首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two chromium(VI) resistant yeast strains (Candida sp. and Rhodosporidium sp.) were isolated from industrial wastes. Four different yeasts, three from the Industrial Yeast Collection and one of pharmaceutical origin, were also studied in relation to chromate toxicity and its alleviation by sulfur species. The growth of yeasts from industrial wastes was inhibited by 50% by high concentrations of Cr(VI): Candida sp. by 4 mM Cr(VI) and Rhodosporidium sp. by 10 mM Cr(VI) in Sabouraud Broth medium. The other Cr(VI)-sensitive yeasts were inhibited by 0.1 mM Cr(VI). The general mechanism of chromium resistance in Candida sp. and Rhodosporidium sp. was due to reduced uptake of chromium, but not to biological reduction from Cr(VI) to Cr(III). In Cr(VI)-sensitive yeasts, chromium was accumulated as much as 10-fold, as in Saccharomyces cerevisiae. Cr(VI) toxicity in Candida sp. was modulated from Cr(VI)-resistance to Cr(VI)-hypersensitivity depending on the addition of methionine, cysteine, sulfate and djenkolic acid. If Candida sp. was grown in the presence of S-amino acids, especially methionine, it was more resistant than if the sulfur source was sulfate. When sulfate transport was enhanced by addition of djenkolic acid, Candida sp. became hypersensitive. Rhosporidium sp. was always resistant to Cr(VI) because sulfate transport was inefficient and it assimilated sulfur as S-amino acids. Cr(VI)-sensitive yeasts required larger amounts of S-amino acids, especially methionine, to tolerate Cr(VI) toxicity. Cysteine was toxic for C.famata 6016 above 50 microM.  相似文献   

2.
Out of nineteen bacteria screened from the tannery waste dump site, the most effective isolate, strain DU17 was selected for Cr(VI) reduction process among the non-pathogenic once. Based on 16S rRNA gene sequence analysis, the bacterium was identified as Enterobacter sp. DU17. Its amplified Cr(VI) reductase gene showed maximum homology with flavoprotein of Enterobacter cloacae. Enterobacter sp. DU17 reduced Cr(VI) maximally at 37 °C and pH 7.0. Various co-metals, electron (e) donors and inhibitors were tested to study their effect on Cr(VI) reduction. In presence (0.2% each) of glucose and fructose, Enterobacter sp. DU17 reduced Cr(VI) completely after 16 and 20 h, respectively. Since the concentration of total Cr was invariable after remediation as detected through AAS analysis, this experiment disclosed that responsible operation was associated with extracellular Cr(VI) reduction process rather than uptake mechanism. Multiple antibiotic resistance index of 0.08 for this bacterium was very low as compared to standard risk assessment value of 0.20. With high Cr(VI) reducing capability, non-pathogenicity and antibiotic sensitivity, Enterobacter sp. DU17 is found to be very efficient in removing Cr(VI) toxicity from the environment.  相似文献   

3.
The hexavalent chromium Cr(VI) poses a threat as a hazardous metal and its removal from aquatic environments through biosorption has gained attention as a viable technology of bioremediation. We evaluated the potential use of three green algae (Cladophora glomerata, Enteromorpha intestinalis and Microspora amoena) dry biomass as a biosorbent to remove Cr(VI) from aqueous solutions. The adsorption capacity of the biomass was determined using batch experiments. The adsorption capacity appeared to depend on the pH. The optimum pH with the acid-treated biomass for Cr(VI) biosorption was found to be 2.0 at a constant temperature, 45?°C. Among the three genera studied, C. glomerata recorded a maximum of 66.6% removal from the batch process using 1.0?g dried algal cells/100?ml aqueous solution containing an initial concentration of 20?mg/L chromium at 45?°C and pH 2.0 for 60?min of contact time. Langmuir and Freundlich isotherm equations fitted to the equilibrium data, Freundlich was the better model. Our study showed that C. glomerata dry biomass is a suitable candidate to remove Cr(VI) from aqueous solutions.  相似文献   

