首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Na+/Ca2+ exchanger of squid axons, barnacle muscle and sarcolemma requires micromolar intracellular calcium for activation in the Na+i/Ca2+o exchange mode ('reverse' Na+/Ca2+ exchange). The requirement for [Ca2+]i has been demonstrated with the use of intracellular calcium buffers, such as Quin-2, to inhibit Na+i/Ca2+o exchange. However, the inhibition of Na+i/Ca2+o exchange in mammalian nerve terminals loaded with Quin-2 has not been observed [7], suggesting a lower sensitivity to low [Ca2+]i for this system. In contrast, the results reported herein indicate that 45Ca2+ uptake in synaptosomes through Na+i/Ca2+o exchange is inhibited by Quin-2 much in the same way as it is in the squid, provided that synaptosomes are preincubated in low Ca2+ medium to avoid saturation of Quin-2. Under these conditions, 45Ca2+ efflux via Ca2+i/Ca2+o exchange is also inhibited. Our results indicate that the Na+i/Ca2+o and Ca2+i/Ca2+o modes of the Na+/Ca2+ exchanger from rat brain synaptosomes require intracellular calcium for activation. However, because no clear relationship between the observed [Ca2+]i values and the inhibition of Na+i/Ca2+o exchange has been found, it is suggested that localised submembrane calcium concentrations not detected by the [Ca2+]i probe might regulate the exchanger.  相似文献   

2.
The effects of cyanide on Ca2+ exchange in isolated ventricular myocytes and on the intracellular concentrations of Ca2+, Na+ and H+ have been investigated to assess the contribution that mitochondria might play in cellular Ca2+ metabolism. Ionic levels were measured with ion-selective electrodes. KCN (2.5 mM) inhibited a component of Ca2+ exchange in myocytes that could be attributed to mitochondrial exchange, but was without effect on non-mitochondrial Ca2+ exchange. NaCN (2.5 mM) caused a transient reduction of [H+]i, [Na+]i and [Ca2+]i when applied to the superfusate bathing ventricular trabeculae or papillary muscles. The transient changes of [Na+]i were accentuated when the preparation was exposed to a solution which would be expected to increase the cellular calcium content. The reduction of [Na+]i which accompanies a reduction of the extracellular sodium concentration, [Na]o, was attenuated in the presence of NaCN, but the intracellular acidosis resulting from a reduction of [Na]o was unaffected by NaCN. A small, but significant, rise of [Ca2+]i accompanied a reduction of [Na]o but only when NaCN was present in the superfusate. It is concluded that cyanide ions have a reasonably specific action on cardiac cellular ionic metabolism. Its primary action is to prevent mitochondrial Ca2+ sequestration. It is postulated that a Na+/H+ exchange, possibly at the sarcolemma, could account for some of the changes to sarcoplasmic ionic levels observed. In a solution of low [Na]o, it is concluded that mitochondria could sequester at least 30% of the calcium accumulated by the cell even though the sarcoplasmic [Ca2+] does not exceed 0.3 microM.  相似文献   

3.
Regulatory effects of extracellular magnesium ions ([Mg2+]o) on intracellular free ionized calcium ([Ca2+]i) were studied in cultured vascular smooth muscle cells (VSMCs) from rat aorta by use of the fluorescent indicator fura-2 and digital imaging microscopy. With normal Mg2+ (1.2 mM)-containing incubation media, [Ca2+]i in VSMCs was 93.6 +/- 7.93 nM with a heterogeneous cellular distribution. Lowering [Mg2+]o to 0 mM or 0.3 mM (the lowest physiological range) resulted in 5.8-fold (579.5 +/- 39.99 nM) and 3.5-fold (348.0 +/- 31.52 nM) increments of [Ca2+]i, respectively, without influencing the cellular distribution of [Ca2+]i. Surprisingly, [Mg2+]o withdrawal induced changes of cell geometry in many VSMCs, i.e., the cells rounded up. However, elevation of [Mg2+]o up to 4.8 mM only induced slight decrements of [Ca2+]i (mean = 72.0 +/- 4.55 nM). The large increment of [Ca2+]i induced by [Mg2+]o withdrawal was totally inhibited when [Ca2+]o was removed. The data suggest that: (1) [Mg2+]o regulates the level of [Ca2+]i in rat aortic smooth muscle cells, and (2) [Mg2+] acts as an important regulatory ion by modulating cell shapes in cultured VSMc and their metabolism to control vascular contractile activities.  相似文献   

