首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water resource development has altered the hydrological regime on the Lower Balonne River in Queensland, Australia. Concerns have been raised about possible impacts to floodplain plant communities, which support a pastoral industry and a range of native fauna. Water and nutrients commonly limit plant growth in south central Queensland, where the climate is semi-arid and the soils are infertile. Floodplain plant productivity is boosted by inundation with water, but the role of flooding in nutrient provision is not known. Growth experiments and a pilot soil survey were conducted to help determine if soil nutrient deficiencies exist and if regular flooding is required to maintain floodplain soil fertility. Soils were sampled from areas representing three flood frequency classes: high, moderate, and low. Chemical extractions were performed as a surrogate for `bioavailable' nutrients. Soil nitrogen (N) but not phosphorus (P) limited the growth of seedlings of wheat (Triticum aestivum L. Gardia) based on responses to nutrient additions: plants supplied with N had greater shoot length and total biomass than plants without N. Clear evidence of an effect of flood frequency on fertility was not revealed. Neither soil P, soil N, nor plant growth varied significantly with flood frequency. However, this analysis had low statistical power. There were trends for greater biomass of seedlings grown on moderately flooded soils and thinner roots for seedlings grown on frequently flooded soils, but neither of these growth responses was clearly linked to nutrient limitation. Nevertheless, the possibility that flooding provides a nutrient subsidy to plants cannot be ruled out because of a number of factors, including the statistical power of this analysis and the possibility that short-term nutrient subsidies occur with floods.  相似文献   

2.
Ecophysiological strategies of coastal halophytes from foredunes and salt marshes are discussed. A comparison is made of the factors that limit growth in salt marshes and sand dunes. In salt marshes, zonation and succession are primarily governed by variation in soil salinity, which strongly depends on inundation with seawater. Results are described of experiments which aim at separating salinity and inundation effects on growth, osmotic and mineral relations in a comparison of salt-marsh halophytes. The growth response of plants cannot simply be correlated (and causally explained) with the concentration of Na, Cl, and K in the tissues. Also, the compatible osmotic solutes proline and methylated quaternary ammonium compounds may accumulate both in species with a positive response to increased salinity and in species with a growth reduction under seawater inundation. More likely inadequate adaptation of the plants water potential with these components is partly the cause of retarded growth. Disfunctioning of the plant in this respect may be at three levels: (a) total water potential of the plant, (b) (loss) of turgor pressure potential; (c) regulation at the cellular level. The ecological importance of some factors in seawater other than sodium chloride is considered. In coastal sand dunes airborne rather than soil salinity limits plant growth, together with the effects of abrasion, sand accretion, drought and the poor nutrient status of the dune sand. Adaptations of sand-dune species to these factors may consist of: large seeds with storage tissue germinating in the dark and seedling growth enough to emerge through the accreted sand. Aerial parts must be resistant to mechanical damage (high wind speed and abrasion), possibly by a sclerophyllous and tough structure. Efficient nutrient uptake, translocation and retranslocation seem to help survive sand-dune species in a nutrient-poor rooting medium.  相似文献   

3.
A human dermal replacement has been developed by seeding human neonatal dermal fibroblasts onto a biosorbable polyglactin (polyglycolide/polylactide) mesh and culturing in a bioreactor. The mesh provides the proper environment for the cells to attach, grow in a three-dimensional array, and establish a tissue matrix over a 2- to 3-week culture period. The dermal replacement has been characterized and found to contain a variety of naturally occurring dermal matrix proteins, including fibronectin, glycosaminoglycans, and collagen types I and III. To efficiently and reproducibly produce this dermal tissue equivalent, a closed, single-pass perfusion system was developed and compared with a static process. In the single-pas perfusion system, growth medium (containing ascorbic acid) was perfused around the 4 x 6 in. pieces of mesh at specific flow rates determined by nutrient consumption and waste production rates. The flow rates used for this system indicate that a diffusion-limited regime exists with a mean residence time greater than 1 h for essential nutrients and factors. By controlling glucose concentrations in the system to a delta of 0.70 g/L from the inlet to the outlet of the bioreactor, it took 6 fewer days to grow a tissue similar to that produced by the static system.  相似文献   