4.
Suresh Gupta  B.V. Babu   《Bioresource technology》2009,100(23):5633-5640
Continuous adsorption experiments were performed in a fixed-bed adsorption column to evaluate the performance of low-cost adsorbent (sawdust) developed for the removal of Cr(VI) from aqueous solutions. The effects of influencing parameters such as flow rate, mass of adsorbent, initial Cr(VI) concentration were studied and the corresponding breakthrough curves were obtained. The fixed-bed adsorption process parameters such as breakthrough time, total percentage removal of Cr(VI), adsorption exhaustion rate and fraction of unused bed-length were obtained. A mathematical model for fixed-bed adsorption column was proposed by incorporating the effect of velocity variation along the bed-length in the existing model. Pore and solid diffusion models were used to describe the intra-particle mechanism for Cr(VI) adsorption. The proposed mathematical model was validated with the literature data and the experimental data obtained in the present study and the model was found to be good for explaining the behavior of breakthrough curves.  相似文献   

5.
Environments co-contaminated with metals and organic compounds are difficult to remediate. Actinobacteria is an important group of microorganisms found in soils, with high metabolic versatility and potential for bioremediation. In this paper, actinobacteria were used to remediate soil co-contaminated with Cr(VI) and lindane. Five actinobacteria, tolerant to Cr(VI) and lindane mixture were selected: Streptomyces spp. A5, A11, M7, and MC1, and Amycolatopsis tucumanensis DSM 45259. Sterilized soil samples were inoculated with actinobacteria strains, either individually or as a consortium, and contaminated with Cr(VI) and lindane, either immediately or after 7 days of growth, and incubated at 30 °C during 14 days. All actinobacteria were able to grow and remove both contaminants, the consortium formed by Streptomyces spp. A5, M7, MC1, and A. tucumanensis showed the highest Cr(VI) removal, while Streptomyces sp. M7 produced the maximum lindane removal. In non-sterile soil samples, Streptomyces sp. M7 and the consortium removed more than 40% of the lindane, while Streptomyces sp. M7 demonstrated the greatest Cr(VI) removal. The most appropriate strategy for bioremediation of Cr(VI) and lindane co-contaminated soils would be the inoculation with Streptomyces sp. M7.  相似文献   

6.
Lysine and leucine auxotrophic, heterothallic (h+, h-) strains of Schizosaccharomyces pombe were used to obtain chromium (VI)-sensitive and -tolerant mutants by ultraviolet radiation-induced and nitrosoguanidine-induced mutagenesis. The minimal inhibitory concentrations of K2Cr2O7 on YEA media were 225 microM for the wild-type strain CW-6, 125 microM for the sensitive mutant CS-6.51 and 275 microM for the tolerant mutant CT-6.66. The mutants exhibited cross-sensitivity of various patterns to Cd2+, Cu2+, Ni2+, Zn2+ and VO3-(4). Cr(VI) was added to the actively growing cultures and the total chromium (TOCr) content of the cells was determined. The sensitive mutant exhibited a high bioaccumulation ability, with a dry biomass of 810 micrograms g-1 after 30 min, while the tolerant mutant had a significantly lower ability than the wild-type strain. In PIPES buffer, washed, lysine-starved biomasses were treated with 75 microM Cr(VI) and after 2 h, the TOCr and the organically bound chromium (OBCr) were determined. Under these conditions, the sensitive and tolerant mutants had the same TOCr content, 50% of which was OBCr. The wild-type strain exhibited a lower TOCr content than that of its mutants and only 35% of this was OBCr. The Cr(VI)-sensitivity was due to a significantly increased uptake of Cr(VI).  相似文献   

7.
This study reports the influence of Mg ions on the development and architecture of biofilms by a chromium resistant and reducing bacterium Arthrobacter sp. SUK 1201 and their utilization in the removal of toxic hexavalent chromium. Among the different metal ions tested, Mg(II) greatly influenced the biofilm growth in peptone yeast extract glucose medium. Both Scanning and Confocal Laser Scanning Microscopy revealed that biofilms formed under the induction of Mg(II) had characteristic higher cell densities. The cells remain embedded in thick porous layers of extracellular polymeric substances as evident from the fluorescein isothiocyanate labeled lectin concanavalin A and 4, 6- diamino-2-phenylindole staining. COMSTAT analysis also indicated maximum thickness and roughness coefficient of the biofilm grown in presence of Mg(II). Biofilms of Arthrobacter sp. SUK 1201 developed under such Mg (II) influenced condition showed complete removal of 0.5 mM Cr(VI) in mineral salts medium. The biofilm of this isolate grown in presence of Mg(II) was also able to remove 60µM Cr(VI) from mine seepage water suggesting its possible implication in effective bioremediation of chromium polluted environments.  相似文献   

