首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
《Plant Ecology & Diversity》2013,6(3-4):423-433
Background : Intraspecific functional variability (IFV) along altitudinal gradients is a powerful proxy to infer the responses of plants to abrupt environmental changes. We envisage that IFV shows distinctive patterns in tropical and extratropical alpine regions.

Aims : To characterise the patterns and explore the origin of IFV in a tropical alpine species in a context of upward range extension.

Methods : We examined variations in a series of plant functional traits in Lasiocephalus ovatus, inside and outside a nurse plant along a 600 m altitudinal gradient in the Ecuadorian Andes, and we studied its genetic variability.

Results : More conservative traits were developed at higher elevation, in contrast to extratropical alpine plants, which commonly develop opportunistic traits in response to late snowmelt close to their upper altitudinal limit. The presence of nurse cushions did not alter this trend. Increasing genetic distance along the gradient suggested that IFV might be partly genetically induced.

Conclusions : Our data combined with existing literature in tropical alpine environments lead the way to a stimulating scientific challenge: determining if patterns of plant altitudinal distribution in tropical alpine areas in response to climate change are predictable from patterns described in extratropical alpine areas.  相似文献   

2.
ABSTRACT

Background: Woody bamboos of the genus Chusquea grow along a broad range of elevations in the Venezuelan Andes. Their growth-form and density vary along the cloud forest – páramo gradient. In this article, we related ecophysiological traits and population genetic diversity information to explain the distribution of growth-form patterns of Chusquea in the Merida Andes, Venezuela.

Aims: We quantified differences in the ecophysiological response and genetic diversity of scandent cloud forest and shrub-like páramo bamboos of the genus Chusquea, taking in account the differences in their flowering patterns, growth-form and habitat.

Methods: We related low temperature resistance, water relations and leaf gas exchange variables to the growth-form, habitat, flowering patterns and genetic diversity in species of Chusquea. The genetic diversity study was based on Inter Sequence Simple Repeats and Random Amplified Polymorphic DNA markers analysis of cloud forest and páramo populations.

Results: Scandent cloud forest and shrub-like páramo species of Chusquea had a very similar ecophysiological response for all the variables analysed during wet and dry seasons and were capable of enduring freezing temperatures through moderate supercooling. Species associated with the cloud forest – páramo gradient maintained low stomatal conductance and transpiration rates that favoured high leaf water potentials, without limiting photosynthetic rates. Shrub-like bamboos growing above the continuous forest line had a small decline in net photosynthesis rates, associated with an increase in water use efficiency. Both scandent and shrub-like bamboos had a remarkably high genetic diversity, comparable to non-clonal species.

Conclusions: Species of Chusquea in the Venezuelan Andes are a physiologically relatively homogeneous group across a broad elevation gradient. Population genetic diversity appears to be more related with their flowering pattern and habitat conditions than with their growth form.  相似文献   

3.
ABSTRACT

Background: Tropical high mountains present extreme daily temperature variations, frequent high air evaporative demands and seasonal differences in soil water availability. Plants have adapted to these conditions through different avoidance-tolerance mechanisms. This review focuses on plant-growth forms and their adaptive strategies.

Aims: This integrated review of páramo plant traits aims at contributing to understanding the functioning of plant-growth forms and their significance on ecosystem properties under environmental climate and land-use changes.

Methods: Plant responses are presented along avoidance-tolerance gradients considering three main aspects: freezing resistance, water relations and gas exchange characteristics. Results from 45 herbaceous and 42 woody species along elevational gradients in the Venezuelan high Andes were analysed.

Results: Leaf supercooling is the common avoidance response of woody plants to night-time freezing temperatures, while herbaceous plants tolerate frost. Trees and caulescent rosettes maintain more positive leaf water potentials under water deficit conditions compared to more tolerant herbaceous species. All plant growth-forms showed strong stomatal control under dry-season conditions.

Conclusions: Páramo plant growth-forms may be separated according to an avoidance-tolerance gradient in response to water deficit and low temperature resistance. Woody growth-forms tend to avoid both freezing and water stress, while herbaceous forms tolerate frost and resist an unfavourable water status. Grasses and cushion plants are at the tolerant extreme of the gradient and coincide in that both reach the highest elevations in the páramo. Andean giant rosettes are freezing avoidant, particularly susceptible to water deficit and the most vulnerable, of all growth-forms, to changing environmental conditions.  相似文献   

4.
ABSTRACT

Background: Páramos are the high-elevation ecosystems of the humid tropical Andes, characterised by the presence of giant rosettes of the Espeletiinae subtribe (Asteraceae). Forecasted climate change is likely to reduce the extent of the area climatically suitable/occupied currently by Espeletiinae and their elevation distribution patterns.

