首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yoshikuni Hodoki 《Hydrobiologia》2005,534(1-3):193-204
The effects of solar ultraviolet radiation (UVR) on the development of a periphyton community were studied in an outdoor artificial stream apparatus. Algal biomass, species composition, and bacterial cell density were measured under full sunlight and non-UVR (photosynthetically active radiation [PAR]-only) conditions. Attachment of algae was detected on days 6–9. Although the chlorophyll-a concentration under non-UVR conditions was 2–4 times that under full sunlight (PAR + UVR) throughout the experiment, neither net algal growth rate nor species composition differed significantly between the two light conditions. The relative carotenoid pigment contents of attached algae in the PAR + UVR condition were 1.1–1.3 times those in the non-UVR condition. Rates of increase of bacterial cell densities under the PAR + UVR condition were depressed by solar UVR for the first few days, although there were no apparent differences in the rates of increase between the light conditions later in the experiment. The small effect of UVR on the development of this periphyton community may be attributable to low UV flux at this study site and to the experimental conditions under which the algae were kept: a high physiological state with high nutrient conditions. Attached bacteria and algae that colonize substrata first are likely to be sensitive to solar UVR, and the negative effects of UVR are mitigated by the development of a periphyton community.  相似文献   

2.
I tested the effect of the density of attached bacteria on the amount of algal immigration in the early development of a periphyton community in an artificial stream by manipulating the density of the attached bacteria. Three densities were prepared by regulation of the incubation time. A suspension of algae was added to the stream, and the degree of algal attachment to substrata was compared among the treatments. Algal immigration was proportional to the density of attached bacteria on all substrata (glass, PVC, and slate), although density differed among substrata. Analysis of covariance (dependent variable, amount of attached algae; covariate, bacterial density) showed significant relationship between amounts of attached algae and bacterial densities, but did not show significant differences in the slopes and adjusted means among substrata. When acrylic beads were added with the suspension of attached algae, significant linear correlation was obtained between the amount of attached algae and the amount of acrylic beads on the substrata. Algal immigration was due to non-selective adsorption by attached bacterial biofilms on substrata, although the extent of bacterial colonization and biofilm formation may be affected by the substrata and other environmental factors (e.g., current conditions and water temperature).  相似文献   

3.
We conducted a long term (4 week) continuous culture studyto measure the chronic effects of UV radiation on the alga,Cryptomonas erosa, using three different fluence rates of UVradiation. We measured carbon allocation into carbohydrate,protein and lipid pools, as well as chlorophyll a concentrationsand algal and bacterial density. After 21 days, algal densityin the control and lowest UV treatment (treatment 1 = 3.4 Wm–2 UVR unweighted) was significantly lower than in thetwo highest UV treatments (treatment 2 = 14.9 W m–2 andtreatment 3 = 16.2 W m–2 UVR unweighted), and did notrecover in the following week of no UV exposure. Chlorophylla and carbohydrate content (ng algal cell–1) for the controland treatment 1 were clearly lower than treatments 2 and 3 byday 15, and did not recover by day 28. Percentage total lipidfor the control and treatment 1 also decreased compared withtreatments 2 and 3 by the end of the exposure period. However,by day 21, protein content for the control and treatment 1 wassignificantly higher than treatments 2 and 3, and demonstrateda further increase by day 28. The results were largely attributedto competition effects between C.erosa and bacteria in thesenon-axenic cultures. Bacterial density was significantly (x4)higher in the control and lowest UV treatment compared withthe two highest UV treatments. Our findings suggest a competitiveadvantage of phytoplankton over bacteria under these conditions.If UV radiation, in general, affects bacteria to a greater extentthan algae, there are likely to be changes in (i) bacterialutilization of dissolved organic matter produced by phytoplankton,(ii) competition between phytoplankton and bacteria for nutrientminerals and (iii) predation rates on bacteria by micro-flagellates.  相似文献   

