首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schütz E  von Ahsen N 《BioTechniques》1999,27(6):1218-22, 1224
The use of thermodynamic parameters for the calculation of oligonucleotide duplex stability provides the best estimates of oligonucleotide melting temperatures (Tm). Such estimates can be used for evidence-based design of molecular biological experiments in which oligonucleotide melting behavior is a critical issue, such as temperature or denaturing gradient gel electrophoreses, Southern blotting or hybridization probe assays on the LightCycler. We have developed a user friendly program for Tm calculation of matched and mismatched probes using the spreadsheet software Microsoft Excel. The most recently published values for entropy and enthalpy of Watson-Crick paris are used, and salt and oligonucleotide concentrations are considered. The 5' and 3' end stability is calculated for the estimation of primer specificity. In addition, the influence of all possible mutations under a given probe can be calculated automatically. The experimental evaluation of predicted Tm with the LightCycler, based on 14 hybridization probes for different gene loci, showed an excellent fit between measured results and values predicted with the thermodynamic model in 14 matched, 25 single mismatched and 8 two-point mismatched assays (r = 0.98; Sy. x = 0.90; y = 1.01 x -0.38). This program is extremely useful for the design of oligonucleotide probes because the use of probes that do not discriminate with a reasonable Tm difference between wild-type and mutation can be avoided in advance.  相似文献   

2.
DNA microarray technology is a powerful tool for getting an overview of gene expression in biological samples. Although the successful use of microarray-based expression analysis was demonstrated in a number of applications, the main problem with this approach is the fact that expression levels deduced from hybridization experiments do not necessarily correlate with RNA concentrations. Moreover oligonucleotide probes corresponding to the same gene can give different hybridization signals. Apart from cross-hybridizations and differential splicing, this could be due to secondary structures of probes or targets. In addition, for low-copy genes, hybridization equilibrium may be reached after hybridization times much longer than the one commonly used (overnight, i.e., 15 h). Thus, hybridization signals could depend on kinetic properties of the probe, which may vary between different oligonucleotide probes immobilized on the same microarray. To validate this hypothesis, on-chip hybridization kinetics and duplex thermostability analysis were performed using oligonucleotide microarrays containing 50-mer probes corresponding to 10 mouse genes. We demonstrate that differences in hybridization kinetics between the probes exist and can influence the interpretation of expression data. In addition, we show that using on-chip hybridization kinetics, quantification of targets is feasible using calibration curves.  相似文献   

3.
Oligonucleotide fingerprinting is a powerful DNA array-based method to characterize cDNA and ribosomal RNA gene (rDNA) libraries and has many applications including gene expression profiling and DNA clone classification. We are especially interested in the latter application. A key step in the method is the cluster analysis of fingerprint data obtained from DNA array hybridization experiments. Most of the existing approaches to clustering use (normalized) real intensity values and thus do not treat positive and negative hybridization signals equally (positive signals are much more emphasized). In this paper, we consider a discrete approach. Fingerprint data are first normalized and binarized using control DNA clones. Because there may exist unresolved (or missing) values in this binarization process, we formulate the clustering of (binary) oligonucleotide fingerprints as a combinatorial optimization problem that attempts to identify clusters and resolve the missing values in the fingerprints simultaneously. We study the computational complexity of this clustering problem and a natural parameterized version and present an efficient greedy algorithm based on MINIMUM CLIQUE PARTITION on graphs. The algorithm takes advantage of some unique properties of the graphs considered here, which allow us to efficiently find the maximum cliques as well as some special maximal cliques. Our preliminary experimental results on simulated and real data demonstrate that the algorithm runs faster and performs better than some popular hierarchical and graph-based clustering methods. The results on real data from DNA clone classification also suggest that this discrete approach is more accurate than clustering methods based on real intensity values in terms of separating clones that have different characteristics with respect to the given oligonucleotide probes.  相似文献   