8.
The reduction of Cr(VI) at the expense of molecular hydrogen was studied using resting cells of Desulfovibrio vulgaris ATCC 29579 in anaerobic resting cell suspensions in MOPS buffer. Bioreduction occurred only in the presence of ligands or chelating agents (CO32-, citrate, NTA, EDTA, DTPA). The stimulatory effect of these ligands on the rate of Cr(VI) reduction was correlated (r = 0.988) with the strength of the ligand/chelate complex of Cr(III). The data are examined with respect to likely solution and redox equilibria in the ionic matrix of the carrier solution, and with respect to the potential for bioremediation of Cr(VI).  相似文献   

9.
In this study, we report a bacterium, Achromobacter sp. TY3-4, capable of concurrently removing Mn (II) and Cr (VI) under oxic condition. TY3-4 reduced as much as 2.31?mM of Cr (VI) to Cr (III) in 70?h, and oxidized as much as 20?mM of Mn(II) to Mn oxides in 80?h. When 0.58?mM Cr (VI) and 10?mM Mn(II) were present together, both Cr(VI) and Mn(II) were completely removed by TY3-4 and the generated precipitates are MnIIIOOH, MnIII,IV3O4, MnIVO2 and CrIII(OH)3. Experiments also show that both biosroption and bioreduction of Mn(II) are the driving forces for Mn(II) removal, whereas bioreduction of Cr(VI) is the driving force for Cr(VI) removal. On the basis of these results, a possible reaction was proposed that TY3-4 concurrently reduces Cr(VI) and oxidizes Mn(II). This study is fundamental for Mn and Cr cycles. The strain shows potential for practical application.  相似文献   

10.
In order to gain knowledge on the potential use of Helianthus annuus L. for the remediation of Cr(VI) polluted waters, hydroponics experiments were set up to determine Cr uptake and tolerance in different Cr(VI)-sulfate conditions, and Cr biotransformations. Results indicated that Cr(VI) promoted seed germination, and plant tolerance was higher at younger plant stages. Cr uptake was dependent on sulfate concentrations. The highest Cr levels in roots and shoots (13,700 and 2,500 mg kg–1dry weight (DW), respectively) were obtained in 1 mM sulfate. The lowest Cr uptake in roots (10,600 mg kg–1DW) was observed in seedlings treated with no sulfate. In shoots, Cr concentration was of 1,500 mg kg–1DW for the 1 mM sulfate treatment, indicating a different level of interaction between chromate and sulfate in both tissues. For the first time, using micro X-ray florescence (μXRF), we demonstrated Cr reaches the root stele and is located in the walls of xylem vessels. Bulk and micro X-ray Absorption Near-Edge Structure (μXANES) results showed that Cr in the roots is mostly in the form of Cr(III) phosphate (80%), with the remainder complexed to organic acids. Our results suggest this plant species may serve for Cr(VI) rhizofiltration purposes.  相似文献   

11.
The main aim of this study was to investigate the influence of the sulfate ion on the tolerance to Cr(VI) and the Cr(VI) reduction in a yeast strain isolated from tannery wastewater and identified as Candida sp. FGSFEP by the D1/D2 domain sequence of the 26S rRNA gene. The Candida sp. FGSFEP strain was grown in culture media with sulfate concentrations ranging from 0 to 23.92 mM, in absence and presence of Cr(VI) [1.7 and 3.3 mM]. In absence of Cr(VI), the yeast specific growth rate was practically the same in every sulfate concentration tested, which suggests that sulfate had no stimulating or inhibiting effect on the yeast cell growth. In contrast, at the two initial Cr(VI) concentrations assayed, the specific growth rate of Candida sp. FGSFEP rose when sulfate concentration increased. Likewise, the greater efficiencies and volumetric rates of Cr(VI) reduction exhibited by Candida sp. FGSFEP were obtained at high sulfate concentrations. Yeast was capable of reducing 100% of 1.7 mM Cr(VI) and 84% of 3.3 mM Cr(VI), with rates of 0.98 and 0.44 mg Cr(VI)/L h, with 10 and 23.92 mM sulfate concentrations, respectively. These results indicate that sulfate plays an important role in the tolerance to Cr(VI) and Cr(VI) reduction in Candida sp. FGSFEP. These findings may have significant implications in the biological treatment of Cr(VI)-laden wastewaters.  相似文献   