4.
Removing extracellular Na+ (Na+o) evoked a large increase in cytosolic free Ca2+ concentration ([Ca2+]i in human skin fibroblasts. Decreasing [Na+]o from 120 to 14 mM caused the half-maximal peak increase in [Ca2+]i. Removing Na+o strongly stimulated 45Ca2+ efflux and decreased total cell Ca2+ by about 40%. Bradykinin caused changes in [Ca2+]i, total Ca2+, and 45Ca2+ fluxes similar to those evoked by removing Na+o. Prior stimulation of the cells with bradykinin prevented Na+o removal from increasing [Ca2+]i and vice versa. Na+o removal rapidly increased [3H]inositol polyphosphate production. Loading the cells with Na+ had no effect on the increase in 45Ca2+ efflux produced by Na+o removal. Therefore, decreasing [Na+]o probably stimulates a "receptor(s)" which is sensitive to extracellular, not intracellular, Na+. Removing Na+o also mobilized intracellular Ca2+ in smooth muscle and endothelial cells cultured from human umbilical and dog coronary arteries, respectively.  相似文献   

5.
The intracellular free Ca2+ concentration ([free Ca2+]i) was measured simultaneously with the Ca2+ extrusion from single isolated mouse pancreatic acinar cells placed in a microdroplet of extracellular solution using the fluorescent probes fura-2 and fluo-3. The extracellular solution had a low total calcium concentration (15-35 microM), and acetylcholine (ACh), applied by microionophoresis, therefore only evoked a transient elevation of [free Ca2+]i lasting about 2-5 min. The initial sharp rise in [free Ca2+]i from about 100 nM toward 0.5-1 microM was followed within seconds by an increase in the total calcium concentration in the microdroplet solution ([Ca]o). The rate of this rise of [Ca]o was dependent on the [free Ca2+]i elevation, and as [free Ca2+]i gradually decreased Ca2+ extrusion declined with the same time course. Ca2+ extrusion following ACh stimulation was not influenced by removal of all Na+ in the microdroplet solution indicating that the Ca2+ extrusion is not mediated by Na(+)-Ca2+ exchange but by the Ca2+ pump. The amount of Ca2+ extruded during the ACh-evoked transient rise in [free Ca2+]i corresponded to a decrease in the total intracellular Ca concentration of about 0.7 mM which is close to previously reported values (0.5-1 mM) for the total concentration of mobilizable calcium in these cells. Our results therefore demonstrate directly the ability of the Ca2+ pump to rapidly remove the large amount of Ca2+ released from the intracellular pools during receptor activation.  相似文献   

6.
J R Lopez  L Parra 《Cell calcium》1991,12(8):543-557
Inositol 1,4,5-trisphosphate (InsP3) has been proposed as an intracellular messenger which mobilizes calcium from the sarcoplasmic reticulum, during excitation-contraction coupling in skeletal muscle. We have measured the myoplasmic free calcium concentration ([Ca2+]i) by means of calcium selective microelectrodes in intact fibers isolated from Leptodactylus insularis microinjected with InsP3. In muscle fibers bathed in normal Ringer, the mean resting [Ca2+]i was 0.11 +/- 0.01 microM (M +/- SEM, n = 30). The microinjection of 0.3, 0.5 and 1 microM InsP3 induced transient increments in the [Ca2+]i to 0.35 +/- 0.02 microM (n = 9), to 0.53 +/- 0.03 microM (n = 11) and 0.94 +/- 0.06 microM (n = 10) respectively. Microinjection of 0.3, 0.5 and 1 microM InsP3 in muscle fibers incubated in low Ca2+ solution induced increments in [Ca2+]i similar to those observed in fibers bathed with normal Ringer. The microinjection of 0.3, 0.5 and 1 microM InsP3 in muscle fibers partially depolarized with 10 mM [K+]o induced transient enhancements of the resting [Ca2+]i that were greater than the transients observed in the normally polarized muscle. In partially depolarized fibers microinjected with 0.3, 0.5 and 1 microM InsP3, the [Ca2+]i was changed to 1.45 +/- 0.14 microM (n = 20), to 3.37 +/- 0.34 microM (n = 7) and to 7.43 +/- 0.70 microM (n = 6) respectively. In all partially depolarized fibers these increments in [Ca2+]i were associated with local contraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
《The Journal of cell biology》1984,99(4):1212-1220
The intracellularly trapped fluorescent calcium indicator, quin 2, was used not only to monitor changes in cytosolic-free calcium, [Ca2+]i, but also to assess the role of [Ca2+]i in neutrophil function. To increase cytosolic calcium buffering, human neutrophils were loaded with various quin 2 concentrations, and [Ca2+]i transients, granule content release as well as superoxide [O2-] production were measured in response to the chemotactic peptide formyl-methionyl-leucyl- phenylalanine (fMLP) and the calcium ionophore ionomycin. Receptor- mediated cell activation induced by fMLP caused a rapid rise in [Ca2+]i. The extent of [Ca2+]i rise and granule release were inversely correlated with the intracellular concentration of quin 2, [quin 2]i. These effects of [quin 2]i were more pronounced in the absence of extracellular Ca2+. The initial rate and extent of fMLP-induced O2- production were also inhibited by [quin 2]i. The rates of increase of [Ca2+]i and granule release elicited by ionomycin were also inversely correlated with [quin 2]i in Ca2+-containing medium. As the effects of ionomycin, in contrast to those of fMLP, are sustained, the final increase in [Ca2+]i and granule release were not affected by [quin 2]i. A further reduction of fMLP effects was seen when intracellular calcium stores were depleted by incubating the cells in Ca2+-free medium with ionomycin. The specificity of quin 2 effects on cellular calcium were confirmed by loading the cells with Anis/AM, a structural analog of quin 2 with low affinity for calcium which did not inhibit granule release. In addition, functional responses to phorbol myristate acetate (PMA), which stimulates neutrophils without raising [Ca2+]i, were not affected by [quin 2]i. The findings indicate that rises in [Ca2+]i control the rate and extent of granule exocytosis and O2-generation in human neutrophils exposed to the chemotactic peptide fMLP.  相似文献   