4.
We present a framework for detecting probes in oligonucleotide microarrays that may add significant error to measurements in hybridization experiments. Four types of so-called degenerate probe behavior are considered: secondary structure formation, self-dimerization, cross-hybridization, and dimerization. The framework uses a well-established model for computing the free energy of nucleic acid sequence hybridization and a novel method for the detection of patterns in hybridization experiment data. Our primary result is the identification of unique patterns in hybridization experiment data that are shown to correlate with each type of degenerate probe behavior. A support function for identifying degenerate probes from a large set of hybridization experiments is given and some preliminary experimental results are given for the Affymetrix HuGeneFL GeneChip. Finally, we show a strong relationship between the Affymetrix discrimination measure for a probe and the free-energy estimate from theoretical models of hybridization. In particular, probes on the HuGeneFL GeneChip with high free-energy estimates (weak hybridization) have almost always approximately zero discrimination. The framework can be applied to any Affymetrix oligonucleotide array, and the software is made freely available to the community.  相似文献   

5.
The microbial communities of three different habitat types and from two sediment depths in the River Elbe were investigated by fluorescence in situ hybridization at various levels of complexity. Differences in the microbial community composition of free-flowing river water, water within the hyporheic interstitial and sediment-associated bacteria were quantitatively analyzed using domain- and group-specific oligonucleotide probes. Qualitative data on the presence/absence of specific bacterial taxa were gathered using genus- and species-specific probes. The complete data set was statistically processed by univariate statistical approaches, and two-dimensional ordinations of nonmetric multidimensional scaling. The analysis showed: (1) that the resolution of microbial community structures at microenvironments, habitats and locations can be regulated by targeted application of oligonucleotides on phylogenetic levels ranging from domains to species, and (2) that an extensive qualitative presence/absence analysis of multiparallel hybridization assays enables a fine-scale apportionment of spatial differences in microbial community structures that is robust against apparent limitations of fluorescence in situ hybridization such as false positive hybridization signals or inaccessibility of in situ oligonucleotide probes. A general model for the correlation of the phylogenetic depth of focus and the relative spatial resolution of microbial communities by fluorescence in situ hybridization is presented.  相似文献   

6.
Li X  He Z  Zhou J 《Nucleic acids research》2005,33(19):6114-6123
The oligonucleotide specificity for microarray hybridization can be predicted by its sequence identity to non-targets, continuous stretch to non-targets, and/or binding free energy to non-targets. Most currently available programs only use one or two of these criteria, which may choose ‘false’ specific oligonucleotides or miss ‘true’ optimal probes in a considerable proportion. We have developed a software tool, called CommOligo using new algorithms and all three criteria for selection of optimal oligonucleotide probes. A series of filters, including sequence identity, free energy, continuous stretch, GC content, self-annealing, distance to the 3′-untranslated region (3′-UTR) and melting temperature (Tm), are used to check each possible oligonucleotide. A sequence identity is calculated based on gapped global alignments. A traversal algorithm is used to generate alignments for free energy calculation. The optimal Tm interval is determined based on probe candidates that have passed all other filters. Final probes are picked using a combination of user-configurable piece-wise linear functions and an iterative process. The thresholds for identity, stretch and free energy filters are automatically determined from experimental data by an accessory software tool, CommOligo_PE (CommOligo Parameter Estimator). The program was used to design probes for both whole-genome and highly homologous sequence data. CommOligo and CommOligo_PE are freely available to academic users upon request.  相似文献   

7.
Although oligonucleotide probes complementary to single nucleotide substitutions are commonly used in microarray-based screens for genetic variation, little is known about the hybridization properties of probes complementary to small insertions and deletions. It is necessary to define the hybridization properties of these latter probes in order to improve the specificity and sensitivity of oligonucleotide microarray-based mutational analysis of disease-related genes. Here, we compare and contrast the hybridization properties of oligonucleotide microarrays consisting of 25mer probes complementary to all possible single nucleotide substitutions and insertions, and one and two base deletions in the 9168 bp coding region of the ATM (ataxia telangiectasia mutated) gene. Over 68 different dye-labeled single-stranded nucleic acid targets representing all ATM coding exons were applied to these microarrays. We assess hybridization specificity by comparing the relative hybridization signals from probes perfectly matched to ATM sequences to those containing mismatches. Probes complementary to two base substitutions displayed the highest average specificity followed by those complementary to single base substitutions, single base deletions and single base insertions. In all the cases, hybridization specificity was strongly influenced by sequence context and possible intra- and intermolecular probe and/or target structure. Furthermore, single nucleotide substitution probes displayed the most consistent hybridization specificity data followed by single base deletions, two base deletions and single nucleotide insertions. Overall, these studies provide valuable empirical data that can be used to more accurately model the hybridization properties of insertion and deletion probes and improve the design and interpretation of oligonucleotide microarray-based resequencing and mutational analysis.  相似文献   

