首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We studied telomerase activity and telomere length in PBMC and purified CD4(+) and CD8(+) T cells from blood obtained from a total of 32 patients with atopic dermatitis, 16 patients with psoriasis, and 30 normal controls. The telomerase activity was significantly increased in PBMC from the patients compared with PBMC from normal donors. This increase was most pronounced in the subpopulation of CD4(+) T cells, which were significantly above the activity of the CD8(+) T cells in atopic dermatitis, psoriasis patients, and control persons. The telomere length was significantly reduced in all T cell subsets from both atopic dermatitis and psoriasis patients compared with normal individuals. Furthermore, the telomere length was found to be significantly shorter in CD4(+) memory T cells compared with the CD4(+) naive T cells, and both of the cell subsets from diseases were shown to be of significantly shorter telomere length than the same cell subsets from normal controls. No significant difference was observed between CD8(+)CD28(-) and CD8(+)CD28(+) T cell populations in both diseases. However, the telomere length of CD8(+)CD28(+) T cells from both diseases was significantly shorter than CD8(+)CD28(+) T cell subsets from normal donors. In conclusion, the increased telomerase activity and shortened telomere length indicates that T lymphocytes in atopic dermatitis and psoriasis are chronically stimulated and have an increased cellular turnover in vivo.  相似文献   

4.
Telomerase reverse transcribes telomere DNA onto the ends of linear chromosomes and retards cellular aging. In contrast to most normal somatic cells, which show little or no telomerase activity, immune cells up-regulate telomerase in concert with activation. Nevertheless, during aging and chronic HIV-1 infection, there are high proportions of dysfunctional CD8(+) CTL with short telomeres, suggesting that telomerase is limiting. The present study shows that exposure of CD8(+) T lymphocytes from HIV-infected human donors to a small molecule telomerase activator (TAT2) modestly retards telomere shortening, increases proliferative potential, and, importantly, enhances cytokine/chemokine production and antiviral activity. The enhanced antiviral effects were abrogated in the presence of a potent and specific telomerase inhibitor, suggesting that TAT2 acts primarily through telomerase activation. Our study is the first to use a pharmacological telomerase-based approach to enhance immune function, thus directly addressing the telomere loss immunopathologic facet of chronic viral infection.  相似文献   

5.
BACKGROUND: T lymphocytes infiltrating airways during the allergic immune response play a fundamental role in recruiting other specialized cells, such as eosinophils, by secreting interleukin 5 (IL-5), and promoting local and systemic IgE synthesis by producing IL-4. Whether these presumed allergen-specific T cells are of mucosal or systemic origin is still a matter of conjecture. MATERIALS AND METHODS: Immunophenotype, IL-4 production, and in vitro proliferative response to specific or unrelated allergens were analyzed in the bronchoalveolar lavage (BAL) fluid lymphocyte suspensions obtained from untreated patients with allergic asthma. Healthy subjects and patients affected by pulmonary sarcoidosis, a granulomatous lung disease characterized by infiltrating Th1 CD4+ lymphocytes, served as controls. RESULTS: The proportions of gamma delta T lymphocytes, mostly CD4+ or CD4- (-)CD8-, was higher in asthmatic subjects than in controls (p < 0.05). Most BAL gamma delta CD4+ lymphocytes of asthmatic patients displayed the T cell receptor (TCR)-gamma delta V delta 1 chain. While CD30 antigen coexpression on the surface of BAL alpha beta(+) T lymphocytes was low (ranging from 5 to 12%), about half of pulmonary gamma delta T cells coexpressed it. These cells produced IL-4 and negligible amounts of interferon-gamma (IFN gamma), and proliferated in vitro in response to purified specific but not unrelated allergens. In contrast, control or sarcoidosis gamma delta T cells never displayed the CD30 surface molecule or produced significant quantities of IL-4. CONCLUSIONS: These findings not only confirm our previous hypothesis that the allergen-specific Th2-type lymphocytes found in the lungs of asthmatic patients are gamma delta T cells belonging to airway mucosal immunocytes, but also strongly support the notion that asthma is a local rather than a systemic disease.  相似文献   

6.
Acute viral infections induce extensive proliferation and differentiation of virus-specific CD8+ T cells. One mechanism reported to regulate the proliferative capacity of activated lymphocytes is mediated by the effect of telomerase in maintaining the length of telomeres in proliferating cells. We examined the regulation of telomerase activity and telomere length in naive CD8+ T cells and in virus-specific CD8+ T cells isolated from mice infected with lymphocytic choriomeningitis virus. These studies reveal that, compared with naive CD8+ T cells, which express little or no telomerase activity, Ag-specific effector and long-lived memory CD8+ T cells express high levels of telomerase activity. Despite the extensive clonal expansion that occurs during acute lymphocytic choriomeningitis virus infection, telomere length is maintained in both effector and memory CD8+ T cells. These results suggest that induction of telomerase activity in Ag-specific effector and memory CD8+ T cells is important for the extensive clonal expansion of both primary and secondary effector cells and for the maintenance and longevity of the memory CD8+ T cell population.  相似文献   

