首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to examine the effects of varying N rates and cropping systems (mixedversus pure stand) on the suitability of oats (Avena sativa L.) for estimating N2 fixed in sequentially harvested vetch (Vicia sativa L.) over two growing seasons (1984–85 and 1985–86). The N rates were, 20 and 100 kg N ha–1 in 1984–85 and 15 and 60 kg N ha–1 in 1985–86. In the 1984–85 season, vetch at maturity derived 76 and 63% N from fixation at the high and low N rates respectively. The corresponding values for the second season were 66 and 42%. Except in the 1985–86 season when some significantly higher values of % N2 fixed were estimated by using the reference crop grown at the higher (A-value approach) than at the lower N rate (isotope-dilution approach), both approaches resulted in similar measurements of N2 fixed. In the 1984–85 season, similar values of N2 fixed were obtained using either the pure or mixed stand oats reference crops. Although in the 1985–86 season, the mixed reference crop occasionally estimated lower % N2 fixed than pure oats, total N2 fixed estimates were always similar (P<0.05). Thus, in general, N fertilization and cropping system of the reference crop did not significantly influence estimates of N2 fixation.  相似文献   

2.
Vast areas of southern Chile are now covered by second-growth forests because of fire and logging. To study successional patterns after moderate-intensity, anthropogenic fire disturbance, we assessed differences in soil properties and N fluxes across a chronosequence of seven successional stands (2–130 years old). We examined current predictions of successional theory concerning changes in the N cycle in forest ecosystems. Seasonal fluctuations of net N mineralization (Nmin) in surface soil and N availability (Na; Na=NH 4 + –N+NO 3 –N) in upper and deep soil horizons were positively correlated with monthly precipitation. In accordance with theoretical predictions, stand age was positively, but weakly related to both Na (r 2=0.282, P<0.001) and total N (Ntot; r 2=0.192, P<0.01), and negatively related to soil C/N ratios (r 2=0.187, P<0.01) in surface soils. A weak linear increase in soil Nmin (upper plus deep soil horizons) was found across the chronosequence (r 2=0.124, P<0.022). Nmin occurred at modest rates in early successional stands, suggesting that soil disturbance did not impair microbial processes. The relationship between N fixation (Nfix) in the litter layer and stand age best fitted a quadratic model (r 2=0.228, P<0.01). In contrast to documented successional trends for most temperate, tropical and Mediterranean forests, non-symbiotic Nfix in the litter layer is a steady N input to unpolluted southern temperate forests during mid and late succession, which may compensate for hydrological losses of organic N from old-growth ecosystems.  相似文献   

3.
Common bean (Phaseolus vulgaris L.) is able to fix 20–60 kg N ha–1 under tropical environments in Brazil, but these amounts are inadequate to meet the N requirement for economically attractive seed yields. When the plant is supplemented with N fertilizer, N2 fixation by Rhizobium can be suppressed even at low rates of N. Using the 15N enriched method, two field experiments were conducted to compare the effect of foliar and soil applications of N-urea on N2 fixation traits and seed yield. All treatments received a similar fertilization including 10 kg N ha–1 at sowing. Increasing rates of N (10, 30 and 50 kg N ha–1) were applied for both methods. Foliar application significantly enhanced nodulation, N2 fixation (acetylene reduction activity) and yield at low N level (10 kg N ha–1). Foliar nitrogen was less suppressive to nodulation, even at higher N levels, than soil N treatments. In the site where established Rhizobium was in low numbers, inoculation contributed substantially to increased N2 fixation traits and yield. Both foliar and soil methods inhibited nodulation at high N rates and did not significantly increase bean yield, when comparing low (10 kg N ha–1) and high (50 kg N ha–1) rates applied after emergence. In both experiments, up to 30 kg N ha–1 of biologically fixed N2 were obtained when low rates of N were applied onto the leaves.  相似文献   