4.
Responses of bacteria to dissolved organic carbon (DOC) released from healthy and senescent Fragilaria crotonensis (Bacillariophyceae) were examined in experimental systems. The alga released DOC actively, although the concentration fluctuated greatly in both the axenic (the alga alone) and the mixed (the alga plus the enriched bacteria) cultures. In the control (the bacteria alone) cultures, both DOC concentration and bacterial density were low and almost constant throughout the experiment: 5.0 mg C 1–1 and 1.1 × 105 cells ml–1, respectively. In the mixed cultures, bacterial growth was negligible during the exponential growth phase of the alga, but rapid proliferation of the bacteria occurred after the onset of the stationary growth phase. As the bacterial population grew, the density of senescent algal cells also increased. When the bacteria were fed on the DOC from healthy algae, their growth rate was relatively low (0.44 d–1), but the maximum cell density was high (6.4 × 105 cells ml–1). Conversely, when the bacteria fed on the DOC of senescent algae, they grew at a relatively high rate (0.51 d–1), but the maximum cell density was low (2.8 × 105 cells ml–1). These results suggest that DOCs released from dominant phytoplankton species in different physiological states affect the biomass and activity of bacteria.  相似文献   

5.
Liu H  Zhou Y  Xiao W  Ji L  Cao X  Song C 《Microbiological research》2012,167(5):292-298
The impacts of different nutrient additions (N + P, N + P + C, 4N + P, 4N + P + C, N + 2P) on the growth of algae and bacteria were studied in a microcosm experiment. Since alkaline phosphatase activity (APA) provides an indication of phosphorus deficiency, the higher value for algal APA in the treatments with excess nitrogen and for bacterial APA in the treatments with excess carbon suggested that, algal and bacterial phosphorus-limited status were induced by abundant nitrogen and carbon input, respectively. Bacterial phosphorus-limited status was weakened due to higher bacterial competition for phosphorus, compared to algae. In comparison with the bacterial and specific bacterial APA, higher values of algal and specific algal APA were found, which showed a gradual increase that coincided with the increase of chlorophyll a concentration. This fact indicated not only a stronger phosphorus demand by algae than by bacteria, but also a complementary relationship for phosphorus demand between algae and bacteria. However, this commensalism could be interfered by glucose input resulting in the decline of chlorophyll a concentration. Furthermore, the correlation between bacterial numbers and chlorophyll a concentration was positive in treatments without carbon and blurry in treatments with carbon. These observations validate a hypothesis that carbon addition can stimulate bacterial growth justifying bacterial nutrient demand, which decreases the availability of nutrients to algae and affects nutrient relationship between algae and bacteria. However, this interference would terminate after algal and bacterial adaption to carbon input.  相似文献   

6.
Cascading effects of predators can affect ecosystem properties by changing plant biomass, distribution and assemblage composition. Using data from field surveys and whole‐stream experiments we tested the hypothesis that predatory trout change assemblage composition of benthic algae in high‐elevation streams mediated by grazer behavior. Field surveys revealed that the taxonomic composition of algal assemblages differed significantly between streams that contained trout and those that were fishless; but comparisons of palatable versus unpalatable algal taxa between fish and fishless streams were equivocal because of high natural variability. Therefore, we tested for a behavioral (non‐consumptive) trophic cascade experimentally by adding brook trout chemical cues to six naturally fishless streams for 25 days and compared responses of grazers and algae to six reference streams without fish cues added. Algal response variables included rates of change in the abundance of three physiognomic categories, from most palatable (attached erect and prostrate diatoms) to least palatable (non‐diatoms), as determined from food selectivity analyses of the most common grazers (mayflies and caddisflies). Fish cues did not affect the mean densities or changes in densities of total grazers or any individual grazer species. However, in streams where fish cues were added, rates of accrual of attached erect diatoms, which was the preferred algal type for the grazer most vulnerable to trout predation (Baetis), were higher and their densities increased significantly faster with increasing densities of this grazer species than in reference streams. Results of his experiment support the hypothesis that predator induced suppression of grazer foraging behavior, rather than cascading effects of top predators on grazer density, may contribute to variation in the composition of algal assemblages among streams by allowing proliferation of most palatable algal species.  相似文献   

7.
A study was made of bacterial contaminants isolated from an algal mass-culture unit. The study was performed specifically to determine the dependence of the size of bacterial population on algal density and the nature of any association of the contaminants with the algal cell. Growth of the bacterial contaminants on standard medium was also investigated. An estimate was made of the O2 uptake of the bacterial population under normal operating conditions of the algal massculture system. Viable numbers of bacteria tended to increase with increased algal density. Bacteria were found imbedded in the surface of algal cells when the cultures of algae were characterized by subnormal rates of growth and photosynthetic gas exchange. Bacterial isolates failed to grow in standard medium alone, thus implying a dependency of bacterial growth on material(s) produced by the algae. A slight inhibitory effect on algal growth was noted in the case of two of three of the bacterial isolates. Manometric studies demonstrated that the bacterial population normally found in the algal cultures did not appreciably effect total gas exchange.  相似文献   