Aims: The aim of this study was to estimate the potential impacts of forecasted climate change on the geographic distribution (extent of area and elevation distribution patterns) of 28 species of Espeletiinae that have been recorded in the Cordillera de Mérida, Venezuela.

Methods: Six bioclimatic variables, downscaled to a 90 m × 90 m cell size, were used to construct species distribution models (SDM) for the 28 species to model their current and likely future distribution (2070) by using two general circulation models and four representative concentration pathways (RCP).

Results: Nine species were estimated to have potential distribution over less than 1000 km2 and five over less than 500 km2, in current climatic conditions. Fifteen and eight species had elevation spans narrower than 1000 m and 500 m, respectively. No significant differences in modelled areas or spans were detected between north, central and south sections of the Cordillera de Mérida. Mean ± SE future reduction in the extent of area climatically suitable were estimated between 51.3% ± 6.3% (RCP2.6) and 78.1% ± 5.3% (RCP8.5), coupled with upward range retreat of between 277.8 m ± 27.4 m (RCP2.6) and 762.5 m ± 59.8 m (RCP8.5).

Conclusions: Our study predicts large reductions in modelled area and important upward shifts in the distribution of Venezuelan Espeletiinae by 2070 compared to their current distribution.  相似文献   

5.
To predict the response of aquatic ecosystems to future global climate change, data on the ecology and distribution of keystone groups in freshwater ecosystems are needed. In contrast to mid‐ and high‐latitude zones, such data are scarce across tropical South America (Neotropics). We present the distribution and diversity of chironomid species using surface sediments of 59 lakes from the Andes to the Amazon (0.1–17°S and 64–78°W) within the Neotropics. We assess the spatial variation in community assemblages and identify the key variables influencing the distributional patterns. The relationships between environmental variables (pH, conductivity, depth, and sediment organic content), climatic data, and chironomid assemblages were assessed using multivariate statistics (detrended correspondence analysis and canonical correspondence analysis). Climatic parameters (temperature and precipitation) were most significant in describing the variance in chironomid assemblages. Temperature and precipitation are both predicted to change under future climate change scenarios in the tropical Andes. Our findings suggest taxa of Orthocladiinae, which show a preference to cold high‐elevation oligotrophic lakes, will likely see range contraction under future anthropogenic‐induced climate change. Taxa abundant in areas of high precipitation, such as Micropsectra and Phaenopsectra, will likely become restricted to the inner tropical Andes, as the outer tropical Andes become drier. The sensitivity of chironomids to climate parameters makes them important bio‐indicators of regional climate change in the Neotropics. Furthermore, the distribution of chironomid taxa presented here is a vital first step toward providing urgently needed autecological data for interpreting fossil chironomid records of past ecological and climate change from the tropical Andes.  相似文献   

6.
Aim To project the distribution of three major forest types in the northeastern USA in response to expected climate change. Location The New England region of the United States. Methods We modelled the potential distribution of boreal conifer, northern deciduous hardwood and mixed oak–hickory forests using the process‐based BIOME4 vegetation model parameterized for regional forests under historic and projected future climate conditions. Projections of future climate were derived from three general circulation models forced by three global warming scenarios that span the range of likely anthropogenic greenhouse gas emissions. Results Annual temperature in New England is projected to increase by 2.2–3.3 °C by 2041–70 and by 3.0–5.2 °C by 2071–99 with corresponding increases in precipitation of 4.7–9.5% and 6.4–11.4%, respectively. We project that regional warming will result in the loss of 71–100% of boreal conifer forest in New England by the late 21st century. The range of mixed oak–hickory forests will shift northward by 1.0–2.1 latitudinal degrees (c. 100–200 km) and will increase in area by 149–431% by the end of the 21st century. Northern deciduous hardwoods are expected to decrease in area by 26% and move upslope by 76 m on average. The upslope movement of the northern deciduous hardwoods and the increase in oak–hickory forests coincide with an approximate 556 m upslope retreat of the boreal conifer forest by 2071–99. In our simulations, rising atmospheric CO2 concentrations reduce the losses of boreal conifer forest in New England from expected losses based on climatic change alone. Main conclusion Projected climate warming in the 21st century is likely to cause the extensive loss of boreal conifer forests, reduce the extent of northern hardwood deciduous forests, and result in large increases of mixed oak–hickory forest in New England.  相似文献   

7.
ABSTRACT

Background: Climate change may increase the risk of biological invasions. However, current knowledge of this interaction is limited.