4.
The influences of nutrient supply and plant growth regulators on the phytotoxicity of imazamethabenz in wild oat (Avena fatua L.) were evaluated in the greenhouse. Wild oat plants supplied with half-strength rather than one-eighth-strength Hoagland solution were more susceptible to imazamethabenz, showing greater growth reduction in main shoot and tillers. The improved herbicide efficacy at higher nutrient levels appeared related to increased herbicide interception by the greater leaf surface available. Leaves developing at either nutrient level did not differ significantly in epicuticular wax, so differential absorption appeared unlikely. Wild oat plants supplemented with nutrient, switching from low to high levels at the time of herbicide application, were as susceptible to imazamethabenz or even more so than plants growing with a constant high level of nutrition. The wild oat pure-line Montana 73, a strongly tillering line, was more susceptible to imazamethabenz than the limited-tillering line, Crop Science 40. Both 2,4-D and GA3 reduced imazamethabenz-induced tillering. Imazamethabenz efficacy was increased by GA3 but not by 2,4-D. These results support the hypothesis that lowering apical dominance of wild oat increases imazamethabenz activity in tillers, and that increased tillering following sublethal doses of imazamethabenz treatment is associated with the release of apical dominance.  相似文献   

5.
研究了水淹扰动包括不同的深度(0,10,60 cm)、持续时间(1周、2周)和发生频率(1次、2次)对扬子狐尾藻(Myriophyllum oguraense Miki subsp.yangtzense Wang)早期生长的影响。结果表明,湿生状态下未经过水淹处理的植株的总生物量最大、所产生的分枝数最多、株高最小;在经过水淹处理后,植株的总生物量、植株所产生的分枝数显著减少,而株高则显著增加。随着水淹深度的增大和持续时间的增加,植株的总生物量、分枝数显著减小,而株高则在浅水位处理下(10 cm)随着水淹持续时间的增加而增加,在深水位处理下(60 cm)随着水淹持续时间的增加而减小。总生物量在较长时间持续于浅水位下(2周,10 cm)和较短时间持续于深水位下(1周,60 cm)时随水淹发生频率的增高而增大,分枝数也呈增多趋势。随着水淹发生频率的增高,深水位(60 cm)显著促进株高的增加。此外,水淹处理后,茎生物量比增大,而根生物量比、叶生物量比、分枝生物量比则呈减小趋势。这些研究结果表明水淹扰动是影响扬子狐尾藻早期生长和克隆繁殖的重要因子之一,同时也说明扬子狐尾藻对不同的水淹扰动有不同的生长和克隆繁殖对策。  相似文献   

6.
7.
Hard rock quarries are commonly located close to national parks and special areas of conservation and are generally regarded as visually intrusive. Consequently, restoration strategies that effectively accelerate natural plant regeneration processes are required. Slate waste tips present extreme conditions for plant establishment with multiple potential limiting factors (e.g., lack of organic matter, nutrients, and poor water retention). In this study, we investigated ecological strategies to accelerate natural regeneration at the largest slate quarry in Europe. A field experiment was conducted to assess ecosystem restoration using a contrasting set of native woody species. Treatments included amendments of waste tips with: polyacrylamide gel to increase water‐holding capacity; mineral fertilizer to increase nutrient supply; and two treatments that increased both (organic waste or boulder clay addition). Ecosystem recovery was evaluated through above‐ and below‐ground productivity (plant and microbial, respectively) and soil analyses. Neither increasing nutrient supply (with mineral fertilizer) nor water‐holding capacity (with polyacrylamide gel) was sufficient, alone, to improve plant establishment. However, both boulder clay and organic waste amendment significantly enhanced plant growth. There was a marked positive interaction in the effects on tree growth of the amendment with organic waste and boulder clay. Large interactions occurred between tree species and substrate amendments. The growth of N2‐fixing species was strongly favored over non‐fixers where there was no addition of material increasing soil nitrogen supply, whereas the growth advantage of pioneer species over non‐pioneers was greatest with fertilizer, organic waste, or clay additions. Organic waste addition had the greatest positive impact on soil processes.  相似文献   