12.
絮凝酵母SPSC01为酿酒酵母Saccharomyces cerevisiae和粟酒裂殖酵母Schizosaccharomyces pombe的融合菌株,用其吸附水溶液中的重金属Cr(VI),可以大大降低生物吸附的固液分离成本。为了探讨SPSC01菌体絮凝蛋白对Cr(VI) 还原吸附的影响,对SPSC01与其亲本菌株的吸附行为进行了比较。结果表明,SPSC01和其具有絮凝性状的亲本S. pombe的Cr(VI) 去除速率基本同步,远优于无絮凝性状的亲本S. cerevisiae;达到吸附平衡时,S. pombe、SPSC01和S. cerevisiae对总Cr去除率分别达68.8%、48.6%和37.5%;从而证明了絮凝有利于Cr(VI) 的还原、吸附,絮凝蛋白在Cr(VI) 的还原吸附过程中起促进作用。通过化学屏蔽方法和傅立叶变换红外光谱 (FTIR) 分析,对SPSC01菌体表面吸附Cr(VI) 的机理进行了研究,结果表明SPSC01菌体表面吸附Cr(VI) 起主要作用的基团是氨基、羧基和酰胺基。  相似文献   

13.
The occurrence of culturable yeasts in glacial meltwater from the Frías, Casta?o Overo and Río Manso glaciers, located on Mount Tronador in the Nahuel Huapi National Park (Northwestern Patagonia, Argentina) is presented. Subsurface water samples were filtered for colony counting and yeast isolation. The total yeast count ranged between 6 and 360 CFU L(-1). Physiologic and molecular methods were employed to identify 86 yeast isolates. In agreement with yeast diversity data from studies for Antarctic and Alpine glaciers, the genera Cryptococcus, Leucosporidiella, Dioszegia, Rhodotorula, Rhodosporidium, Mrakia, Sporobolomyces, Udeniomyces and Candida were found. Cryptococcus and Leucosporidiella accounted for 50% and 20% of the total number of strains, respectively. Among 21 identified yeast species, Cryptococcus sp. 1 and Leucosporidiella fragaria were the most frequent. The typically psychrophilic Mrakia yeast strain and three new yeast species, yet to be described, were also isolated. All yeast strains were able to grow at 5, 10, and 15 degrees C. Among yeast strains expressing extracellular enzymatic activity, higher proteolytic and lipolytic activities were obtained at 4 degrees C than at 20 degrees C.  相似文献   

14.
Yeast strains from the genera Candida, Debaryomyces, Aureobasidium, Geotrichum, Pichia, Rhodotorula, Tremella, Hanseniaspora, and Cryptococcus were isolated from samples of a gold mine from liquid extraction circuit. These strains were tested for their ability to utilize acetonitrile at 12 mM as the sole nitrogen source. The yeasts that grew using acetonitrile at 12 mM were tested in the presence of acetonitrile, isobutyronitrile, methacrylnitrile, and propionitrile at concentrations of 12, 24, 48, 97, and 120 mM. One strain was selected for each nitrile and the concentration of nitrile in which the best growth occurred. Cryptococcus sp. strain UFMG-Y28 had a better growth on 120 mM propionitrile and 97 mM acetonitrile, Rhodotorula glutinis strain UFMG-Y5 on 48 mM methacrylnitrile, and Cryptococcus flavus strain UFMG-Y61 on 120 mM isobutyronitrile. The utilization of different nitriles and amides by yeast strains involves hydrolysis in a two-step reaction mediated by both inducible and intracellular nitrile hydratase and amidase.  相似文献   