9.
Bradykinin (BK) triggered long lasting intracellular free calcium ([Ca2+]i) oscillation in polyoma middle T-transformed cell line MT3 cells but not in the parental NIH3T3 cells. This periodic [Ca2+]i fluctuation was extracellular Ca(2+)-dependent and blocked by pretreatments with Ca2+ channel blockers, SK&F 96365 or CdCl2, suggesting a crucial role of Ca2+ entry across the plasma membrane possibly through a receptor-operated Ca2+ channel. Brief pretreatment with phorbol myristate acetate (PMA) completely abolished the BK-induced [Ca2+]i oscillation, and a protein kinase C (PKC) inhibitor, H-7, reversed the effect of PMA, indicating involvement of PKC. On the other hand, in some cells, oscillatory changes in [Ca2+]i were seen without agonist stimulation. The spontaneous oscillation was also dependent on extracellular Ca2+, but neither treatment with PMA nor H-7 had any effect under the same conditions.  相似文献   

10.
Treatment of bovine chromaffin cells with 40 mM KCl stimulates a 3-fold increase in total methionine enkephalin immunoreactivity (medium plus cells) and a 4-fold increase in proenkephalin mRNA (mRNAenk). These effects of KCl, which are dependent on extracellular calcium, can be blocked by treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), although release of methionine enkephalin appears less affected. Using fura-2-loaded chromaffin cells and a dual-excitation wavelength spectrofluorometer, we have examined whether the actions of KCl and TPA on methionine enkephalin synthesis and release can be explained by changes in intracellular free calcium ([Ca2+]i). KCl produced a rapid 600 nM increase in [Ca2+]i from resting levels of approximately 170 nM. Subsequently, [Ca2+]i declined to a new steady-state plateau which was approximately 275 nM higher than the original resting levels. The postdepolarization plateau of [Ca2+]i was reduced by TPA, (-)-(R)-202,791 (a dihydropyridine calcium channel antagonist), and LaCl3 (a nonselective calcium channel blocker). TPA also inhibited potentiation of the KCl-stimulated plateau of [Ca2+]i due to (+)-(S)-202,791, a calcium channel agonist. In contrast, TPA had no effect on resting [Ca2+]i and only slightly inhibited the initial rapid KCl-stimulated increase in [Ca2+]i. The inhibitory effects were maintained for 24 h in the continuous presence of TPA. We conclude 1) that TPA inhibits enkephalin synthesis by inactivating dihydropyridine-sensitive voltage-dependent calcium channels, 2) that these channels alone maintain elevated [Ca2+]i following KCl depolarization, and 3) that sustained elevation in [Ca2+]i is necessary in order to increase enkephalin synthesis in KCl-treated chromaffin cells.  相似文献   