7.
Age effects on telomere length and telomerase expression in peripheral blood lymphocytes were analyzed from 121 normal individuals age newborn to 94 years and revealed several new findings. 1) Telomere shortening was observed in CD4+ and CD8+ T and B cells with age. However, the rate of telomere loss was significantly different in these populations, 35 +/- 8, 26 +/- 7, and 19 +/- 7 bp/year for CD4+ and CD8+ T and B cells, respectively. In addition, CD4+ T cells had the longest average telomeres at all ages, followed by B cells, with CD8+ T cell telomeres the shortest, suggesting that these lymphocyte populations may have different replicative histories in vivo. 2) Telomerase activity in freshly isolated T and B cells was indistinguishably low to undetectable at all ages but was markedly increased after Ag and costimulatory receptors mediated stimulation in vitro. Furthermore, age did not alter the magnitude of telomerase activity induced after stimulation of T or B lymphocytes through Ag and costimulatory receptors or in response to PMA plus ionomycin treatment. 3) The levels of telomerase activity induced by in vitro stimulation varied among individual donors but were highly correlated with the outcome of telomere length change in CD4+ T cells after Ag receptor-mediated activation. Together, these results indicate that rates of age-associated loss of telomere length in vivo in peripheral blood lymphocytes is specific to T and B cell subsets and that age does not significantly alter the capacity for telomerase induction in lymphocytes.  相似文献   

8.
The astrocyte, the major glial cell in the central nervous system, may influence many aspects of inflammation and immune reactivity within the brain. We have established a model of chronically activated T lymphocytes, interacting with neural cells of diverse origin to study the complex immune regulatory system suspected to lead to neuroinflammatory diseases. We show that human astrocytes became reactive following T cell contact, secreting proinflammatory cytokines, matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinase (TIMP). The altered MMP/TIMP system was shown to be involved in deleterious effects displayed by activated T cells towards human multipotent neural precursers by controlling their sensitivity to T cell-induced Fas-mediated apoptosis. MMP/TIMP was suspected to stabilize Fas at the cell membrane. In a model of mixed rat glial cells in primary culture (astrocytes, oligodendrocytes), activated T lymphocytes induced the collapse of processes and the death of immature oligodendrocytes. These effects were associated with upregulation of Fas at the cell surface of oligodendrocytes and secretion of MMP and TIMP by astrocytes. By amplifying the expression of inflammatory molecules including the MMP/TIMP system, astrocytes appear to be a crucial relay in the deleterious molecular cascade triggered by activated T lymphocytes. Detection of altered MMP/TIMP in patients suffering from myelopathy associated with retroviral infection (HTLV-1) strongly suggests its involvement in the physiopathological process of the disease.  相似文献   

9.
10.
11.
12.
13.
Telomerase transgenics are an important tool to assess the role of telomerase in cancer, as well as to evaluate the potential use of telomerase for gene therapy of age-associated diseases. Here, we have targeted the expression of the catalytic component of mouse telomerase, mTERT, to basal keratinocytes using the bovine keratin 5 promoter. These telomerase-transgenic mice are viable and show histologically normal stratified epithelia with high levels of telomerase activity and normal telomere length. Interestingly, the epidermis of these mice is highly responsive to the mitogenic effects of phorbol esters, and it is more susceptible than that of wild-type littermates to the development skin tumors upon chemical carcinogenesis. The epidermis of telomerase-transgenic mice also shows an increased wound-healing rate compared with wild-type littermates. These results suggest that, contrary to the general assumption, telomerase actively promotes proliferation in cells that have sufficiently long telomeres and unravel potential risks of gene therapy for age-associated diseases based on telomerase upregulation.  相似文献   

14.
Like most somatic human cells, T lymphocytes have a limited replicative life span. This phenomenon, called senescence, presents a serious barrier to clinical applications that require large numbers of Ag-specific T cells such as adoptive transfer therapy. Ectopic expression of hTERT, the human catalytic subunit of the enzyme telomerase, permits fibroblasts and endothelial cells to avoid senescence and to become immortal. In an attempt to immortalize normal human CD8(+) T lymphocytes, we infected bulk cultures or clones of these cells with a retrovirus transducing an hTERT cDNA clone. More than 90% of transduced cells expressed the transgene, and the cell populations contained high levels of telomerase activity. Measuring the content of total telomere repeats in individual cells (by flowFISH) we found that ectopic hTERT expression reversed the gradual loss of telomeric DNA observed in control populations during long term culture. Telomere length in transduced cells reached the levels observed in freshly isolated normal CD8(+) lymphocytes. Nevertheless, all hTERT-transduced populations stopped to divide at the same time as nontransduced or vector-transduced control cells. When kept in IL-2 the arrested cells remained alive. Our results indicate that hTERT may be required but is not sufficient to immortalize human T lymphocytes.  相似文献   

