首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The evolution of social traits may not only depend on but also change the social structure of the population. In particular, the evolution of pairwise cooperation, such as biparental care, depends on the pair‐matching distribution of the population, and the latter often emerges as a collective outcome of individual pair‐bonding traits, which are also under selection. Here, we develop an analytical model and individual‐based simulations to study the coevolution of long‐term pair bonds and cooperation in parental care, where partners play a Snowdrift game in each breeding season. We illustrate that long‐term pair bonds may coevolve with cooperation when bonding cost is below a threshold. As long‐term pair bonds lead to assortative interactions through pair‐matching dynamics, they may promote the prevalence of cooperation. In addition to the pay‐off matrix of a single game, the evolutionarily stable equilibrium also depends on bonding cost and accidental divorce rate, and it is determined by a form of balancing selection because the benefit from pair‐bond maintenance diminishes as the frequency of cooperators increases. Our findings highlight the importance of ecological factors affecting social bonding cost and stability in understanding the coevolution of social behaviour and social structures, which may lead to the diversity of biological social systems.  相似文献   

2.
The spread of infectious diseases fundamentally depends on the pattern of contacts between individuals. Although studies of contact networks have shown that heterogeneity in the number of contacts and the duration of contacts can have far-reaching epidemiological consequences, models often assume that contacts are chosen at random and thereby ignore the sociological, temporal and/or spatial clustering of contacts. Here we investigate the simultaneous effects of heterogeneous and clustered contact patterns on epidemic dynamics. To model population structure, we generalize the configuration model which has a tunable degree distribution (number of contacts per node) and level of clustering (number of three cliques). To model epidemic dynamics for this class of random graph, we derive a tractable, low-dimensional system of ordinary differential equations that accounts for the effects of network structure on the course of the epidemic. We find that the interaction between clustering and the degree distribution is complex. Clustering always slows an epidemic, but simultaneously increasing clustering and the variance of the degree distribution can increase final epidemic size. We also show that bond percolation-based approximations can be highly biased if one incorrectly assumes that infectious periods are homogeneous, and the magnitude of this bias increases with the amount of clustering in the network. We apply this approach to model the high clustering of contacts within households, using contact parameters estimated from survey data of social interactions, and we identify conditions under which network models that do not account for household structure will be biased.  相似文献   

3.
Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases.  相似文献   

4.
Ross Cressman  Vlastimil Křivan 《Oikos》2010,119(8):1231-1242
In classical games that have been applied to ecology, individual fitness is either density independent or population density is fixed. This article focuses on the habitat selection game where fitness depends on the population density that evolves over time. This model assumes that changes in animal distribution operate on a fast time scale when compared to demographic processes. Of particular interest is whether it is true, as one might expect, that resident phenotypes who use density‐dependent optimal foraging strategies are evolutionarily stable with respect to invasions by mutant strategies. In fact, we show that evolutionary stability does not require that residents use the evolutionarily stable strategy (ESS) at every population density; rather it is the combined resident–mutant system that must be at an evolutionary stable state. That is, the separation of time scales assumption between behavioral and ecological processes does not imply that these processes are independent. When only consumer population dynamics in several habitats are considered (i. e. when resources do not undergo population dynamics), we show that the existence of optimal foragers forces the resident‐mutant system to approach carrying capacity in each habitat even though the mutants do not die out. Thus, the ideal free distribution (IFD) for the single‐species habitat selection game becomes an evolutionarily stable state that describes a mixture of resident and mutant phenotypes rather than a strategy adopted by all individuals in the system. Also discussed is how these results are affected when animal distribution and demographic processes act on the same time scale.  相似文献   

5.
The competition for resources among cells, individuals or species is a fundamental characteristic of evolution. Biological all-pay auctions have been used to model situations where multiple individuals compete for a single resource. However, in many situations multiple resources with various values exist and single reward auctions are not applicable. We generalize the model to multiple rewards and study the evolution of strategies. In biological all-pay auctions the bid of an individual corresponds to its strategy and is equivalent to its payment in the auction. The decreasingly ordered rewards are distributed according to the decreasingly ordered bids of the participating individuals. The reproductive success of an individual is proportional to its fitness given by the sum of the rewards won minus its payments. Hence, successful bidding strategies spread in the population. We find that the results for the multiple reward case are very different from the single reward case. While the mixed strategy equilibrium in the single reward case with more than two players consists of mostly low-bidding individuals, we show that the equilibrium can convert to many high-bidding individuals and a few low-bidding individuals in the multiple reward case. Some reward values lead to a specialization among the individuals where one subpopulation competes for the rewards and the other subpopulation largely avoids costly competitions. Whether the mixed strategy equilibrium is an evolutionarily stable strategy (ESS) depends on the specific values of the rewards.  相似文献   