8.
MOTIVATION: Analysis of the functions of microorganisms and their dynamics in the environment is essential for understanding microbial ecology. For analysis of highly similar sequences of a functional gene family using microarrays, the previous long oligonucleotide probe design strategies have not been useful in generating probes. RESULTS: We developed a Hierarchical Probe Design (HPD) program that designs both sequence-specific probes and hierarchical cluster-specific probes from sequences of a conserved functional gene based on the clustering tree of the genes, specifically for analyses of functional gene diversity in environmental samples. HPD was tested on datasets for the nirS and pmoA genes. Our results showed that HPD generated more sequence-specific probes than several popular oligonucleotide design programs. With a combination of sequence-specific and cluster-specific probes, HPD generated a probe set covering all the sequences of each test set. AVAILABILITY: http://brcapp.kribb.re.kr/HPD/  相似文献   

9.
Hybridization methods for DNA sequencing.   总被引:6,自引:0,他引:6  
W Bains 《Genomics》1991,11(2):294-301
I have conducted a general analysis of the practicability of using oligonucleotide hybridization to sequence DNA. Any DNA sequence may be sequenced by hybridization with a complete panel of oligonucleotides. However, sequencing DNA segments over 2 kb long requires an unrealistic number of hybridization reactions. The optimal protocol is to hybridize 7-mer or 8-mer mixed oligonucleotide probes to immobilized DNA fragments 80 bp long: should this prove impractical, hybridization of labeled 270-bp fragments to immobilized mixed 10-mers is a potential alternative. Both protocols require no more experiments to sequence large regions of DNA than conventional m13-based sequencing and are much easier to automate, thus reducing the requirements for skilled personnel. In the ideal case, hybridization sequencing reduces the number of experiments required to sequence megabase DNA by 90%.  相似文献   

10.
Hu Z  Troester M  Perou CM 《BioTechniques》2005,38(1):121-124
Recently, long oligonucleotide (60- to 70-mer) microarrays for two-color experiments have been developed and are gaining widespread use. In addition, when there is limited availability of mRNA from tissue sources, RNA amplification can and is being used to produce sufficient quantities of cRNA for microarray hybridization. Taking advantage of the selective degradation of RNA under alkaline conditions, we have developed a method to "strip" glass-based oligonucleotide microarrays that use fluorescent RNA in the hybridization, while leaving the DNA oligonucleotide probes intact and usable for a second experiment. Replicate microarray experiments conducted using stripped arrays showed high reproducibility, however, we found that arrays could only be stripped and reused once without compromising data quality. The intraclass correlation (ICC) between a virgin array and a stripped array hybridized with the same sample showed a range of 0.90-0.98, which is comparable to the ICC of two virgin arrays hybridized with the same sample. Using this method, once-stripped oligonucleotide microarrays are usable, reliable, and help to reduce costs.  相似文献   

11.
The utility of genomic technology and bioinformatic analytical support to provide new and needed insight into the molecular basis of disease, development, and diversity continues to grow as more research model systems and populations are investigated. Yet deriving results that meet a specific set of research objectives requires aligning or coordinating the design of the experiment, the laboratory techniques, and the data analysis. The following paragraphs describe several important interdependent factors that need to be considered to generate high quality data from the microarray platform. These factors include aligning oligonucleotide probe design with the sample labeling strategy if oligonucleotide probes are employed, recognizing that compromises are inherent in different sample procurement methods, normalizing 2-color microarray raw data, and distinguishing the difference between gene clustering and sample clustering. These factors do not represent an exhaustive list of technical variables in microarray-based research, but this list highlights those variables that span both experimental execution and data analysis.  相似文献   