Aims: We aimed to quantify (1) the effect of climate change on the potential distribution of invasive plant species in Spain, (2) the importance of the area of origin of such species and (3) the vulnerability of different biogeographic provinces to future changes in climatic suitability for invaders.

Methods: We applied six methods of species distribution modelling to assess the variation of climatically suitable areas for 40 alien plants. We developed a Potential Area Change Index and used it as the response variable in modelling for three future emissions scenarios and three global circulation models over three time periods. The area of origin and biogeographic province in Spain were also considered.

Results: We found a highly specific response for each plant species rather than a clear trend for the entire set of species. Predicted climate suitability increased over higher emission scenarios and longer projected time lags. Neotropical species showed the greatest potential climatic range expansion. We detected a strong interaction between the geographic origin of a species and the biogeographic province.

Conclusions: Special attention should be given to the areas where aridification of climate is projected and where introduced neotropical species are likely to expand their range. Future work should develop accurate species-specific approaches that allow the management invasive plant species.  相似文献   

8.
ABSTRACT

Background: Lianas are an important component of tropical forests that respond to logging disturbance. Determining liana response to selective logging chronosequence is important for understanding long-term logging effects on lianas and tropical forests.

Aims: Our objective was to quantify the response of liana communities to selective logging chronosequence in a moist semi-deciduous forest in Ghana.

Methods: Liana community characteristics were determined in ten 40 m × 40 m plots randomly and homogenously distributed in each of four selectively logged forest stands that had been logged 2, 14, 40 and 68 years before the surveys and in an old-growth forest stand (ca. >200 years).

Results: Liana species composition differed significantly among the forest stands, as a function of logging time span, while species richness fluctuated along the chronosequence. The abundance of liana communities and of reproductive and climbing guilds was lower in the logged forests than in the old-growth forest. The ratio of liana abundance and basal area to those of trees was similar in the logged forests, but significantly lower than those in the old-growth forest.

Conclusions: Logging impacts on liana community structure and functional traits were largely evident, though no clear chronosequence trends were recorded, except for species composition.  相似文献   

9.
10.
In the tropical Andes climate change is expected to increase temperatures and change precipitation patterns. To overcome the lack of systematic weather records that limits the performance of climate models in this region, the use of the environmental information contained in tree rings from tropical Andean species have been found useful to reconstruct spatio-temporal climate variability. Because classical dendrochronology based on ring-width patterns is often challenging in the tropics, alternative approaches such as Quantitative Wood Anatomy (QWA) based on the measurement and quantification of anatomical traits within tree rings can be a significant advance in the field. Here we assess the dendrochronological potential of Polylepis microphylla and its climate sensitivity by using i) classic dendrochronological methods to generate the first Tree-ring Width (TRW) chronology for this tree species spanning from 1965 to 2018; ii) radiocarbon (¹⁴C) analyses as an independent validation method to assess the annual periodicity of the tree growth layers; and iii) QWA to generate tree-ring annual records of the number (VN) and size (VS) of vessels to investigate the climate sensitivity of these anatomical traits. The annual periodicity in P. microphylla radial growth was confirmed by both dendrochronological and ¹⁴C analyses. We found that VN and VS are promising new proxies to reconstruct climate variability in this region and that they provide different information than TRW. While TRW provides information at inter-annual resolution (i.e., year-to-year variability), VN and VS generated with sectorial QWA provide intra-annual resolution for each stage of the growing process. The TRW and the anatomical traits (i.e., VN and VS) showed strong positive correlation with maximum temperature for different periods of the growing season: while VS is higher with warmer conditions prior to the growing season onset, tree-rings are wider and present higher number of vessels when warmer conditions occur during the current growing season. Our findings pointed out the suitability of P. microphylla for dendrochronological studies and may suggest a good performance of this species under the significant warming expected according to future projections for the tropical Andes.  相似文献   

11.