4.
Ledgard  S.F.  Sprosen  M.S.  Penno  J.W.  Rajendram  G.S. 《Plant and Soil》2001,229(2):177-187
Effects of rate of nitrogen (N) fertilizer and stocking rate on production and N2 fixation by white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L.) were determined over 5 years in farmlets near Hamilton, New Zealand. Three farmlets carried 3.3 dairy cows ha–1 and received urea at 0, 200 or 400 kg N ha–1 yr–1 in 8–10 split applications. A fourth farmlet received 400 kg N ha–1 yr–1 and had 4.4 cows ha–1.There was large variation in annual clover production and total N2 fixation, which in the 0 N treatment ranged from 9 to 20% clover content in pasture and from 79 to 212 kg N fixed ha–1 yr–1. Despite this variation, total pasture production in the 0 N treatment remained at 75–85% of that in the 400 N treatments in all years, due in part to the moderating effect of carry-over of fixed N between years.Fertilizer N application decreased the average proportion of clover N derived from N2 fixation (PN; estimated by 15N dilution) from 77% in the 0 N treatment to 43–48% in the 400 N treatments. The corresponding average total N2 fixation decreased from 154 kg N ha–1 yr–1 to 39–53 kg N ha–1 yr–1. This includes N2 fixation in clover tissue below grazing height estimated at 70% of N2 fixation in above grazing height tissue, based on associated measurements, and confirmed by field N balance calculations. Effects of N fertilizer on clover growth and N2 fixation were greatest in spring and summer. In autumn, the 200 N treatment grew more clover than the 0 N treatment and N2 fixation was the same. This was attributed to more severe grazing during summer in the 0 N treatment, resulting in higher surface soil temperatures and a deleterious effect on clover stolons.In the 400 N treatments, a 33% increase in cow stocking rate tended to decrease PN from 48 to 43% due to more N cycling in excreta, but resulted in up to 2-fold more clover dry matter and N2 fixation because lower pasture mass reduced grass competition, particularly during spring.  相似文献   

5.
A model-based approach was recently introduced for measuring riverine denitrification based on measured changes in dissolved N2 concentration during riverine transport (Laursen & Seitzinger, 2002a). Inputs to the model, including water temperature, channel depth, wind velocity, and time-of-travel between sampling locations, vary greatly among natural systems. Simulations were run by varying the values of these inputs and determining rates of N2 accumulation in river water and the detection limits for measuring denitrification using this method. Dinitrogen was found to accumulate most rapidly in streams that were shallow, particularly under conditions of low wind velocity. Dissolved N2 concentrations, modeled in rivers with a diurnal temperature variation of 5 °C and under conditions of no denitrification or 1 mmol N m−2 h−1, showed that sensitivity of the method can vary as temperatures change. Under low wind conditions and in rivers <1m in depth, this method is capable of detecting denitrification rates as low as 30–100 μmol N m−2 h−1. This limit of detection should be adequate to measure in situ rates in many North American streams, particularly in agricultural watersheds. In deeper rivers N2 accumulated more slowly and the method became less sensitive. The results of this study should guide decisions regarding the application of this method based on the specific characteristics of a study reach (channel geometry) and the physical conditions (i.e. wind velocity and water temperature) under which measurements are to be made. The input of N2-enriched groundwater along a study reach can result in N2 accumulation that could be misinterpreted as denitrification. Some knowledge of the inputs of groundwater along a reach should also guide decisions regarding the application of this method.  相似文献   

6.
The effects of nitrogen [75 and 150 kg (N) ha−1] and elevated CO2 on growth, photosynthetic rate, contents of soluble leaf proteins and activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and nitrate reductase (NR) were studied on wheat (Triticum aestivum L. cv. HD-2285) grown in open top chambers under either ambient (AC) or elevated (EC) CO2 concentration (350 ± 50, 600 ± 50 μmol mol−1) and analyzed at 40, 60 and 90 d after sowing. Plants grown under EC showed greater photosynthetic rate and were taller and attained greater leaf area along with higher total plant dry mass at all growth stages than those grown under AC. Total soluble and Rubisco protein contents decreased under EC but the activation of Rubisco was higher at EC with higher N supply. Nitrogen increased the NR activity whereas EC reduced it. Thus, EC causes increased growth and PN ability per unit uptake of N in wheat plants, even if N is limiting.  相似文献   