8.
Ultraviolet solar radiation (UVR) and atmospheric nutrient loads to pristine ecosystems are global climate change phenomena that simultaneously affect aquatic organisms in ways not easily predicted by single factor studies. Plankton in a high mountain lake was exposed in situ to increasing phosphorus (P) concentrations (mimicking atmospheric pulses) in absence or presence of UVR in order to identify their interactive effect on functional [primary production, organic carbon (C) release (EOC), and percentage of C released (%EOC)], growth rate, structural–physiological (algal biomass, sestonic C, P content, chlorophyll a (Chl a), and Chl a : C ratio, P cell quota, cell‐specific Chl a), and stoichiometric (autotroph C : P ratio) traits. The availability of P after the pulse determined the intensity of responses by primary producers to UVR stress. All structural–physiological and functional variables significantly increased by up to two orders of magnitude in response to P enrichment. UV radiation, over a long‐term scale, exerted significant deleterious effects on most structural–physiological variables when inorganic P was added at high levels (≥30 μg P L?1). The subsequent unexpected negative synergistic UVR × P effect on algal development did not support our initial hypothesis that P input might buffer the harmful UVR effect. UVR exerted a weak negative effect on primary production but strongly enhanced the absolute and percentage excretion of C (up to 60%), mechanism responsible of a significant reduction in autotroph C : P ratios. We propose that low sestonic C : P ratios are the outcome of an adaptive strategy of algae in environments with high UVR exposure and extreme nutrient limitation and have important implications for C flux through grazing vs. microbial food webs in oligotrophic systems.  相似文献   

9.
As an approach to investigate the impact of solar radiation on an alga–invertebrate symbiosis, the genetic variation and photosynthetic responses of the dinoflagellate algal symbiosis in an intertidal and a subtidal population of the sea anemone Anemonia viridis were explored. Allozyme analysis of the anemones indicated that the two populations were genetically very similar, with a Nei''s index value of genetic identity (I) of 0.998. The algae in all animals examined were identified as Symbiodinium of clade a by PCR-RFLP analysis of the small subunit ribosomal RNA gene. The symbiosis in the two populations did not differ significantly in algal population density, chlorophyll a content per algal cell or any photosynthetic parameter obtained from studies of the relationship between photosynthesis and irradiance. We conclude that there is not necessarily genetic variation or photosynthetic plasticity of the symbiotic algae in Anemonia viridis inhabiting environments characterized by the different solar irradiances of the subtidal and intertidal habitats.  相似文献   

10.
Anabaena species are commonly colonized by bacteria, especially during N2-fixing blooms. Generally these associations do not represent bacterial attack on algal hosts. Instead, the algal N2-fixing capabilities are increased in the presence of the bacteria. Possible mechanisms promoting the mutual growth of algae and attached bacteria were investigated by observing specific sites of bacterial attachment, by noting reduced microzones created by the bacteria, and by locating sites of bacterial uptake of organics representative of algal excretion products.Attached bacteria show preference for typical algal excretion products and their growth is enhanced by such products. In return, enhancement of algal nitrogenase activity occurs when bacteria create O2-consuming microzones around the nitrogenase-bearing heterocysts.  相似文献   

11.
Factors which influence the attachment of bacterioplankton to particles (including phytoplankton) were investigated by using (i) water samples removed from a coastal temperate fjord over an annual cycle and (ii) unialgal cultures of Prorocentrum minimum, Dunaliella tertiolecta, and Skeletonema costatum. Silt and salinity levels in this fjord seawater did not appear to influence bacterial attachment, but the percent attached bacteria was inversely related to both chlorophyll a concentrations and primary productivities. During periods of high primary productivities the percent attached bacteria was low, whereas during periods of low, increasing, and declining primary productivities the percent attached bacteria was high. A similar pattern of bacterial attachment was observed when the three phytoplankton were grown as batch cultures. The percent attached bacterial numbers increased upon the initiation of algal growth and after these cells stopped growing, but not while the algae were growing. We suggest that a major factor influencing the attachment of bacterioplankton is the physiological condition of their major nutrient source, the phytoplankton; mainly free-living bacteria are associated with growing phytoplankton, whereas a much greater proportion of the bacteria are attached among senescent phytoplankton populations.  相似文献   