Aim

Andean montane forests are biodiversity hotspots and large carbon stores and they provide numerous ecosystem services. Following land abandonment after centuries of forest clearing for agriculture in the Andes, there is an opportunity for forest recovery. Field-based studies show that forests do not always recover. However, large-scale and long-term knowledge of recovery dynamics of Andean forests remains scarce. This paper analyses tropical montane forest recovery trajectories over a 15-year time frame at the landscape and tropical Andean scale to inform restoration planning.

Methods

We first detect “potential recovery” as areas that have experienced a forest transition between 2000 and 2005. Then, we use Landsat time series analysis of the normalized difference water index (NDWI) to classify four “realized recovery” trajectories (“ongoing”, “arrested”, “disrupted” and “no recovery”) based on a sequential pattern of 5-yearly Z-score anomalies for 2005–2020. We compare these results against an analysis of change in tree cover to validate against other datasets.

Results

Across the tropical Andes, we detected a potential recovery area of 274 km2 over the period. Despite increases in tree cover, most areas of the Andes remained in early successional states (10–25% tree cover), and NDWI levelled out after 5–10 years. Of all potential forest recovery areas, 22% showed “ongoing recovery”, 61% showed either “disrupted” or “arrested recovery”, and 17% showed “no recovery”. Our method captured forest recovery dynamics in a Peruvian arrested succession context and in landscape-scale tree-planting efforts in Ecuador.

Main conclusions

Forest recovery across the Andes is mostly disrupted, arrested or unsuccessful, with consequences for biodiversity recovery and provision of ecosystem services. Low-recovery areas identified in this study might be good candidates for active restoration interventions in this UN Decade on Restoration. Future studies could determine restoration strategies and priorities and suggest management strategies at a local planning scale across key regions in the biodiversity hotspot.  相似文献   

12.
An analysis using an artificial neural network model suggests that the tropical forests of north Queensland are highly sensitive to climate change within the range that is likely to occur in the next 50–100 years. The distribution and extent of environments suitable for 15 structural forest types were estimated, using the model, in 10 climate scenarios that include warming up to 1°C and altered precipitation from –10% to +20%. Large changes in the distribution of forest environments are predicted with even minor climate change. Increased precipitation favours some rainforest types, whereas decreased rainfall increases the area suitable for forests dominated by sclerophyllous genera such as Eucalyptus and Allocasuarina. Rainforest environments respond differentially to increased temperature. The area of lowland mesophyll vine forest environments increases with warming, whereas upland complex notophyll vine forest environments respond either positively or negatively to temperature, depending on precipitation. Highland rainforest environments (simple notophyll and simple microphyll vine fern forests and thickets), the habitat for many of the region’s endemic vertebrates, decrease by 50% with only a 1°C warming. Estimates of the stress to present forests resulting from spatial shifts of forest environments (assuming no change in the present forest distributions) indicate that several forest types would be highly stressed by a 1°C warming and most are sensitive to any change in rainfall. Most forests will experience climates in the near future that are more appropriate to some other structural forest type. Thus, the propensity for ecological change in the region is high and, in the long term, significant shifts in the extent and spatial distribution of forests are likely. A detailed spatial analysis of the sensitivity to climate change indicates that the strongest effects of climate change will be experienced at boundaries between forest classes and in ecotonal communities between rainforest and open woodland.  相似文献   

13.
In Ecuador, Tapirus pinchaque is considered to be critically endangered. Although the species has been registered in several localities, its geographic distribution remains unclear, and the effects of climate change and current land uses on this species are largely unknown. We modeled the ecological niche of T. pinchaque using MaxEnt, in order to assess its potential adaptation to present and future climate change scenarios. We evaluated the effects of habitat loss due by current land use, the ecosystem availability and importance of Ecuadorian System of Protected Areas into the models. The model of environmental suitability estimated an extent of occurrence for species of 21,729 km2 in all of Ecuador, mainly occurring along the corridor of the eastern Ecuadorian Andes. A total of 10 Andean ecosystems encompassed ~98% of the area defined by the model, with herbaceous paramo, northeastern Andean montane evergreen forest and northeastern Andes upper montane evergreen forest being the most representative. When considering the effect of habitat loss, a significant reduction in model area (~17%) occurred, and the effect of climate change represented a net reduction up to 37.86%. However, the synergistic effect of both climate change and habitat loss, given current land use practices, could represent a greater risk in the short-term, leading to a net reduction of 19.90 to 44.65% in T. pinchaque’s potential distribution. Even under such a scenarios, several Protected Areas harbor a portion (~36 to 48%) of the potential distribution defined by the models. However, the central and southern populations are highly threatened by habitat loss and climate change. Based on these results and due to the restricted home range of T. pinchaque, its preference for upland forests and paramos, and its small estimated population size in the Andes, we suggest to maintaining its current status as Critically Endangered in Ecuador.  相似文献   