6.
The Ideal Free Distribution (IFD), introduced by Fretwell and Lucas in [Fretwell, D.S., Lucas, H.L., 1970. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheoretica 19, 16-32] to predict how a single species will distribute itself among several patches, is often cited as an example of an evolutionarily stable strategy (ESS). By defining the strategies and payoffs for habitat selection, this article puts the IFD concept in a more general game-theoretic setting of the “habitat selection game”. Within this game-theoretic framework, the article focuses on recent progress in the following directions: (1) studying evolutionarily stable dispersal rates and corresponding dispersal dynamics; (2) extending the concept when population numbers are not fixed but undergo population dynamics; (3) generalizing the IFD to multiple species.For a single species, the article briefly reviews existing results. It also develops a new perspective for Parker’s matching principle, showing that this can be viewed as the IFD of the habitat selection game that models consumer behavior in several resource patches and analyzing complications involved when the model includes resource dynamics as well. For two species, the article first demonstrates that the connection between IFD and ESS is now more delicate by pointing out pitfalls that arise when applying several existing game-theoretic approaches to these habitat selection games. However, by providing a new detailed analysis of dispersal dynamics for predator-prey or competitive interactions in two habitats, it also pinpoints one approach that shows much promise in this general setting, the so-called “two-species ESS”. The consequences of this concept are shown to be related to recent studies of population dynamics combined with individual dispersal and are explored for more species or more patches.  相似文献   

7.
The Lotka-Volterra model of population ecology, which assumes all individuals in each species behave identically, is combined with the behavioral evolution model of evolutionary game theory. In the resultant monomorphic situation, conditions for the stability of the resident Lotka-Volterra system, when perturbed by a mutant phenotype in each species, are analysed. We develop an evolutionary ecology stability concept, called a monomorphic evolutionarily stable ecological equilibrium, which contains as a special case the original definition by Maynard Smith of an evolutionarily stable strategy for a single species. Heuristically, the concept asserts that the resident ecological system must be stable as well as the phenotypic evolution on the "stationary density surface". The conditions are also shown to be central to analyse stability issues in the polymorphic model that allows arbitrarily many phenotypes in each species, especially when the number of species is small. The mathematical techniques are from the theory of dynamical systems, including linearization, centre manifolds and Molchanov's Theorem.  相似文献   

8.
For species in which group membership frequently changes, it has been a challenge to characterize variation in individual interactions and social structure. Quantifying this variation is necessary to test hypotheses about ecological determinants of social patterns and to make predictions about how group dynamics affect the development of cooperative relationships and transmission processes. Network models have recently become popular for analyzing individual contacts within a population context. We use network metrics to compare populations of Grevy’s zebra (Equus grevyi) and onagers (Equus hemionus khur). These closely related equids, previously described as having the same social system, inhabit environments differing in the distribution of food, water, and predators. Grevy’s zebra and onagers are one example of many sets of coarsely similar fission–fusion species and populations, observed elsewhere in other ungulates, primates, and cetaceans. Our analysis of the population association networks reveals contrasts consistent with their distinctive environments. Grevy’s zebra individuals are more selective in their association choices. Grevy’s zebra form stable cliques, while onager associations are more fluid. We find evidence that females associate assortatively by reproductive state in Grevy’s zebra but not in onagers. The current approach demonstrates the utility of network metrics for identifying fine-grained variation among individuals and populations in association patterns. From our analysis, we can make testable predictions about behavioral mechanisms underlying social structure and its effects on transmission processes.  相似文献   

9.
We examine the evolutionary stability of strategies for dispersal in heterogeneous patchy environments or for switching between discrete states (e.g. defended and undefended) in the context of models for population dynamics or species interactions in either continuous or discrete time. There have been a number of theoretical studies that support the view that in spatially heterogeneous but temporally constant environments there will be selection against unconditional, i.e. random, dispersal, but there may be selection for certain types of dispersal that are conditional in the sense that dispersal rates depend on environmental factors. A particular type of dispersal strategy that has been shown to be evolutionarily stable in some settings is balanced dispersal, in which the equilibrium densities of organisms on each patch are the same whether there is dispersal or not. Balanced dispersal leads to a population distribution that is ideal free in the sense that at equilibrium all individuals have the same fitness and there is no net movement of individuals between patches or states. We find that under rather general assumptions about the underlying population dynamics or species interactions, only such ideal free strategies can be evolutionarily stable. Under somewhat more restrictive assumptions (but still in considerable generality), we show that ideal free strategies are indeed evolutionarily stable. Our main mathematical approach is invasibility analysis using methods from the theory of ordinary differential equations and nonnegative matrices. Our analysis unifies and extends previous results on the evolutionary stability of dispersal or state-switching strategies.  相似文献   