8.
The cleaning of the exhaust gases of a bioreactor containing volatile hydrocarbons in a bioreactor system with a closed gas circuit is described. The bioreactor system consisted of three different reactor types: a stirred tank which was filled with hydrocarbon-containing waste water to simulate the exhaust gases of a remediation process; a trickle-bed reactor for aerobic treatment of the exhaust gas from the stirred tank; and a photoreactor containing an algae culture which assimilated CO2 from the trickle-bed reactor and also produced O2. With this bioreactor system, it was possible to efficiently remove volatile organic compounds (VOC) from the waste gases. Depending on the type of waste water investigated, elimination rates of 41% to 93% of BTEX (benzene, ethylbenzene, toluene, xylene) and 29% to 53% of VCH (volatile chlorinated hydrocarbons) were obtained. Due to the photosynthesis of the algae in the system's photoreactor, oxygen concentrations between 12% and 18% [v/v], equivalent to about 57% to 83% DOT, were obtained. This concentration permitted the aerobic degradation to be carried out without having to add fresh air. The trickle-bed reactor and the photoreactor worked continuously, whereas the waste water in the stirred bioreactor was replaced in different batches. The accumulation of toxic compounds in the nutrient solutions of the trickle-bed (EC-50 > 30 g/l) and of the photoreactor (EC-50 > 35 g/l) was low. Carbon dioxide concentrations in the gas flow were higher than in fresh air (1% to 3% [vol/vol]), but no long-term accumulation of CO2 occurred. This means that the algae in the photoreactor were active enough to assimilate the CO2 which had been produced. They were also able to produce sufficient oxygen for aerobic hydrocarbon degradation. The system described is a first step towards treating waste gases which results from the bioremediation of hydrocarbon-contaminated media in a closed gas circuit without any emission (e.g. VOC, CO2, germs).  相似文献   

9.
Avicennia marina (Forsk.) Vierh. was grown from seed for 12 months in artificially tidal tanks providing a range of duration and depth of inundation. Plant growth characteristics were measured at harvest. Root aerenchyma development was estimated by pycnometry, root respiration rates by manometry, and the oxygen supply capacity of the above-ground portions of the plant was determined using oxygen electrode chambers. The mass per plant at harvest was influenced by the extent of inundation during growth with maximal growth at intermediate-length (1.5 to 6.5 h per tide) inundation periods. Those plants that had been submerged the longest (8.5 h per tide) had the least root tissue. The oxygen conductance of the stem base plus any pneumatophores showed a maximum in plants grown under intermediate inundation. Oxygen demand and internal gas space per unit dry weight of root were independent of extent of inundation. During high tide the plants grown at inundation periods of more than about 3–5 hours per tide were likely to become anaerobic. This may constitute a physiological limit for this species at the bottom of the tidal range.  相似文献   