11.
We investigated spatiotemporal changes in cytoplasmic free Ca2+ concentration ([Ca2+]i) in norepinephrine (NE)-stimulated and fura-2-loaded individual H-35 rat hepatoma cells, using digital imaging microscopy and high time-resolution microspectrofluorometry. Application of NE (5 x 10(-6) M) resulted in an initial transient increase in [Ca2+]i, followed by a small sustained [Ca2+]i plateau above the pre-stimulation level. The initial peak and the small sustained plateau originated from intracellular stores and the extracellular space, respectively. The initial transient evoked by NE was totally blocked by phentolamine, an alpha-adrenergic antagonist, but was not blocked by either pre-incubation with nominally Ca(2+)-free medium or by pre-treatment of cells with La3+. On the other hand, the sustained plateau was eliminated by Ca(2+)-free medium or La3+. Therefore, H-35 cells have a Ca(2+)-signaling pathway which is activated via alpha-adrenergic receptors. Mn2+ entered the cytosol after NE stimulation, as shown by quenching of fura-2. This indicates that H-35 hepatoma cells possess Mn(2+)-permeable Ca2+ channels at the plasma membrane. In addition, the Ca2+ efflux pattern from H-35 cells to the extracellular space during NE stimulation was visualized by digital imaging microscopy when free fura-2 was equilibrated between the cells and the extracellular space. The efflux of Ca2+ from H-35 begins between the initial [Ca2+]i transient and the sustained [Ca2+]i plateau.  相似文献   

12.
The infection of human fibroblasts by poliovirus leads to a notable increase in the intracellular calcium concentration, [Ca2+]i, measured by microfluorimetry or by flow cytometry. [Ca2+]i increases from 2 to 3 h postinfection, and by the fifth hour there is a 5- to 10-fold increase in [Ca2+]i. At this time postinfection there is active viral protein synthesis. The modifications in [Ca2+]i are not observed in the presence of cycloheximide, guanidine, or Ro 09-0179, indicating that virus gene expression is required for the increase in [Ca2+]i. Attempts to identify the source of the intracellular Ca2+ by using different inhibitors of calcium fluxes suggest that calcium enters from the culture medium through voltage-sensitive calcium channels.  相似文献   

13.
Regulation of the level of ionized calcium, [Ca2+]i, is critical for its use as an important intracellular signal. In cardiac and skeletal muscle the control of fluctuations of [Ca2+]i depend on sarcolemmal and sarcoplasmic reticulum ion channels and transporters. We have investigated the sesquiterpine lactone, thapsigargin (TG), because of its reported action to alter cellular calcium regulation in diverse cell types, including striated muscle cells. We have combined biochemical and physiological methods at the cellular level to determine the site of action of this agent, its specificity, and its cellular effects. Using a patch-clamp method in whole cell configuration while measuring [Ca2+]i with Indo-1 salt, we find that TG (100 nM) largely blocks the contraction and the [Ca2+]i transient in rat ventricular myocytes. Analysis of these data indicate that no sarcolemmal current or transport system is directly altered by TG, although indirect [Ca2+]i-dependent processes are affected. In permeabilized myocytes, TG blocked oxalate-stimulated calcium uptake (half-maximal effect at 10 nM) into the SR. However, TG (100 microM) had no effect on Ca(2+)-induced Ca(2+)-release in purified muscle (ryanodine-receptor enriched) vesicles while clearly blocking Ca(2+)-ATPase activity in purified (longitudinal SR) vesicles. We conclude that in striated muscle TG markedly alters calcium metabolism and thus alters contractile function only by its direct action on the Ca(2+)-ATPase.  相似文献   

14.
This study evaluated the relationship between regional elevation in intracellular calcium concentration ([Ca2+]i) induced by acetylcholine (ACh) and the global cellular responses in porcine tracheal smooth muscle (TSM) cells. Regional (approximately 1.5 microm3) and global (whole cell) changes in [Ca2+]i were measured in fluo-3 loaded TSM cells using real-time confocal microscopy. Regional responses appeared as propagating [Ca2+]i oscillations whereas global responses reflected the spatiotemporal integration of these regional responses. Within a region, [Ca2+]i oscillations were 'biphasic' with initial higher frequencies, followed by slower steady-state oscillations. With increasing ACh concentration, the peak (maximum value relative to 0 nM) of regional [Ca2+]i oscillations remained relatively constant, whereas both frequency and propagation velocity increased. In contrast, the global spatiotemporal integration of the regional oscillatory responses appeared as a concentration-dependent increase in peak as well as mean cellular [Ca2+]i. We conclude that the significance of ACh-induced [Ca2+]i oscillations lies in the establishment of mean [Ca2+]i level for slower Ca2+-dependent physiological processes via modulation of oscillation frequency and propagation velocity.  相似文献   