7.
Weng  J.-H.  Hsu  F.-H. 《Photosynthetica》2001,39(1):35-41
Seventeen clones of C4 grass Miscanthus spp. collected from different climatic regions and elevations of Taiwan were transplanted in pots. 15–16 months after collection the plants received 0, 1, and 2 g of nitrogen fertiliser (N0, N1, and N2, respectively) per pot. All the measurements were done 10–12 d after N application. The relationships between net photosynthetic rate (P N) and photon flux density (PFD) showed a saturated curve, with PFD saturation at about 1 000 µmol m–2 s–1. The ranges of PFD saturated P N (P sat) for all the tested clones with N0, N1, and N2 were 8–16, 11–18, and 12–21 µmol m–2 s–1, respectively. The clones from southern Taiwan, a tropical region, showed the highest P sat, followed by the clones from northern Taiwan, a subtropical region, while those from mountainous area showed the lowest P sat. The clones collected from southern Taiwan showed the highest frequency of stomata on the adaxial surface, and those collected from the high mountainous area showed the lowest frequency. Also the adaxial surface of leaves from the higher mountainous area had more wax deposited than the leaves from the lowland. Thus the low P sat in mountain clones is limited by both stomatal and non-stomatal factors. Further, the lower leaf conductance and different epidermal characteristics of mountain clones might prevent excessive loss of heat through transpiration and provide production against ultraviolet-B radiation.  相似文献   

8.
Biological N2 fixation is the dominant supply of new nitrogen (N) to the oceans, but is often inhibited in the presence of fixed N sources such as nitrate (NO3 ). Anthropogenic fixed N inputs to the ocean are increasing, but their effect on marine N2 fixation is uncertain. Thus, global estimates of new oceanic N depend on a fundamental understanding of factors that modulate N source preferences by N2-fixing cyanobacteria. We examined the unicellular diazotroph Crocosphaera watsonii (strain WH0003) to determine how the light-limited growth rate influences the inhibitory effects of fixed N on N2 fixation. When growth (µ) was limited by low light (µ = 0.23 d−1), short-term experiments indicated that 0.4 µM NH4 + reduced N2-fixation by ∼90% relative to controls without added NH4 +. In fast-growing, high-light-acclimated cultures (µ = 0.68 d−1), 2.0 µM NH4 + was needed to achieve the same effect. In long-term exposures to NO3 , inhibition of N2 fixation also varied with growth rate. In high-light-acclimated, fast-growing cultures, NO3 did not inhibit N2-fixation rates in comparison with cultures growing on N2 alone. Instead NO3 supported even faster growth, indicating that the cellular assimilation rate of N2 alone (i.e. dinitrogen reduction) could not support the light-specific maximum growth rate of Crocosphaera. When growth was severely light-limited, NO3 did not support faster growth rates but instead inhibited N2-fixation rates by 55% relative to controls. These data rest on the basic tenet that light energy is the driver of photoautotrophic growth while various nutrient substrates serve as supports. Our findings provide a novel conceptual framework to examine interactions between N source preferences and predict degrees of inhibition of N2 fixation by fixed N sources based on the growth rate as controlled by light.  相似文献   

9.
Information is given concerning two standard buffer solutions suitable as pH references in 30, 40, and 50 mass% dimethyl sulfoxide (DMSO)/H2O mixed solvents at subzero temperatures from −20 to 0 °C, with the intention of establishing a pH (designated pH*) scale. The two buffers selected were the ampholytes N,N-bis(2-hydroxyethyl)-2-aminoethane sulfonic acid (“bes”) and N-tris(hydroxymethyl)methylglycine (“tricine”), and the reference standard consisted of equal molal quantities of the buffer and its respective sodium salt. The assignment of pH* values was based on measurements of the emf of cells without liquid junction of the type: Pt;H2(g,1 atm) ¦Bes, Na Besate, NaCl ¦ AgCl;Ag and Pt;H2(g,1 atm) ¦Tricine, Na Tricinate, NaCl ¦AgCl;Ag and the pH* was derived from a determination of K2, the equilibrium constant for the dissociation process (Buffer)±/ai (Buffer) + H+.  相似文献   