10.
Chimpanzees (Pan troglodytes) often groom in gatherings that cannot simply be divided into unilateral dyadic grooming interactions. This feature of grooming is studied at two different levels: grooming cliques and grooming clusters. Grooming cliques are defined as directly connected configurations of grooming interactions at any given moment, and when any member of a clique successively grooms any member of another clique within 5min and within a distance of 3m, all the members of both cliques are defined as being in the same grooming cluster. Twenty-seven types of cliques are observed, with the largest one consisting of seven individuals. Mutual and/or polyadic cliques account for more than 25% of all cliques. The size of grooming clusters varies from two to 23 individuals, and almost 70% of the grooming time is spent in polyadic clusters. Although adult males groom the longest in relatively smaller clusters (size=2-4), adult females groomed the longest in clusters of five or more individuals. A review of the literature implies that mutual and polyadic cliques occur less often in other primate species than in chimpanzees. The importance of overlapping interactions for these kinds of gatherings and its possible significance in the evolution of sociality is discussed in this article.  相似文献   

11.
The overall structure and temporally changing configuration of members of social play among the wild chimpanzees (Pan troglodytes schweinfurthii) of Mahale Mountains National Park, Tanzania, were described on both the microscopic ‘clique’ levels, conceptualized as directly connected configurations through social play behavior, and macroscopic ‘cluster’ levels, conceptualized as indirectly connected gatherings of members of adjacent multiple cliques at the same time and space. Most playing clusters started as dyads. Although the cumulative number of participants increased, each clique size remained at 2 for most of the observational units. Dyadic cliques were more stable and lasted longer than larger cliques. Of all clusters’ playing fields, 64.7 % had maximum diameters of 3 m. In summary, chimpanzees played stably in dyadic pairs in most of the time. As time passed, other chimpanzees often joined in the playing groups to form large polyadic clusters. Even when all chimpanzees in a cluster played socially at the same time, they normally did so in separate dyadic pairs, forming multiple dyadic cliques simultaneously in a small space. These social play dynamics may be explained assuming a hypothesis based on a balance model among socially playing chimpanzees, as the balanced cliques are limited only to those in which all the existing pairs form the mutual dyads, and they tend to avoid unbalanced and maintain balanced relationships during social play. As a result, larger cliques were difficult to maintain for long periods and tended to transition into dyadic mutual cliques. Thus, Heider’s balance theory can be one of the possible theories to explain not only human social phenomena, but also the proximate mechanism of the structure and the temporal change of social play among wild chimpanzees. Although both mutual and transitive relationships are known to be balanced in various human networks, only mutual relationships among socially playing chimpanzees were balanced.  相似文献   

12.
We examine the evolutionary stability of strategies for dispersal in heterogeneous patchy environments or for switching between discrete states (e.g. defended and undefended) in the context of models for population dynamics or species interactions in either continuous or discrete time. There have been a number of theoretical studies that support the view that in spatially heterogeneous but temporally constant environments there will be selection against unconditional, i.e. random, dispersal, but there may be selection for certain types of dispersal that are conditional in the sense that dispersal rates depend on environmental factors. A particular type of dispersal strategy that has been shown to be evolutionarily stable in some settings is balanced dispersal, in which the equilibrium densities of organisms on each patch are the same whether there is dispersal or not. Balanced dispersal leads to a population distribution that is ideal free in the sense that at equilibrium all individuals have the same fitness and there is no net movement of individuals between patches or states. We find that under rather general assumptions about the underlying population dynamics or species interactions, only such ideal free strategies can be evolutionarily stable. Under somewhat more restrictive assumptions (but still in considerable generality), we show that ideal free strategies are indeed evolutionarily stable. Our main mathematical approach is invasibility analysis using methods from the theory of ordinary differential equations and nonnegative matrices. Our analysis unifies and extends previous results on the evolutionary stability of dispersal or state-switching strategies.  相似文献   

13.
14.
Game theoretic models, along with replicator equations, have been applied successfully to the study of evolution of populations of competing species, including the growth of a population, the reaching of the population to an equilibrium state, and the evolutionary stability of the state. In this paper, we analyze a game model proposed by Gore et al. (Nature 456:253-256, 2009) in their recent study on the co-development of two mixed yeast strains. We examine the mathematical properties of this model with varying experimental parameters. We simulate the growths of the yeast strains and compare them with the experimental results. We also compute and analyze the equilibrium state of the system and prove that it is asymptotically and evolutionarily stable.  相似文献   

15.
The ideal free distribution (IFD) in a two-patch environment where individual fitness is positively density dependent at low population densities is studied. The IFD is defined as an evolutionarily stable strategy of the habitat selection game. It is shown that for low and high population densities only one IFD exists, but for intermediate population densities there are up to three IFDs. Population and distributional dynamics described by the replicator dynamics are studied. It is shown that distributional stability (i.e., IFD) does not imply local stability of a population equilibrium. Thus distributional stability is not sufficient for population stability. Results of this article demonstrate that the Allee effect can strongly influence not only population dynamics, but also population distribution in space.  相似文献   