15.
[背景]高盐含铬废水的去除过程中,Cr(Ⅵ)还原菌是研究者关注的重点,但目前对耐盐菌株的Cr(Ⅵ)脱毒特性及机理的分析仍较少。[目的]比较两株耐盐菌株的Cr(Ⅵ)移除特性,并区分Cr(Ⅵ)耐受机制的差异;通过基因组测序分析,从基因层面推测铬耐受相关基因;构建铬还原菌的混菌体系,考察两者对去除污染物的协同作用。[方法]从青海茶卡盐湖分离耐盐菌Staphylococcus sp.YZ-1,与Bacillus cereus CC-1进行基础特性和Cr(Ⅵ)去除性能的比较,并通过全基因组序列的分析验证特性测试的结果。[结果]两株菌都具有铬移除特性,但CC-1的铬移除效率更高,在初始Cr(Ⅵ)浓度为0.1 mmol/L情况下,CC-1能在12h内移除95.3%的Cr(Ⅵ),而YZ-1只能移除40.1%。在进一步实验中发现YZ-1只能对Cr(Ⅵ)进行还原,将其转化为可溶的有机态Cr(Ⅲ),而CC-1能同时对Cr(Ⅵ)进行还原和吸附。全基因组分析发现YZ-1具有编码外排泵蛋白的基因和编码NAD(P)H氧化还原酶的基因,而CC-1具有编码铬转运蛋白ChrA和细胞色素C氧化还原酶的基因。两株菌的混菌体系在处理含Cr(Ⅵ)、Te(Ⅳ)的废水时,菌群能将还原产物聚集成团并沉淀到底部。[结论]菌株YZ-1和CC-1均为耐盐铬还原菌,但YZ-1中的铬还原酶为诱导型酶,CC-1则为组成型酶。基因组数据分析鉴别出两者可能同时存在多种铬耐受机制相关编码基因。混合菌群可以结合YZ-1的自絮凝特性和两者均有的Te(Ⅳ)/Cr(Ⅵ)还原活性,具有潜在的实用价值。  相似文献   

16.
Three bacterial strains, two identified as Pseudomonas stutzeri and one as a strain of cucurbit yellow vine disease bacterium, isolated from a foundry soil and a tannery, respectively, in Pakistan, were resistant to up to 1 mM chromate and anaerobically reduced Cr(VI) up to 100 M. The highest removal was by P. stutzeri CMG463: 88 mol l–1 (88% of that supplied; specific rate was 3.0 nmol mg–1 protein h–1), while 58 and 76 mol l–1 (58% and 76%) were removed by P. stutzeri CMG462 and cucurbit yellow vine disease bacterium CMG480, respectively. These isolates were compared to strains isolated from an uncontaminated coastal site in the UK and designated as K2 (Pseudomonas synxantha) K3 (Bacillus sp.), and J3 (unidentified Gram-positive strain). Strain K3 was Cr-sensitive, partially lysed by Cr(VI), but had the highest removal of chromate anaerobically: 92 mol l–1 (92% of that supplied) at a specific rate of 71 nmol mg–1 protein h–1. Analysis of cell sections using transmission electron microscopy with energy dispersive X-ray analysis showed intracellular chromium in P. stutzeri but the cucurbit yellow vine disease bacterium and the Bacillus sp. precipitated chromium extracellularly. The isolates from the Cr-contaminated sites did not remove more Cr(VI), overall, than Cr-unstressed bacteria, but their tolerance to Cr(VI) is potentially useful for bioremediation, particularly since other studies have shown that the two P. stutzeri strains can bioaccumulate Cu2+.  相似文献   

17.
A polyvinyl alcohol-based immobilisation technique has been utilised for entrapping the newly-isolated chromate-reducing bacterium, Microbacterium liquefaciens MP30. Three immobilisation methods were evaluated: PVA-nitrate, PVA-borate and PVA-alginate. Chromate reduction was studied in batch and continuous-flow bioreactors, where the beads maintained integrity during continuous operation. PVA-borate and PVA-alginate cell beads showed a higher rate and extent of chromate reduction than PVA-nitrate cell beads in batch experiments. With the former 100 M Cr(VI) was removed within 4 days, while only 40 M Cr(VI) was removed using the latter, and with no increase in Cr(VI) removal subsequently. Cell activity was maintained during immobilisation but the rate of Cr(VI) removal by immobilised cells was only half that of an equivalent mass of free cells. Using PVA-alginate cell beads in a continuous-flow system, chromate removal was maintained at 90–95% from a 50 M solution over 20 days without signs of bead breakdown.  相似文献   

