OMCA1/pVK21 revealed greater than wild-type levels of OmcB protein and specific haem content. CONCLUSIONS: Overexpression of OmcB can compensate for the absence of OmcA in the reduction of insoluble Mn(IV) oxides. Therefore, there is at least a partial overlap in the roles of these OM cytochromes in the reduction of insoluble Mn(IV) oxide. SIGNIFICANCE: The overlapping roles of these two cytochromes has important implications for understanding the mechanism by which MR-1 reduces insoluble metal oxides. There is no obligatory sequential electron transfer from one cytochrome to the other. They could both potentially serve as terminal reductases for extracellular electron acceptors.  相似文献   

19.
Vasoactive intestinal peptide (VIP), secretin, catecholamines and prostaglandin E1 (PGE1) in the presence of a cyclic nucleotide phosphodiesterase inhibitor stimulate the accumulation of cyclic AMP in two colorectal carcinoma cell lines (HT 29 and HRT 18) with subsequent activation of the cyclic AMP-dependent protein kinases. In HT 29 cells incubated without phosphodiesterase inhibitor, 10?9 M VIP promotes a rapid and specific activation of the low Km cyclic AMP phosphodiesterase (1.7-fold); at 25°C the effect is maintained for more than 15 min, while at 37°C the activity returns to basal value within 15 min. As shown by dose-response studies, VIP is by far the most effective inducer (Ka = 4 · 10?10M) of the cyclic AMP phosphodiesterase activity; partial activation of the enzyme is obtained by 3 · 10?7 M secretin, 10?5 M isoproterenol and 10?5 M PGE1; PGE2 and epinephrine are without effect. In HRT 18 cells VIP is less active (Ka = 2 · 10?9M) whereas 10?6 M PGE1, 10?6 M PGE2 and 10?5 M epinephrine are potent inducers of the phosphodiesterase activity. The positive cell response to dibutyryl-cyclic AMP further indicates that cyclic AMP is a mediator in the phosphodiesterase activation process. The incubation kinetics and dose response effects of the various agonists on the cyclic AMP-dependent protein kinase activity determined for both cell types in the same conditions show a striking similarity to those of phosphodiesterase. Thus coordinate regulation of both enzymes by cyclic AMP was observed in all incubation conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号