10.
Rhizopus microsporus was grown in an attached growth system using corn wet-milling effluent as a growth medium. This strain was chosen due to its ability to effectively degrade organic matter in corn wet-milling effluent and for its properties to produce significant levels of protein, chitin and chitosan. Fungal growth and organic removal efficiency were examined under both aseptic and non-aseptic conditions with and without nutrient supplementation. Plastic composite support (PCS) tubes, composed of 50% (w/w) polypropylene (PP) and 50% (w/w) agricultural products were used as support media. Significantly higher organic removal measured as chemical oxygen demand (COD) and biomass yield were observed in the bioreactor with PCS tubes than in two control bioreactors; that is with PP tubes alone and suspended growth (without support media). This confirmed that the PCS support medium with agricultural components enhanced fungal growth and organic removal. The results showed that supplementation of nutrients (e.g., mineral salts) under aseptic conditions enhanced the COD removal from 50% to 55% and observed biomass yield from 0.11 to 0.16 g (dry-weight)/g COD(removed) (i.e., from 0.10 to 0.14 g volatile solids (VS)/g COD(removed) approximately). Non-aseptic operation without nutrient supplementation resulted in an observed biomass yield of 0.32 g volatile suspended solids (VSS)/g COD(removed) with no significant improvement in COD removal ( approximately 53%); whereas with nutrient supplementation, the observed biomass yield increased to 0.56 g VSS/g COD(removed) and COD removal improved to 85%. The fungal system was able to degrade the organic matter with concomitant production of high-value fungal biomass. This is the first study that examined the conversion of corn milling waste stream into high value fungal protein.  相似文献   

11.
Summary Hairy root cultures of Artemisia annua L. were cultivated in three different mist bioreactors, each fitted with three stainless steel meshes. The growth rates in the three 2.3-L mist bioreactors differed. After 25 d, the growth index (final dry weight/initial dry weight) of the roots was 42 in a nutrient mist bioreactor, 61 in an inner-loop nutrient mist bioreactor, and 68 in a modified inner-loop nutrient mist bioreactor. Under a misting cycle of 3/30 (ON 3 min/OFF 30 min) for 25 d, dry weight reached 13.6 g/L of medium in the modified inner-loop nutrient mist bioreactor in which nutrient could be supplied without dilution of mist by air flow.  相似文献   

12.
Disturbance is a key component of many successful plant invasions. However, interactions among natural and anthropogenic disturbances and effects of these interacting disturbances on invasive plants and desired vegetation are rarely examined. We investigated the effect of anthropogenic disturbance (herbicidal and mechanical) along a natural inundation gradient (20–282 days) on the biomass and resource allocation of the invasive wetland plant, alligator weed (Alternanthera philoxeroides), and two co-occurring competitor plants, the introduced grass, kikuyu (Pennisetum clandestinum), and the native grass, couch (Cynodon dactylon), over a 2-year period. In the absence of additional disturbance, kikuyu biomass was negatively affected, alligator weed biomass was positively affected, and couch biomass was not affected by inundation disturbance. In addition, kikuyu was not affected by the selective removal of alligator weed, while couch increased in wetter habitats where kikuyu was absent due to inundation stress. This suggests that kikuyu is a superior competitor in drier habitats and inundation facilitates the invasion of alligator weed, while couch is an inferior competitor to both kikuyu and alligator weed and is therefore suppressed across its entire niche by these two introduced species. Mowing alone had no effect on the biomass of the species, suggesting the plants are equally tolerant of shoot removal. Selective herbicide reduced alligator weed biomass by 97.5% and the combination of selective herbicide and mowing reduced the biomass of alligator weed significantly more than herbicide alone, by 98.6% compared with un-manipulated controls. To predict community change and prevent sequential exotic plant invasions after weed removal, it is necessary to consider the interacting effects of disturbance and the niche space of invasive species in the local propagule pool.  相似文献   

13.
14.
In a two-stage pilot plant substantial degradation of dissolved organic carbon compounds and ammonium has been achieved by an aerobic biological process at an extremely short residence time of the waste water in the bioreactors. This success is due to the application of a new type of bioreactor, called the reciprocating jet bioreactor.The waste water used in the experiments has been supplied by the public sewage plant in Berlin. It originates from a thermal conditioning unit and has an organic load of 12 to 15 kg COD/m3 and an ammonium load of 1.3 to 1.7kg NH 4 + /m3.The organic carbon compounds have been reduced to less than 10% in about 60 to 90 min. The ammonium conversion efficiency has in general been of the order of 85 to 95% at a residence time of the waste water in the bioreactor between 1.5 and 3.5 h.Paper presented at the Dechema Annual Meeting of Biotechnologists, Frankfurt/Main, May 12–13th, 1987Part 1: Biopr. Eng. 1 (1986) 13–22, see Ref. [1]  相似文献   