18.
絮凝酵母SPSC01为酿酒酵母Saccharomyces cerevisiae和粟酒裂殖酵母Schizosaccharomyces pombe的融合菌株,用其吸附水溶液中的重金属Cr(VI),可以大大降低生物吸附的固液分离成本。为了探讨SPSC01菌体絮凝蛋白对Cr(VI)还原吸附的影响,对SPSC01与其亲本菌株的吸附行为进行了比较。结果表明,SPSC01和其具有絮凝性状的亲本S.pombe的Cr(VI)去除速率基本同步,远优于无絮凝性状的亲本S.cerevisiae;达到吸附平衡时,S.pombe、SPSC01和S.cerevisiae对总Cr去除率分别达68.8%、48.6%和37.5%;从而证明了絮凝有利于Cr(VI)的还原、吸附,絮凝蛋白在Cr(VI)的还原吸附过程中起促进作用。通过化学屏蔽方法和傅立叶变换红外光谱(FTIR)分析,对SPSC01菌体表面吸附Cr(VI)的机理进行了研究,结果表明SPSC01菌体表面吸附Cr(VI)起主要作用的基团是氨基、羧基和酰胺基。  相似文献   

19.
Fifteen aquatic environments (lakes, lagoons and rivers) of glacial origin in the northern Andean Patagonia (Argentina) were surveyed for the occurrence of red yeasts. Subsurface water samples were filtered and used for colony counting and yeast isolation. A preliminary quantitative analysis indicated that total yeast counts ranged between 0 and 250 cells l−1. A polyphasic approach including physiological and molecular methods was used for the identification of 64 carotenogenic yeast strains. The molecular characterisation of the isolates was based on the mini/microsatellite-primed PCR technique (MSP-PCR) employing the (GTG)5 and the M13 primers. Comparison of representative fingerprints of each group with those of the type strains of pigmented yeasts allowed the expeditious identification of 87.5% isolates. The sequence analysis of the D1/D2 domains of the 26S rDNA was employed to confirm identifications and in the characterization of the unidentified MSP-PCR groups. Teleomorphic yeast species were detected by performing sexual compatibility assays. The isolates corresponded to 6 genera and 15 yeast species, including four new yeast species of the genera Cryptococcus (1), Rhodotorula (1) and Sporobolomyces (2). Rhodotorula mucilaginosa was found in the majority of the samples and represented ca. 50% of the total number of isolates. However, this yeast was not detected in aquatic environments with very low anthropic influence. Other frequent yeast isolates were teleomorphic yeast species of Rhodosporidium babjevae, R. kratochvilovae and Sporidiobolus salmonicolor. This study represents the first report on red yeast occurrence and biodiversity in northwestern Patagonia. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
We isolated four cultures of chromate resistant, unicellular, non-motile green algae from disposal sites of the paper-pulp and electroplating industries. These algae were maintained in Tris-acetate-glycerophosphate medium containing 30 μM K2Cr2O7. The morphological features as well as analysis of the 500-bp fragment of 18S rDNA (NS 12 region) showed that these isolates belong to Chlorella spp. These isolates showed EC50 values for chromate ranging from 60 to 125 μM. Uptake studies with radioactive 51Cr(VI) showed that 10–19% of total radioactivity was intracellular, and 1–2% was bound to the cell wall. The rest of the activity remained in the medium, suggesting that resistance was not related to accumulation of Cr(VI) in the cells. Interestingly, when these isolates were grown in the presence of 30 μM of K2Cr2O7, a decrease in the Cr(VI) concentration in the medium was observed. Only live cells could deplete Cr(VI) from the supernatant, suggesting the presence of chromium reduction activity in these Chlorella isolates. Cr(VI) reduction activity of the cells of Chlorella was stimulated by light as well as by acetate and glycerophosphate. Treatment of Chlorella cells with 3-(3,4 dichlorophenyl),1,1dimethyl urea (DCMU) did not affect the Cr(VI) reduction. However, if the cells were treated with sodium azide, Cr(VI) reduction was severely affected. Though chromate resistance has been well documented in algae, the information on chromate reduction by algae is scant. This paper discusses the Cr(VI) reduction by Cr(VI) resistant Chlorella, which may find a use in the effective bioremediation of Cr(VI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号