15.
A rise in cytosolic free calcium ([Ca2+]i) is thought to be the principal mediator in vascular smooth muscle contraction. Quantitative changes of [Ca2+]i in response to two vasoconstrictor peptide hormones, angiotensin II and vasopressin, were directly measured in monolayers of adherent cultured rat aortic smooth muscle cells loaded with the fluorescent calcium indicator Quin 2. Angiotensin II induced rapid, concentration-dependent rises in [Ca2+]i from 1.53 +/- 0.27 X 10(-7) (n = 16) up to 1.2 X 10(-6) M, with ED50 of 0.45 X 10(-9) M, an effect which was blocked by the antagonist analogue [Sar1, Ala8]angiotensin II. Vasopressin also elicited transient rises in [Ca2+]i to peak levels of about 8 X 10(-7) M, with ED50 of 1.05 X 10(-9) M, and this response was completely abolished by a vasopressor antagonist. In calcium-free medium, basal [Ca2+]i levels fell to 0.92 +/- 0.24 X 10(-7) M (n = 4), and both hormones were still able to raise [Ca2+]i, although to a lesser extent. Readdition of extracellular calcium following the [Ca2+]i transient induced a second, slower [Ca2+]i rise. In calcium-containing medium, lanthanum ion (2 X 10(-5) M) reduced peptide-evoked [Ca2+]i rises to the values observed in calcium-free medium. Stimulation with each peptide completely desensitized the smooth muscle cells to a subsequent identical challenge, with little crosstachyphylaxis. Potassium ion (50 mM) only minimally affected [Ca2+]i levels. The calcium channel blocker nifedipine (10(-6) M) did not prevent the [Ca2+]i rises induced by angiotensin II, vasopressin, or potassium. These findings indicate that the two physiologically important vasoconstrictor hormones angiotensin II and vasopressin rapidly raise [Ca2+]i in cultured vascular smooth muscle cells, in part by mobilizing calcium from intracellular pools and in part through activation of receptor-operated calcium channels.  相似文献   

16.
P A Iaizzo 《Cell calcium》1992,13(8):513-520
The Ca(2+)-sensitive photoprotein aequorin was used to monitor changes in intracellular [Ca2+] within cultured cells with characteristics of vascular smooth muscle. Two cell lines were investigated: they were A10 cells, which are transformed cells originally derived from rat aorta, and BC3H1 cells obtained from mouse brain neoplasm. Transient increases in intracellular [Ca2+] were induced following exposure to two different volatile anaesthetics (halothane and isoflurane) and various vasoactive substances (acetylcholine, endothelin, histamine, serotonin and vasopressin). The amplitude of the transients induced by isoflurane were more dependent on the presence of extracellular Ca2+ than those induced by halothane, thus the modes and/or locations of action of these two anesthetics are somewhat different. The response of the two cell lines to the vasoactive substances are unique. Receptor activated changes in [Ca2+]i by various agonists were diminished in the presence and absence of either anesthetic. These data suggest that, although the receptor populations within each cell line were slightly different, the prior application of a volatile anesthetic in a clinically-relevant dose induced a transient increase in [Ca2+]i that could subsequently diminish agonist responses.  相似文献   

17.
Elevated cell calcium has been implicated in functional changes with human erythrocyte aging. However, until recently it has been difficult to measure free ionic intracellular calcium in red cells. We have made use of a fluorinated calcium chelator probe (5,5'-difluoroBAPTA) and fluorine nuclear magnetic resonance (19F-NMR) techniques to measure changes of intracellular Ca2+ concentrations ([Ca2+]i) with cell aging. We have demonstrated in these studies that human erythrocyte [Ca2+]i is significantly elevated as a function of in-vivo aging. Young cells, the least dense fraction of density-separated erythrocytes, contained an average of 62 (+/- 4) nM Ca2+ (+/- S.E.), whereas the oldest, most dense cell fraction contained 221 nM Ca2+ (+/- 25). Mechanisms by which intracellular [Ca2+] increases with in-vivo aging are currently under investigation.  相似文献   