14.
《Plant Ecology & Diversity》2013,6(3-4):343-353
Background: Studies in temperate mountains suggest that plant–plant interactions modulate tree establishment above the forest line. In tropical mountains worldwide this issue remains largely unexplored.

Aims: To analyse the population structure and local spatial relationships of a dominant tree at a species-rich tropical Andean forest line.

Methods: We determined changes in the population structure of Diplostephium venezuelense along an elevation gradient between continuous forest and open páramo and analysed plant community structure and superficial rock cover in the neighbourhood of saplings and adults at the upper forest line.

Results: Sapling and adult densities were highest in low-altitude páramos adjacent to the forest line and at the borders of small forest islands. Saplings showed local spatial aggregation, were positively associated with small boulders and low shrubs, and negatively associated with mosses and lichens. However, no spatial association was found between scattered adults in the páramo and saplings of other forest trees.

Conclusions: Complex species-specific local spatial interactions, suggesting both facilitative and antagonistic effects, seem to modulate the establishment of the dominant tree D. venezuelense at and above the upper forest line. Nevertheless, the establishment of other tree species above continuous forests does not appear to be facilitated by the canopy cover offered by the isolated D. venezuelense individuals established in open páramo environments.  相似文献   

15.
Question: What is the effect of climate change on tree species abundance and distribution in the Italian peninsula? Location: Italian peninsula. Methods: Regression tree analysis, Random Forest, generalized additive model and geostatistical methods were compared to identify the best model for quantifying the effect of climate change on tree species distribution and abundance. Future potential species distribution, richness, local colonization, local extinction and species turnover were modelled according to two scenarios (A2 and B1) for 2050 and 2080. Results: Robust Random Forest proved to be the best statistical model to predict the potential distribution of tree species abundance. Climate change could lead to a shift in tree species distribution towards higher altitudes and a reduction of forest cover. Pinus sylvestris and Tilia cordata may be considered at risk of local extinction, while the other species could find potential suitable areas at the cost of a rearrangement of forest community composition and increasing competition. Conclusions: Geographical and topographical regional characteristics can have a noticeable influence on the impact of predicted climate change on forest ecosystems within the Mediterranean basin. It would be highly beneficial to create a standardized and harmonized European forest inventory in order to evaluate, at high resolution, the effect of climate change on forest ecosystems, identify regional differences and develop specific adaptive management strategies and plans.  相似文献   

16.
Recent climate projections have shown that the distribution of organisms in island biotas is highly affected by climate change. Here, we present the result of the analysis of niche dynamics of a plant group, Memecylon, in Sri Lanka, an island, using species occurrences and climate data. We aim to determine which climate variables explain current distribution, model how climate change impacts the availability of suitable habitat for Memecylon, and determine conservation priority areas for Sri Lankan Memecylon. We used georeferenced occurrence data of Sri Lankan Memecylon to develop ecological niche models and assess both current and future potential distributions under six climate change scenarios in 2041–2060 and 2061–2080. We also overlaid land cover and protected area maps and performed a gap analysis to understand the impacts of land‐cover changes on Memecylon distributions and propose new areas for conservation. Differences among suitable habitats of Memecylon were found to be related to patterns of endemism. Under varying future climate scenarios, endemic groups were predicted to experience habitat shifts, gains, or losses. The narrow endemic Memecylon restricted to the montane zone were predicted to be the most impacted by climate change. Projections also indicated that changes in species’ habitats can be expected as early as 2041–2060. Gap analysis showed that while narrow endemic categories are considerably protected as demonstrated by their overlap with protected areas, more conservation efforts in Sri Lankan forests containing wide endemic and nonendemic Memecylon are needed. This research helped clarify general patterns of responses of Sri Lankan Memecylon to global climate change. Data from this study are useful for designing measures aimed at filling the gaps in forest conservation on this island.  相似文献   