10.
The synthesis of new analogues of allopregnanolone with a bridged sulfamidate ring over the β-face of ring A has been achieved from easily available precursors, using an intramolecular aziridination strategy. The methodology also allows the synthesis of 3α-substituted analogues such as the 3α-fluoro derivative. GABAA receptor activity of the synthetic analogues was evaluated by assaying their effect on the binding of [3H]flunitrazepam and [3H]muscimol. The 3α-hydroxy-2,19-sulfamoyl analogue and its N-benzyl derivative were more active than allopregnanolone for stimulating binding of [3H]flunitrazepam. For the binding of [3H]muscimol, both synthetic analogues and allopregnanolone stimulated binding to a similar extent, with the N-benzyl derivative exhibiting a higher EC50. The 3α-fluoro derivative was inactive in both assays.  相似文献   

11.
The 15N isotope dilution and A-value methods were used to measure biological nitrogen (N2) fixation in field grown fababean (Vicia faba L.), over a 2-year period. Four N rates, 20, 100, 200 and 400 kg N ha–1 were examined. The two isotope methods gave similar values of % N derived from the atmosphere (%Ndfa). With 20 kg N ha–1, %Ndfa in fababean was about 85% in both years. Increasing the N rate to 100 kg N ha–1 decreased N2 fixation slightly to 75%. Further reductions in N2 fixed to 60 and 43% occurred where 200 and 400 kg N ha–1 were applied, respectively. Thus even higher rates of N than normally applied in farming practice could not completely suppress N2 fixation in fababean.We also devised one equation for both the isotope dilution and A-value approaches, thereby (i) avoiding the need for different calculations for the 15N isotope methods, and (ii) showing once again that the isotope dilution and A-value methods are mathematically and conceptually identical.  相似文献   

12.
Annual inputs of symbiotic N2-fixation associated with 3 species of alpine Trifolium were estimated in four alpine communities differing in resource supplies. We hypothesized that fixation rates would vary according to the degree of N, P, and water limitation of production, with the higher rates of fixation in N limited communities (dry meadow, moist meadow) and lower rates in P and water limited communities (wet meadow, fellfield). To estimate N2-fixation rates, natural abundance of N isotopes (15N) were measured in field collected Trifolium and reference plants and in Trifolium plants grown in N-free medium in a growth chamber. All three Trifolium species relied on a large proportion of atmospherically-fixed N2 to meet their N requirements, ranging from 70 to 100%. There were no apparent differences in the proportion of plant N derived from fixation among the communities, but differences in the contribution of the Trifolium species to community cover resulted in a wide range of annual N inputs from fixation, from 127 mg m–2 year–1 in wet meadows to 810 mg m–2 year–1 in fellfields. Annual spatially integrated input of symbiotic N2-fixation to Niwot Ridge, Colorado was estimated at 490 mg m–2 year–1 (5 kg ha–1 year–1), which is relatively high in the context of estimates of net N mineralization and N deposition.  相似文献   