15.
In this study, transport characteristics in flow-through and parallel-flow bioreactors used in tissue engineering were simulated using computational fluid dynamics. To study nutrient distribution and consumption by smooth muscle cells colonizing the 100 mm diameter and 2-mm thick scaffold, effective diffusivity of glucose was experimentally determined using a two-chambered setup. Three different concentrations of chitosan-gelatin scaffolds were prepared by freezing at -80°C followed by lyophilization. Experiments were performed in both bioreactors to measure pressure drop at different flow rates. At low flow rates, experimental results were in agreement with the simulation results for both bioreactors. However, increase in flow rate beyond 5 mL/min in flow-through bioreactor showed channeling at the circumference resulting in lower pressure drop relative to simulation results. The Peclet number inside the scaffold indicated nutrient distribution within the flow-through bioreactor to be convection-dependent, whereas the parallel-flow bioreactor was diffusion-dependent. Three alternative design modifications to the parallel-flow were made by (i) introducing an additional inlet and an outlet, (ii) changing channel position, and (iii) changing the hold-up volume. Simulation studies were performed to assess the effect of scaffold thickness, cell densities, and permeability. These new designs improved nutrient distribution for 2 mm scaffolds; however, parallel-flow configuration was found to be unsuitable for scaffolds more than 4-mm thick, especially at low porosities as tissues regenerate. Furthermore, operable flow rate in flow-through bioreactors is constrained by the mechanical strength of the scaffold. In summary, this study showed limitations and differences between flow-through and parallel-flow bioreactors used in tissue engineering.  相似文献   

16.
Restoration of salt marsh ecosystems is an important concern in the eastern United States to mitigate damage caused by industrial development. Little attention has been directed to the mycorrhizal influence on plantings of salt marsh species to stabilize estuarine sediments and establish cover. In our study, seedlings of two salt marsh grasses, Spartina alterniflora and Spartina cynosuroides, were grown in soil with a commercial, mixed species inoculum of arbuscular mycorrhizal fungi. Plants were grown in experimental “ebb and flow” boxes, simulating three levels of tidal inundation, to which two levels of applied phosphorus (P) and two levels of salinity were imposed. After 2.5 months, S. alterniflora was poorly colonized by arbuscular mycorrhizae, developing only fungal hyphae and no arbuscules, but S. cynosuroides became moderately colonized. Mycorrhizal inoculation marginally improved growth and P and nitrogen (N) content of both plant species at low levels of P supply but significantly increased tillering in both plant species. This factor could be beneficial in enhancing ground cover during restoration procedures. Greater P availability increased the mycorrhizal status of S. cynosuroides and improved P nutrition of both plant species, despite a reduction in the root‐to‐shoot ratio. Increasing salinity reduced mycorrhizal colonization of S. alterniflora but not of S. cynosuroides. Growth and nutrient content of S. alterniflora was improved at higher levels of salinity, but only increased nutrient content in S. cynosuroides. Increased duration of tidal inundation decreased plant growth in both species, but tissue P and N concentrations were highest with the longest time of inundation in both species.  相似文献   