16.
Network epidemic models with two levels of mixing   总被引:1,自引:0,他引:1  
The study of epidemics on social networks has attracted considerable attention recently. In this paper, we consider a stochastic SIR (susceptible-->infective-->removed) model for the spread of an epidemic on a finite network, having an arbitrary but specified degree distribution, in which individuals also make casual contacts, i.e. with people chosen uniformly from the population. The behaviour of the model as the network size tends to infinity is investigated. In particular, the basic reproduction number R(0), that governs whether or not an epidemic with few initial infectives can become established is determined, as are the probability that an epidemic becomes established and the proportion of the population who are ultimately infected by such an epidemic. For the case when the infectious period is constant and all individuals in the network have the same degree, the asymptotic variance and a central limit theorem for the size of an epidemic that becomes established are obtained. Letting the rate at which individuals make casual contacts decrease to zero yields, heuristically, corresponding results for the model without casual contacts, i.e. for the standard SIR network epidemic model. A deterministic model that approximates the spread of an epidemic that becomes established in a large population is also derived. The theory is illustrated by numerical studies, which demonstrate that the asymptotic approximations work well, even for only moderately sized networks, and that the degree distribution and the inclusion of casual contacts can each have a major impact on the outcome of an epidemic.  相似文献   

17.
Effective coordination is key to many situations that affect the well-being of two or more humans. Social coordination can be studied in coordination games between individuals located on networks of contacts. We study the behavior of humans in the laboratory when they play the Stag Hunt game – a game that has a risky but socially efficient equilibrium and an inefficient but safe equilibrium. We contrast behavior on a cliquish network to behavior on a random network. The cliquish network is highly clustered and resembles more closely to actual social networks than the random network. In contrast to simulations, we find that human players dynamics do not converge to the efficient outcome more often in the cliquish network than in the random network. Subjects do not use pure myopic best-reply as an individual update rule. Numerical simulations agree with laboratory results once we implement the actual individual updating rule that human subjects use in our laboratory experiments.  相似文献   

18.
The analysis of models of evolutionary games requires explicit consideration of both evolutionary game rules and mutants which infinitesimally break these rules. For example, the Scotch Auction is an evolutionary game which lacks both a rule-obeying evolutionarily stable strategy and an asymptotically stable polymorphism of rule-obeying strategies. However, an infinitesimal rule-breaking, or cheating, mutant can be found which is an evolutionarily stable strategy against rule-obeying strategies. Such cheating strategies can spread through populations initially playing the Scotch Auction, effectively changing the rules of the game. Moreover, the extent of such rule-change will then tend to increase. Thus, the Scotch Auction is a transient evolutionary game, being the initial point of a seemingly orthogenetic game evolutionary process. This sort of transience suggests that the “progressive” nature of evolution may be due in part to those game features of evolutionary processes which make the success of adaptations relative to the level of extant adaptation among competitors, predators, etc.  相似文献   

19.
Evolutionary dynamics shape the living world around us. At the centre of every evolutionary process is a population of reproducing individuals. The structure of that population affects evolutionary dynamics. The individuals can be molecules, cells, viruses, multicellular organisms or humans. Whenever the fitness of individuals depends on the relative abundance of phenotypes in the population, we are in the realm of evolutionary game theory. Evolutionary game theory is a general approach that can describe the competition of species in an ecosystem, the interaction between hosts and parasites, between viruses and cells, and also the spread of ideas and behaviours in the human population. In this perspective, we review the recent advances in evolutionary game dynamics with a particular emphasis on stochastic approaches in finite sized and structured populations. We give simple, fundamental laws that determine how natural selection chooses between competing strategies. We study the well-mixed population, evolutionary graph theory, games in phenotype space and evolutionary set theory. We apply these results to the evolution of cooperation. The mechanism that leads to the evolution of cooperation in these settings could be called ‘spatial selection’: cooperators prevail against defectors by clustering in physical or other spaces.  相似文献   

20.
郑秀灯  李聪  冯天娇  陶毅 《生物多样性》2020,28(11):1304-232
在过去的三十多年, 演化博弈理论及其进化稳定对策的概念不仅被广泛地应用于解释动物行为的进化, 而且也被成功地应用于分子生物学、经济学、政治学和社会学等诸多学科。然而, 在随机波动环境中演化博弈动态的随机动力学性质始终没有被清晰地认识, 并且这是一个极具挑战性的理论问题。本文简单介绍了我们最近所提出的随机进化稳定性(stochastic evolutionary stability, SES)的概念。随机进化稳定性不仅是经典进化稳定对策(evolutionarily stably strategy, ESS)概念在随机环境下的自然扩展, 而且为揭示在随机环境中动物行为的演化动态提供一个基本的理论框架。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号