13.
Ståhl  Lena  Nyberg  Gert  Högberg  Peter  Buresh  Roland J. 《Plant and Soil》2002,243(1):103-117
The effects of planted fallows of Sesbania sesban (L.) Merr. and Calliandra calothyrsus (Meissner) on soil inorganic nitrogen dynamics and two subsequent maize crops were evaluated under field conditions in the highlands of eastern Kenya. Continuous unfertilised maize, maize/bean rotation and natural regrowth of vegetation (weed fallow) were used as control treatments. The proportion of symbiotic N2-fixation was estimated by measuring both leaf 15N enrichment and whole-plant 15N enrichment by the 15N dilution technique for Sesbania and Calliandra, using Eucalyptus saligna (Sm.) and Grevillea robusta (A. Cunn) as reference species. Above- and below-ground biomass and N contents were examined in Sesbania, Calliandra, Eucalyptus and Grevillea 22 months after planting. Both the content of inorganic N in the topsoil and the quantity of N mineralised during rainy seasons were higher after the Sesbania fallows than after the other treatments. Compared to the continuous unfertilised maize treatment, both residual crop yields were significantly higher when mineral N (one application of 60 kg N ha–1) was added. Furthermore, the second crop following the Sesbania fallow was significantly higher than the continuous maize crop. The above-ground biomass of the trees at final harvest were 31.5, 24.5, 32.5 and 43.5 Mg ha–1 for the Sesbania, Calliandra, Grevillea and Eucalyptus, respectively. For the total below-ground biomass the values for these same tree species were 11.1, 15.5, 17.7, and 19.1 Mg ha–1, respectively, of which coarse roots (>2 mm), including tap roots, amounted to 70–90%. About 70–90% of the N in Sesbania, and 50–70% in Calliandra, was derived from N2-fixation. Estimates based on leaf 15N enrichment and whole-plant 15N enrichment were strongly correlated. The N added by N2-fixation amounted to 280–360 kg N ha–1 for Sesbania and 120–170 kg N ha–1 for Calliandra, resulting in a positive N balance after two maize cropping seasons of 170–250 kg N ha–1 and 90–140 kg N ha–1, for Sesbania and Calliandra, respectively. All the other treatments gave negative N balances after two cropping seasons. We conclude that Sesbania sesban is a tree species well suited for short duration fallows due to its fast growth, high nutrient content, high litter quality and its ability to fix large amounts of N2 from the atmosphere.  相似文献   

14.
Nitrogen fixation in perennial forage legumes in the field   总被引:13,自引:0,他引:13  
Nitrogen acquisition is one of the most important factors for plant production, and N contribution from biological N2 fixation can reduce the need for industrial N fertilizers. Perennial forages are widespread in temperate and boreal areas, where much of the agriculture is based on livestock production. Due to the symbiosis with N2-fixing rhizobia, perennial forage legumes have great potential to increase sustainability in such grassland farming systems. The present work is a summary of a large number of studies investigating N2 fixation in three perennial forage legumes primarily relating to ungrazed northern temperate/boreal areas. Reported rates of N2 fixation in above-ground plant tissues were in the range of up to 373 kg N ha–1 year–1 in red clover (Trifolium pratense L.), 545 kg N ha–1 year–1 in white clover (T. repens L.) and 350 kg N ha–1 year–1 in alfalfa (Medicago sativa L.). When grown in mixtures with grasses, these species took a large fraction of their nitrogen from N2 fixation (average around 80%), regardless of management, dry matter yield and location. There was a large variation in N2 fixation data and part of this variation was ascribed to differences in plant production between years. Studies with experiments at more than one site showed that also geographic location was an important source of variation. On the other hand, when all data were plotted against latitude, there was no simple correlation. Climatic conditions seem therefore to give as high N2 fixation per ha and year in northern areas (around 60°N) as in areas with a milder climate (around 40°N). Analyzing whole plants or just above-ground plant parts influenced the estimate of N2 fixation, and most reported values were underestimated since roots were not included. Despite large differences in environmental conditions, such as N fertilization and geographic location, N2 fixation (Nfix; kg N per ha and year) was significantly (P<0.001) correlated to legume dry matter yield (DM; kg per ha and year). Very rough, but nevertheless valuable estimations of Nfix in legume/grass mixtures (roots not considered) are given by Nfix = 0.026DM + 7 for T. pratense, Nfix = 0.031DM + 24 for T. repens, and Nfix = 0.021DM + 17 for M. sativa.  相似文献   