17.
A positive relationship between interannual sea level and plant growth is thought to stabilize many coastal landforms responding to accelerating rates of sea level rise. Numerical models of delta growth, tidal channel network evolution, and ecosystem resilience incorporate a hump-shaped relationship between inundation and plant primary production, where vegetation growth increases with sea level up to an optimum water depth or inundation frequency. In contrast, we use decade-long measurements of Spartina alterniflora biomass in seven coastal Virginia (USA) marshes to demonstrate that interannual sea level is rarely a primary determinant of vegetation growth. Although we find tepid support for a hump-shaped relationship between aboveground production and inundation when marshes of different elevation are considered, our results suggest that marshes high in the intertidal zone and low in relief are unresponsive to sea level fluctuations. We suggest existing models are unable to capture the behavior of wetlands in these portions of the landscape, and may underestimate their vulnerability to sea level rise because sea level rise will not be accompanied by enhanced plant growth and resultant sediment accumulation.  相似文献   

18.
Using Cudrania tricuspidata cells as model plant cells which have high sensitivity to hydrodynamic stress, technological problems in the cultivation of the plant cells at high density were investigated. Using "shake" flasks on a reciprocal shaker and Erlenmeyer flasks on a rotary shaker and with a high supply of oxygen in order to obtain high cell densities in shaken cultures, particle breakdown and damage to the largest cell aggregate group (above 1981 microm in diameter) occurred and normal cell growth became impeded. The mass-transfer coefficient (K) for a model solid-liquid system (beta-naphthol particles and water) in place of a system of plant cells and a liquid medium was proposed as an intensity index of hydrodynamic stress effects on plant cells in suspension cultures under various conditions in the bioreactor systems. Normal cell growth was obtained under culture conditions for K values less than about 4.4 x 10(-3) cm/sec. The characteristics of various bioreactors used until now were investigated by considering the three main technological factors (capacity of oxygen supply, intensity of hydrodynamic stress effects on plant cells, and intensity of culture broth mixing and air-bubble dispersion). The most suitable bioreactor for culturing plant cells at high density was a jar fermentor with a modified paddle-type impeller (J-M). The yield of cell mass in the 10-liter J-M (working volume 5 liter) was about 30 g dry weight per liter of medium.  相似文献   

19.
The effects of the triazine herbicide metribuzin (Sencor) on the lentil (Lens culinaris Medic.) - Rhizobium leguminosarum biovar viciae symbiosis were studied in Leonard jars and growth pouches. Lentils inoculated with Rhizobium leguminosarum strain 128C54 or 128C84, and noninoculated lentils grown in plant nutrient solution supplemented with 5 mM KNO3, had metribuzin applied to the plants at either 8 or 13 days after planting. When sprayed at 8 days, metribuzin had a significant (p less than or equal to 0.05) negative effect on plant weight, number of nodules, taproot growth, and acetylene reduction activity. Five to 10 days after spraying, the plants began to recover from the inhibitory effects. When spraying was delayed to 13 days after planting, metribuzin had little effect on plant growth. The R. leguminosarum strain used as inoculant affected the degree of inhibition of lentil growth and the rate of plant recovery. Less than 0.2% of foliarly applied metribuzin was translocated to the root. Thus the detrimental effects of metribuzin application to lentils were mainly due to direct effects on the plant, which resulted in indirect effects on nodulation and nitrogen fixation.  相似文献   

20.
Absorption, translocation and metabolism of 2-tret-butyl-4-(2,4-dichloro-5-isopro-poxyphenyl)-Δ2-1,3,4-oxadiazolin-5-one (oxadiazon) in rice plants were investigated. Three types of 14C-labeled oxadiazon were used in this study. 14C-Labeled oxadiazon was applied to soil under submerged conditions and plants were taken for the preparations at various stages of growth and development. Oxadiazon was translocated remarkably to shoots and accumulated in the lower leaves and stems. A small portion of oxadiazon intaken in plants was translocated to head parts. Oxadiazon was chemically transformed in plants to produce dealkylated compounds, oxidized alcohol and carboxylic acid as metabolites. In addition, two unidentified metabolites were detected, one of which was translocated to head parts from leaves and stems. Translocation and accumulation of oxadiazon and its metabolites were discussed in relation to physiological conditions of rice plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号