12.
The majority of sediment dweller foraminifera are deposit feeders. They use their pseudopodia to gather sediment with associated algae, organic detritus and bacteria. Uptake of bacteria by foraminifera have been observed but rarely quantified. We measured uptake of bacteria by the common foraminifera Ammonia tepida using 15N pre-enriched bacteria as tracers. In intertidal flats, seasonal, tidal and circadian cycles induce strong variations in environmental parameters. Grazing experiments were performed in order to measure effects of abiotic (temperature, salinity and irradiance) and biotic (bacterial and algal abundances) factors on uptake rates of bacteria. In mean conditions, A. tepida grazed 78 pgC ind− 1 h− 1 during the first eight hours of incubation, after which this uptake rate decreased. Uptake of bacteria was optimal at 30 °C, decreased with salinity and was unaffected by light. Above 7 × 108 bacteria ml wt sed− 1, uptake of bacteria remained unchanged when bacterial abundance increased. Algal abundance strongly affected algal uptake but did not affect uptake of bacteria. As uptake of bacteria represented 8 to 19% of microbes (algae plus bacteria) uptake, Ammonia seemed to be mainly dependant on algal resource.  相似文献   

13.
Ultraviolet radiation (UVR) research on marine macroalgae has hithero focussed on physiological effects at the organism level, while little is known on the impact of UV radiation on macroalgal assemblages and even less on interactive effects with other community drivers, e.g. consumers. Field experiments on macrobenthos are scarce, particularly in the Antarctic region. Therefore, the effects of UVR and consumers (mainly limpets were excluded) on early successional stages of a hard bottom macroalgal community on King George Island, Antarctica, were studied. In a two‐factorial design experimental units [(1) ambient radiation, 280–700 nm; (2) ambient minus UVB, 320–700 nm and (3) ambient minus UVR, 400–700 nm vs. consumer–no consumer] were installed between November 2004 and March 2005 (n= 4 plus controls). Dry mass, species richness, diversity and composition of macroalgal assemblages developing on ceramic tiles were followed. Consumers significantly suppressed green algal recruits and total algal biomass but increased macroalgal richness and diversity. Both UVA and UVB radiation negatively affected macroalgal succession. UVR decreased the density of Monostroma hariotii germlings in the first 10 weeks of the experiment, whereas the density of red algal recruits was significantly depressed by UVR at the end of the study. After 106 days macroalgal diversity was significantly higher in UV depleted than in UV‐exposed assemblages. Furthermore, species richness was significantly lower in the UV treatments and species composition differed significantly between the UV‐depleted and the UV‐exposed treatment. Marine macroalgae are very important primary producers in coastal ecosystems, serving as food for herbivores and as habitat for many organisms. Both, UVR and consumers significantly shape macroalgal succession in the Antarctic intertidal. Consumers, particularly limpets can mediate negative effects of ambient UVR on richness and diversity till a certain level. UVB radiation in general and an increase of this short wavelength due to stratospheric ozone depletion in particular may have the potential to affect the zonation, composition and diversity of Antarctic intertidal seaweeds altering trophic interactions in this system.  相似文献   

14.
Bacteria in the phycosphere have a unique ecological relationship with host algae due to their utilization of algal extracellular products as nutrients. Some bacteria control the growth of algal cells and even lyse them. The diversity of bacteria and their community dynamics in the phycosphere of microalgae are still relatively little understood, especially of those associated with red tide-causing algae. In this study, scanning electron microscope (SEM) images of algal cell morphology revealed that the phycosphere bacteria of the red tide-causing algae, Skeletonema costatum and Scrippsiella trochoidea, could lyse them within 72 h. The community level physiology of the algicidal bacteria was studied using Biolog ECO microplates, a common method for the ecological study of microbial communities. The average well color development (AWCD) values of bacteria in the phycospheres of both species were low, indicating that the bacteria had low metabolic activity overall. The diversity indices were both lower than the bacterial diversity from natural environments. However, the bacteria associated with S. trochoidea demonstrated a higher AWCD value and diversity than those in the phycosphere of S. costatum. The utilization of carbon sources significantly changed at different lytic times, reflecting that the bacterial community structure changed during the algae-lysing process. These results revealed that the bacterial communities in phycospheres had a simple structure and low diversity. When the balance between algae and bacteria broke down, the total bacterial density increased while the algicidal bacteria accumulated and became the dominant species, changing the bacterial community structure in this micro-ecosystem.  相似文献   