15.
The photochemical release of inorganic nitrogen from dissolved organic matter is an important source of bio-available nitrogen (N) in N-limited aquatic ecosystems. We conducted photochemical experiments and used mathematical models based on pseudo-first-order reaction kinetics to quantify the photochemical transformations of individual N species and their seasonal effects on N cycling in a mountain forest stream and lake (Plešné Lake, Czech Republic). Results from laboratory experiments on photochemical changes in N speciation were compared to measured lake N budgets. Concentrations of organic nitrogen (Norg; 40–58 µmol L−1) decreased from 3 to 26% during 48-hour laboratory irradiation (an equivalent of 4–5 days of natural solar insolation) due to photochemical mineralization to ammonium (NH4 +) and other N forms (Nx; possibly N oxides and N2). In addition to Norg mineralization, Nx also originated from photochemical nitrate (NO3 ) reduction. Laboratory exposure of a first-order forest stream water samples showed a high amount of seasonality, with the maximum rates of Norg mineralization and NH4 + production in winter and spring, and the maximum NO3 reduction occurring in summer. These photochemical changes could have an ecologically significant effect on NH4 + concentrations in streams (doubling their terrestrial fluxes from soils) and on concentrations of dissolved Norg in the lake. In contrast, photochemical reactions reduced NO3 fluxes by a negligible (<1%) amount and had a negligible effect on the aquatic cycle of this N form.  相似文献   

16.
The mass balance for total nitrogen (N) was studied over a four-year period in 16 shallow mainly eutrophic 1st order Danish lakes. Water was sampled in the main inlet of each lake 18–26 times annually, and from the outlets and the lake 19 times annually. Water was also sampled from minor inlets, although less frequently. N input and output were calculated using daily data on discharge (Q), the latter being obtained either from the Q/H relationship based on automatic recordings of water level (H) for the main in- and outlet, or by means of Q/Q relationships for the minor inlets. Annual mean N retention in the lakes ranged from 47 to 234 mg N m–2 d–1, and was particularly high in lakes with high N loading. Annual percentage retention (N ret y%) ranged from 11 to 72%. Non-linear regression analysis revealed that hydraulic retention time and mean depth accounted for 75% of the variation in annual mean N ret y% and, in combination with inlet N concentration, accounted for 84% of the variation in the in-lake N concentration. N ret % varied according to season, being higher in the second and third quarter than in the first and fourth quarter (median 18–19%). A simple model was developed for predicting monthly nitrogen retention (N ret m) on the basis of external N loading, the lake water pool of nitrogen N pool , hydraulic loading and lake water temperature. Calibration of only two parameters on data from the randomly selected 8 out of 16 lakes rendered the model capable of accurately simulating seasonal dynamics of the in-lake N concentration and N ret m in all 16 lakes. We conclude that with regard to shallow, eutrophic lakes with a relatively low hydraulic retention time, it is now possible to determine not only annual mean nitrogen retention, but also the seasonal variation in N retm . Prediction of seasonal variation in N loading of downstream N-limited coastal areas is thereby rendered much more reliable.  相似文献   

17.
Effects of N source and media-N and P levels were examined on growth, N uptake, and N2 fixation ofAzolla pinnata withAnabaena azollae association (azolla) at two inoculum-P concentrations. Each expeiment was conducted for 7 days in a growth chamber using azolla at a predetermined inoculum-P concentration and the growth media containing a combination of four levels of P (0, 15, 75, and 200 M) and three levels (0, 1, and 5 mM) of either15N-enriched NH 4 + as ammonium sulfate or15N-enriched NO 3 as potassium nitrate. Nitrogen uptake and N2 fixation were measured by15N isotopic dilution method. Tissue P and N, N uptake, and N2-fixation increased with increasing P concentration in the media regardless of the inoculum-P level of azolla. Increasing P concentration in the media increased growth of azolla at low inoculum P, but the effect on high inoculum-P azolla was either small or absen. High inoculum-P concentration resulted in increased growth, tissue-N and P concentrations, N uptake, and N2 fixation by azolla. Ammonium in the growth media caused larger increase in tissue-N and greater repression of N2 fixation than equimolar concentration of NO 3 . In the presence of NH 4 + or NO 3 , in the growth media, N uptake by azolla exceeded the corresponding decrease in N2 fixation, resulting in an overall increase in tissue-N concentration. Phosphorus in the media tended to negate the inhibitory effect of NH 4 + or NO 3 on N2 fixation. A multiple regression model showed that the effect of tissue-N on N2 fixation was negative while that of tissue-P was positive. Therefore, a relative change in tissue-N and P appeared to regulate N2 fixation. Tissue-N and P had similar effects on relative growth rate of azolla also. Inoculum-P level of azolla was important in determining the response to media-P.This research was supported by a grant from USAID under Indo-US Science and Technology Initiative.  相似文献   