15.
Allergic diseases are caused by aberrant T-helper-2 immune responses in susceptible individuals. Both naturally occurring CD4(+)CD25(+) regulatory T cells and inducible populations of antigen-specific interleukin-10-secreting regulatory T cells inhibit these inappropriate immune responses in experimental models. This article discusses the evidence that regulatory T-cell function might be impaired in allergic and asthmatic disease and that certain therapeutic regimens might function, at least in part, to promote regulatory T-cell generation. Current research strategies seek to exploit these observations to improve the generation of allergen-specific regulatory T-cell populations with the potential to provide the safe and long-term alleviation of disease symptoms.  相似文献   

16.
17.
Multiple sclerosis (MS) is an inflammatory and possibly autoimmune mediated demyelinating disease of the CNS. Autoimmunity within the CNS may be triggered by dysfunction of peripheral immune tolerance mechanisms via changes in the homeostatic composition of peripheral T cells. We have assessed the release of naive T lymphocytes from the thymus in patients with relapsing remitting MS (RRMS) to identify alterations in the equilibrium of the peripheral T cell compartment. Thymic T cell production was estimated by measuring TCR excision circles (TRECs) as a traceable molecular marker in recent thymic emigrants. A total of 46 treatment-naive patients with active RRMS and 49 gender- and age-matched healthy persons were included in the study. The levels of TREC-expressing CD4(+) and CD8(+) T lymphocytes were significantly decreased in MS patients, and TREC quantities overall matched those of 30 years older healthy individuals. The average concentrations of TRECs/10(6) CD4(+) and CD8(+) T lymphocytes derived from MS patients and healthy donors were 26 x 10(3)/10(6) and 28 x 10(3)/10(6) vs 217 x 10(3)/10(6) and 169 x 10(3)/10(6), respectively. To account for any influence of T cell proliferation on TREC levels, we assayed T lymphocytes from additional patients with MS and normal individuals for telomere length (n = 20) and telomerase activity (8 MS patients, 16 controls), respectively. There were no significant differences between CD4(+) and CD8(+) T cells from MS patients and controls. Altogether, our findings suggest that an impaired thymic export function and, as a consequence, altered ability to maintain T cell homeostasis and immune tolerance may play an important pathogenic role in RRMS.  相似文献   

18.
It has been proposed that telomeres shorten with every cell cycle because the normal mechanism of DNA replication cannot replicate the end sequences of the lagging DNA strand. Telomerase, a ribonucleoprotein enzyme that synthesizes telomeric DNA repeats at the DNA 3′ ends of eukaryotic chromosomes, can compensate for such shortening, by extending the template of the lagging strand. Telomerase activity has been identified in human germline cells and in neoplastic immortal somatic cells, but not in most normal somatic cells, which senesce after a certain number of cell divisions. We and others have found that telomerase activity is present in normal human lymphocytes and is upregulated when the cells are activated. But, unlike the immortal cell lines, presence of telomerase activity is not sufficient to make T cells immortal and telomeres from these cells shorten continuously duringin vitroculture. After senescence, telomerase activity, as detected by the TRAP technique, was downregulated. A cytotoxic T lymphocyte (CTL) cell line that was established in the laboratory has very short terminal restriction fragments (TRFs). Telomerase activity in this cell line is induced during activation and this activity is tightly correlated with cell proliferation. The level of telomerase activity in activated peripheral blood T cells, the CTL cell line, and two leukemia cell lines does not correlate with the average TRF length, suggesting that other factors besides telomerase activity are involved in the regulation of telomere length.  相似文献   

19.
20.
Stem cells are able to generate both cells that differentiate and cells that remain undifferentiated but potentially have the same developmental program. The prolonged duration of the protective immune memory for infectious diseases such as polio, small pox, and measles, suggested that memory T cells may have stem cell properties. Understanding the molecular basis for the life-long persistence of memory T cells may be useful to project targeted therapies for immune deficiencies and infectious diseases and to formulate vaccines. In the last decade evidence from different laboratories shows that memory T cells may share self-renewal pathways with bone marrow hematopoietic stem cells. In stem cells the intrinsic self-renewal activity, which depends on gene expression, is known to be modulated by extrinsic signals from the environment that may be tissue specific. These extrinsic signals for stemness of memory T cells include cytokines such as IL-7 and IL-15 and there are other cytokine signals for maintaining the cytokine signature (TH1, TH2, etc.) of memory T cells. Intrinsic and extrinsic pathways that might be common to bone marrow hematopoietic stem cells and memory T lymphocytes are discussed and related to self-renewal functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号