15.
The combined effect of high solar ultraviolet radiation (UVR) and nutrient supply in a phytoplankton community of a high mountain lake is analyzed in a in situ experiment for 6 days with 2 × 2 factorial design. Interactive UVR × nutrient effects on structural and functional variables (algal biomass, chlorophyll a (chl a), primary production (PP), maximal electron transport rate (ETR(max)), and alkaline phosphatase activity (APA)), as well as stoichiometric ones (sestonic N per cell and N:P ratio) were found. Under non-nutrient enriched conditions, no deleterious effects of UVR on structural variables, PP, photosynthetic efficiency and ETR(max) were observed, whereas only particulate and total APA were affected by UVR. However, percentage excreted organic carbon (%EOC), dissolved APA and sestonic C and P per cell increased under UVR, leading to a decrease in algal C:P and N:P ratios. After nutrient enrichment, chl a, total algal biomass and PP were negatively affected by UVR whereas %EOC, ETR(max) and internal C, P and N content increased. We suggest that the mechanism of algal acclimation to UVR in this high UVR flux ecosystem seems to be related to the increase of internal algal P-content mediated by physiological mechanisms to save P and by a stimulatory UVR effect on dissolved extracellular APA. The mechanism involved in the unmasking effect of UVR after nutrient-enrichment may be the result of a greater sensitivity to UVR-induced cell damage, making the negative UVR effects more evident.  相似文献   

16.
SUMMARY 1. The response of bacterial production (measured as [3H]TdR incorporation rate) to spectral solar radiation was quantified experimentally in an oligotrophic high-mountain lake over 2 years. Bacterial responses were consistent: ultraviolet-B (UVB) was harmful, whereas ultraviolet-A (UVA) + photosynthetically active radiation (PAR) and PAR enhanced bacterial activity. Full sunlight exerted a net stimulatory effect on bacterial activity in mid-summer but a net inhibitory effect towards the end of the ice-free period.
2. Experiments were undertaken to examine whether the bacterial response pattern depended on the presence of algae and/or was modulated by the availability of a limiting inorganic nutrient (phosphorus, P). In the absence of algae, [3H]TdR incorporation rates were significantly lower than when algae were present under all light treatments, and the consistent bacterial response was lost. This suggests that the bacterial response to spectral solar radiation depends on fresh-C released from algae, which determines the net stimulatory outcome of damage and repair in mid-summer.
3. In the absence of algae, UVB radiation inhibited bacteria when they were strongly P-deficient (mean values of N : P ratio: 46.1), whereas it exerted no direct effect on bacterial activity when they were not P-limited.
4. P-enrichment of lake water markedly altered the response of bacteria to spectral solar radiation at the end of ice-free period, when bacteria were strongly P-deficient. Phosphorus enrichment suppressed the inhibitory effect of full sunlight that was observed in October, both in whole lake water (i.e. including algae) and in the absence of algae. This indicates that the bacterial P-deficiency, measured as the cellular N : P ratio, was partly responsible for the net inhibitory effect of full sunlight, implying a high bacterial vulnerability to UVB.  相似文献   

17.
The short-term dynamics of virus-like particles (VLPs) abundance, bacterioplankton, ciliates and flagellates were analyzed in a small tropical lake, during a rainy day (June 9–10, 2003) and a dry day (February 18–19, 2004), with intervals of 3 h between the samplings. Frequent sampling in intervals of 15 min were conducted. During the rainy day, the VLP mean abundance was 7.0×108 mL−1 and bacterial density was 5.75×107 mL−1. During the dry day, VLP and bacterial mean were 5.78×108 and 4.1×107 mL−1, respectively. The virus/bacterium rate (VBR) varied from 11 to 18 on the rainy day and from 4 to 22 on the dry day. The density of VLP was higher during the night, especially on the dry day, suggesting a virucidal action of the solar radiation on them. When registered in intervals of 15 min, the densities were not associated with the fluctuations of bacteria or chlorophyll a (Chl a), but a strong negative correlation between VLP and protozooplankton was observed (Spearman: R=−0.71; p=0.04), possibly associated with the occurrence of viral lyses on these organisms. The variations of VBR in the system, indicate that the elevated densities and fluctuations of VLP is suggestive of an active and important participation of these biological entities in the dynamics of the microbial communities in the studied environment.  相似文献   