12.
Fabrication of DNA microarrays using unmodified oligonucleotide probes   总被引:14,自引:0,他引:14  
Call DR  Chandler DP  Brockman F 《BioTechniques》2001,30(2):368-72, 374, 376 passim
Microarrays printed on glass slides are often constructed by covalently linking oligonucleotide probes to a derivatized surface. These procedures typically require relatively expensive amine- or thiol-modified oligonucleotide probes that add considerable expense to larger arrays. We describe a system by which unmodified oligonucleotide probes are bound to either nonderivatized or epoxy-silane-derivatized glass slides. Biotinylated PCR products are heat denatured, hybridized to the arrays, and detected using an enzymatic amplification system. Unmodified probes appear to detach from the slide surface at high pH (> 10.0), suggesting that hydrogen bonding plays a significant role in probe attachment. Regardless of surface preparation, high temperature (up to 65 degrees C) and low ionic strength (deionized water) do not disturb probe attachment; hence, the fabrication method described here is suitable for a wide range of hybridization stringencies and conditions. We illustrate kinetics of room temperature hybridizations for probes attached to nonderivatized slides, and we demonstrate that unmodified probes produce hybridization signals equal to amine-modified, covalently bound probes. Our method provides a cost-effective alternative to conventional attachment strategies that is particularly suitable for genotyping PCR products with nucleic acid microarrays.  相似文献   

13.
We propose two efficient heuristics for minimizing the number of oligonucleotide probes needed for analyzing populations of ribosomal RNA gene (rDNA) clones by hybridization experiments on DNA microarrays. Such analyses have applications in the study of microbial communities. Unlike in the classical SBH (sequencing by hybridization) procedure, where multiple probes are on a DNA chip, in our applications we perform a series of experiments, each one consisting of applying a single probe to a DNA microarray containing a large sample of rDNA sequences from the studied population. The overall cost of the analysis is thus roughly proportional to the number of experiments, underscoring the need for minimizing the number of probes. Our algorithms are based on two well-known optimization techniques, i.e. simulated annealing and Lagrangian relaxation, and our preliminary tests demonstrate that both algorithms are able to find satisfactory probe sets for real rDNA data.  相似文献   

14.
Well-defined relationships between oligonucleotide properties and hybridization signal intensities (HSI) can aid chip design, data normalization and true biological knowledge discovery. We clarify these relationships using the data from two microarray experiments containing over three million probes from 48 high-density chips. We find that melting temperature (Tm) has the most significant effect on HSI while length for the long oligonucleotides studied has very little effect. Analysis of positional effect using a linear model provides evidence that the protruding ends of probes contribute more than tethered ends to HSI, which is further validated by specifically designed match fragment sliding and extension experiments. The impact of sequence similarity (SeqS) on HSI is not significant in comparison with other oligonucleotide properties. Using regression and regression tree analysis, we prioritize these oligonucleotide properties based on their effects on HSI. The implications of our discoveries for the design of unbiased oligonucleotides are discussed. We propose that isothermal probes designed by varying the length is a viable strategy to reduce sequence bias, though imposing selection constraints on other oligonucleotide properties is also essential.  相似文献   

15.
Design considerations for array CGH to oligonucleotide arrays.   总被引:3,自引:0,他引:3  
BACKGROUND: Representational oligonucleotide microarray analysis has been developed for detection of single nucleotide polymorphisms and/or for genome copy number changes. In this process, the intensity of hybridization to oligonucleotides arrays is increased by hybridizing a polymerase chain reaction (PCR)-amplified representation of reduced genomic complexity. However, hybridization to some oligonucleotides is not sufficiently high to allow precise analysis of that portion of the genome. METHODS: In an effort to identify aspects of oligonucleotide hybridization affecting signal intensity, we explored the importance of the PCR product strand to which each oligonucleotide is homologous and the sequence of the array oligonucleotides. We accomplished this by hybridizing multiple PCR-amplified products to oligonucleotide arrays carrying two sense and two antisense 50-mer oligonucleotides for each PCR amplicon. RESULTS: In some cases, hybridization intensity depended more strongly on the PCR amplicon strand (i.e., sense vs. antisense) than on the detection oligonucleotide sequence. In other cases, the oligonucleotide sequence seemed to dominate. CONCLUSION: Oligonucleotide arrays for analysis of DNA copy number or for single nucleotide polymorphism content should be designed to carry probes to sense and antisense strands of each PCR amplicon to ensure sufficient hybridization and signal intensity.  相似文献   