17.
AimThe aim of this study is to model the past, current, and future distribution of J. phoenicea s.s., J. turbinata, and J. canariensis, based on bioclimatic variables using a maximum entropy model (Maxent) in the Mediterranean and Macaronesian regions.LocationMediterranean and Macaronesian.TaxonCupressaceae, Juniperus.MethodsData on the occurrence of the J. phoenicea complex were obtained from the Global Biodiversity Information Facility (GBIF.org), the literature, herbaria, and the authors’ field notes. Bioclimatic variables were obtained from the WorldClim database and Paleoclim. The climate data related to species localities were used for predictions of niches by implementation of Maxent, and the model was evaluated with ENMeval.ResultsThe potential niches of Juniperus phoenicea during the Last Interglacial period (LIG), Last Glacial Maximum climate (LGM), and Mid‐Holocene (MH) covered 30%, 10%, and almost 100%, respectively, of the current potential niche. Climate warming may reduce potential niches by 30% in RCP2.6 and by 90% in RCP8.5. The potential niches of Juniperus turbinata had a broad circum‐Mediterranean and Canarian distribution during the LIG and the MH; its distribution extended during the LGM when it was found in more areas than at present. The predicted warming in scenarios RCP2.6 and RCP8.5 could reduce the current potential niche by 30% and 50%, respectively. The model did not find suitable niches for J. canariensis during the LIG and the LGM, but during the MH its potential niche was 30% larger than at present. The climate warming scenario RCP2.6 indicates a reduction in the potential niche by 30%, while RCP8.5 so indicates a reduction of almost 60%.Main conclusionsThis research can provide information for increasing the protection of the juniper forest and for counteracting the phenomenon of local extinctions caused by anthropic pressure and climate changes.  相似文献   

18.
Background: Various rare and endangered temperate ferns are being threatened by their recent population decline, but there is limited understanding of the causes behind it.

Aims: This study attempted to identify the possible drivers of regional population decline and extinction in the globally distributed woodland fern Polystichum braunii.

Methods: A comparison was undertaken of the climatic, edaphic and phytosociological characteristics of sites with increasing, decreasing or recently extinct populations in Germany.

Results: A significantly higher frequency of episodes of low relative air humidity (<60%) was found at sites with decreasing or extinct populations compared to habitats with population increases. Sites with decreasing or extinct populations were also characterised as having less summer precipitation (<500 mm year?1) and a shorter duration of snow cover (<110 days year?1) than sites with increasing populations. The latter had significantly higher moss cover (56% of the forest floor), but less cover by a tree litter layer (23%) compared to decreasing (36% and 38%) or recently extinct populations (22% and 52%). All increasing populations were located in intact TiliaAcer ravine forests, while those suffering population decline were mostly located in Fagus-dominated forests.

Conclusions: It was concluded that the probable causes of the recent decline in German P. braunii populations are reduced air humidity levels, decreasing snow duration or a shift from moss-covered to tree litter-covered forest floors due to climate warming or altered forest management.  相似文献   

19.
Expanding high‐elevation and high‐latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south‐central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land‐use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow‐covered tundra areas. The positive climate feedback of high‐latitude and high‐elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts.  相似文献   

20.
1The decrease of temperatures along an elevation gradient imposes physiological constraints on reptiles that ultimately determine their distribution ranges. Forest patterns are likely to interact with this process, but very few studies have examined their contribution in determining distribution limits.2We examined the role played by thermal physiology and forest cover in determining the elevational ranges of a lizard, Eutropis longicaudata. We integrated this species’ thermal traits in simulating its maximum activity time under different conditions of forest cover and elevation using a NicheMapR model. In addition, we evaluated the influence of winter temperatures on the range limit by examining the simulated soil temperatures at the occurrence sites.3Laboratory experiments showed that E. longicaudata has a high preferred body temperature and low cold tolerance. The model predicts that maximum activity time decreases with elevation and forest cover. Although unforested areas may provide longer active time in all simulated elevations, mountain areas in Taiwan are heavily forested and are predicted to allow only a very short period of activity above 1000 m elevation.4All sightings were indeed located in areas below 1000 m elevation, in which the predicted average soil temperature is above 10 °C in January in cold years.5Our results show that reptile physiological response does respond strongly to the change of microclimate induced by forest cover and elevation. Overall, this suggests that forest cover is a major determinant of some reptiles’ elevational range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号