18.
The direct harmful effects of ultraviolet radiation (UVR) on benthic and planktonic organisms have been well studied in aquatic systems. Less clear, however, is how UVR might affect aquatic communities through its effects on trophic interactions. The focus of this study was twofold: first, to examine the direct effect of UVR on benthic invertebrates and epilithon, the rock-dwelling matrix of algae, bacteria, viruses, fungi and detritus, and second, to examine the indirect effect of UVR-mediated shifts in epilithic food quality on epilithic consumers. Food quality was assessed by measuring carbon to nutrient ratios and the concentration of polyunsaturated fatty acids (PUFA) in the epilithic matrix; the effect of its change on epilithic consumers was measured using a feeding experiment. The study was conducted in four montane lakes, where downwelling UVR can be intense. Of these lakes, the benthic community of only one was strongly affected by UVR. In this lake, exposure to UVR decreased epilithic accrual and invertebrate colonization, and, contrary to our expectations, increased food quality in the shallows through decreased carbon to phosphorus ratios and increased PUFA concentrations. In another of the four study lakes, the feeding experiment showed no significant difference in growth rates between invertebrates fed UVR-exposed and UVR-shielded epilithon, or invertebrates directly exposed to or shielded from UVR. This study demonstrates that although UVR can play an important role in structuring the trophic dynamics of benthic communities, its effects will not be constant across systems, or important in all environments.  相似文献   

19.
Ingestion of fluorescent particles by natural protozoan assemblage was studied in the Řimov Reservoir (Southern Bohemia) from April to October, 1987. Attached and free-living bacterial abundance, proportion of active bacteria, density of suspended particles and biomass of cladocerans were also monitored. Heterotrophic nanoflagellates (HNF; 5–12.8 102ml−1) were the dominant bacterial micrograzers during the spring period and consumed 3 to 9% of the total bacteria per day. After the spring phytoplankton bloom maximum densities of suspended particles and attached bacteria (up to 28% of the total counts) were found. Development of cladocerans in May sharply decreased the proportion of attached bacteria and kept them below 5% of the total counts. All the studied components of plankton except Cladocera decreased during the clearwater phase. The most significant drop was observed in the numbers of protozoans, and they were negligible for bacterial elimination. Bacterial losses during that time apparently were due to cladoceran grazing. During the summer period, ciliates (15–142 ml−1) were mostly dominant micrograzers, and protozoan community grazing increased up to 21% of bacterial standing stock per day. The proportion of active bacteria was strongly correlated with protozoan grazing (r=0.83).  相似文献   

20.
The effects of a mixture of penicillin G and streptomycin on the growth and C2 toxin production of a marine dinoflagellate, Alexandrium tamarense CI01, were investigated to determine if antibiotic treatment would increase the toxin yield of the cultured algae in batch cultures. Algal growth and toxin production were both enhanced markedly when the culture was supplemented with the antibiotics, each at an initial concentration of 100 unit ml−1 in medium,2 but were severely inhibited when the concentration was 500 unit ml−1 or higher. Short-term pretreatment of algal inocula with the antibiotics at 100, 500, and 1000 unit ml−1 all produced the enhancing effects on the algal cultures in an autoclaved medium. A prolonged antibiotic pretreatment of the algal culture followed by repeated sterile cultivation resulted in an algal culture free of cultivable bacteria. This “drug-treated” culture became more resistant to the toxicity and more responsive to the enhancing effects of the antibiotics. Our results indicated that the antibiotics can enhance growth and C2 toxin productivity not only through their inhibition of the growth of bacteria that compete for nutrients with the coexisting algae, but also through their direct effects on the physiology of the algae. Supplementation of the two antibiotics therefore is an efficient way to increase the yield of C2 toxin in the production cultures of A. tamarense CI01.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号