16.
Abstract Because of the allelic variations within the M protein gene ( emm gene) of group A streptococci, reliable typing of this important human pathogen can be accomplished by the use of emm gene-specific oligonucleotide probes. Two technical modifications (a reverse dot blot and a reverse line blot hybridization assay) of a novel approach for the type-specific identification of emm genes have been developed. Both procedures involved amplification of an emm gene by polymerase chain reaction. The non-radioactively labeled amplicon was subsequently hybridized to a membrane carrying an array of immobilized emm gene-specific oligonucleotide probes, thus allowing the simultaneous analysis of the gene polymorphism in a single hybridization reaction. The feasibility of these rapid and easy to perform methods was shown for the unequivocal identification of reference strains and clinical isolates belonging to 16 different M serotypes.  相似文献   

17.
Microarrays have been used extensively in gene expression profiling and genotyping studies. To reduce the high cost and enhance the consistency of microarray experiments, it is often desirable to strip and reuse microarray slides. Our genome-wide analysis of microRNA expression involves the hybridization of fluorescently labeled nucleic acids to custom-made, spotted DNA microarrays based on GAPSII-coated slides. We describe here a simple and effective method to regenerate such custom microarrays that uses a very low-salt buffer to remove labeled nucleic acids from microarrays. Slides can be stripped and reused multiple times without significantly compromising data quality. Moreover, our analyses of the performance of regenerated slides identifies parameters that influence the attachment of oligonucleotide probes to GAPSII slides, shedding light on the interactions between DNA and the microarray surface and suggesting ways in which to improve the design of oligonucleotide probes.  相似文献   

18.
We describe here a new method for highly efficient detection of microRNAs by northern blot analysis using LNA (locked nucleic acid)-modified oligonucleotides. In order to exploit the improved hybridization properties of LNA with their target RNA molecules, we designed several LNA-modified oligonucleotide probes for detection of different microRNAs in animals and plants. By modifying DNA oligonucleotides with LNAs using a design, in which every third nucleotide position was substituted by LNA, we could use the probes in northern blot analysis employing standard end-labelling techniques and hybridization conditions. The sensitivity in detecting mature microRNAs by northern blots was increased by at least 10-fold compared to DNA probes, while simultaneously being highly specific, as demonstrated by the use of different single and double mismatched LNA probes. Besides being highly efficient as northern probes, the same LNA-modified oligonucleotide probes would also be useful for miRNA in situ hybridization and miRNA expression profiling by LNA oligonucleotide microarrays.  相似文献   

19.
The abundance and polymorphism of 38 different simple-sequence repeat motifs was studied in four accessions of cultivated chickpea (Cicer arietinum L.) by in-gel hybridization of synthetic oligonucleotides to genomic DNA digested with 14 different restriction enzymes. Among 38 probes tested, 35 yielded detectable hybridization signals. The abundance and level of polymorphism of the target sequences varied considerably. The probes fell into three broad categories: (1) probes yielding distinct, polymorphic banding patterns; (2) probes yielding distinct, monomorphic banding patterns, and (3) probes yielding blurred patterns, or diffused bands superimposed on a high in lane background. No obvious correlation existed between abundance, fingerprint quality, and the sequence characteristics of a particular motif. Digestion with methyl-sensitive enzymes revealed that simple-sequence motifs are enriched in highly methylated genomic regions. The high level of intraspecific polymorphism detected by oligonucleotide fingerprinting suggests the suitability of simple-sequence repeat probes as molecular markers for genome mapping.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号