18.
Receptor regulation of [Ca2+]i was monitored in individual BC3H-1 muscle cells with intracellularly trapped fura-2 using digital imaging analysis techniques. Activation of alpha 1-adrenergic or H1-histaminergic receptors resulted in multiple bursts, or oscillations, of elevated [Ca2+]i with an average interval frequency of approximately 1.8 min-1. The duration of oscillatory behavior was generally more prolonged in response to phenylephrine than in response to histamine. Additionally, a larger fraction of the cells responded with [Ca2+]i oscillations to phenylephrine (approximately 90%) than to histamine (approximately 60%), although the majority of cells produced oscillations in response to both agonists. In most cells, the receptor-mediated [Ca2+]i oscillations continued for several minutes in the absence of extracellular Ca2+, although the amplitude of the individual peaks gradually decreased. The activation of [Ca2+]i oscillations by H1-receptors was more dependent upon extracellular Ca2+ than those elicited by alpha 1-receptors, reflecting the greater dependency of the histaminergic response on Ca2+ influx. Readdition of Ca2+ to the incubation buffer resulted in the resumption of the [Ca2+]i oscillations. These results indicate that considerable cycling of Ca2+ between the cytoplasm and the endoplasmic reticulum must occur. Receptor-mediated [Ca2+]i oscillations were much more prevalent in subconfluent cells than in confluent cells, possibly due to increased coupling of the cells at higher densities. The cells were capable of responding independently of one another, since sister cells displayed unique temporal responses immediately following cell division. Thus, the linkage of receptor occupancy to [Ca2+]i elevation is a functionally unique property for each individual cell and can be influenced by epigenetic factors.  相似文献   

19.
A lack of dystrophin results in muscle degeneration in Duchenne muscular dystrophy. Dystrophin-deficient human and mouse muscle cells have higher resting levels of intracellular free calcium ([Ca2+]i) and show a related increase in single-channel open probabilities of calcium leak channels. Elevated [Ca2+]i results in high levels of calcium-dependent proteolysis, which in turn increases calcium leak channel activity. This process could initiate muscle degeneration by further increasing [Ca2+]i and proteolysis in a positive feedback loop. Here, we tested the direct effect of restoration of dystrophin on [Ca2+]i and channel activity in primary myotubes from mdx mice made transgenic for full-length dystrophin. Transgenic mdx mice have been previously shown to have normal dystrophin localization and no muscle degeneration. Fura-2 calcium measurements and single-channel patch recordings showed that resting [Ca2+]i levels and open probabilities of calcium leak channels of transgenic mdx myotubes were similar to normal levels and significantly lower than mdx littermate controls (mdx) that lack dystrophin. Thus, restoration of normal calcium regulation in transgenic mdx mice may underlie the resulting absence of degeneration.  相似文献   

20.
Fluctuations in intracellular calcium concentration ([Ca2+]i) constitute the main link in excitation-contraction coupling (E-C coupling) in airway smooth muscle cells (ASMC). It has recently been reported that ACh induces asynchronous recurring Ca2+ waves in intact ASMC of murine bronchioles. With the use of a novel technique allowing us to simultaneously measure subcellular [Ca2+]i and force generation in ASMC located within an intact tracheal muscle bundle, we examined a similar pattern of Ca2+ signaling in the trachea. We found that application of ACh resulted in the generation of recurring intracellular Ca2+ waves progressing along the longitudinal axis of the ribbon-shaped intact ASMC. These Ca2+ waves were not synchronized between neighboring cells, and induction of wave-like [Ca2+]i oscillations was temporally associated with development of force by the tracheal muscle bundle. By comparing the concentration dependence of force generation and the parameters characterizing the [Ca2+]i oscillations, we found that the concentration-dependent increase in ACh-induced force development by the tracheal smooth muscle bundle is achieved by differential recruitment of intact ASMC to initiate Ca2+ waves and by enhancement in the frequency of [Ca2+]i oscillations and elevation of interspike [Ca2+]i once the cells are recruited. Our findings demonstrate that asynchronous recurring Ca2+ waves underlie E-C coupling in ACh-induced contraction of the intact tracheal smooth muscle bundle. Furthermore, in contrast to what was reported in enzymatically dissociated ASMC, Ca2+ influx through the L-type voltage-gated Ca2+ channel was not an obligatory requirement for the generation of [Ca2+]i oscillations and development of force in ACh-stimulated intact ASMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号