18.
Although common bean (Phaseolus vulgaris L.) has good potential for N2 fixation, some additional N provided through fertilizer usually is required for a maximum yield. In this study the suppressive effect of N on nodulation and N2 fixation was evaluated in an unfertile soil under greenhouse conditions with different levels of soil fertility (low=no P, K and S additions; medium = 50, 63 and 10 mg kg–1 soil and high = 200, 256 and 40 mg kg–1 soil, respectively) and combined with 5, 15, 60 and 120 mg N kg–1 soil of 15N-labelled urea. The overall average nodule number and weight increased under high fertility levels. At low N applications, nitrogen had a synergistic effect on N2 fixation, by stimulating nodule formation, nitrogenase activity and plant growth. At high fertility and at the highest N rate (120 mg kg–1 soil), the stimulatory effect of N fertilizer on N2 fixation was still observed, increasing the amounts of N2 fixed from 88 up to 375 mg N plant–1. These results indicate that a suitable balance of soil nutrients is essential to obtain high N2 fixation rates and yield in common beans.  相似文献   

19.
Phosphate-limited chemostat cultures were used to study cell growth and N assimilation in Anabaena flos-aquae under various N sources to determine the relative energetic costs associated with the assimilation of NH3, NO3, or N2. Expressed as a function of relative growth rate, steady state cellular P contents and PO4 assimilation rates did not vary with N-source. However, N-source did alter the maximal PO4-limited growth rate achieved by the cultures: the NO3 and N2 cultures attained only 97 and 80%, respectively, of the maximal growth rate of the NH3 grown cells. Cellular biomass and C contents did not vary with growth rate, but changed with N source. The NO3-grown cells were the smallest (627 ± 34 micromoles C · 10−9 cells), while NH3-grown cells were largest (900 ± 44 micromoles C · 10−9 cells) and N2-fixing cells were intermediate (726 ± 48 micromoles C · 10−9 cells) in size. In the NO3-and N2-grown cultures, N content per cell was only 57 and 63%, respectively, of that in the NH3-grown cells. Heterocysts were absent in NH3-grown cultures but were present in both the N2 and NO3 cultures. In the NO3-grown cultures C2H2 reduction was detected only at high growth rates, where it was estimated to account for a maximum of 6% of the N assimilated. In the N2-fixing cultures the acetylene:N2 ratio varied from 3.4:1 at lower growth rates to 3.0:1 at growth rates approaching maximal.

Compared with NH3, the assimilation of NO3 and N2 resulted either in a decrease in cellular C (NO3 and N2 cultures) or in a lower maximal growth rate (N2 culture only). The observed changes in cell C content were used to calculate the net cost (in electron pair equivalents) associated with growth on NO3 or N2 compared with NH3.

  相似文献   

20.
The apparently diminished capacity for N2 fixation by the shrub legume Calliandra calothyrsus (Calliandra) relative to other woody perennial legumes was investigated in a field experiment in northern Queensland, Australia. In this trial, (i) the proportion of plant nitrogen (N) derived from symbiotic N2 fixation (%Pfix) and the amounts of N2 fixed were compared in Calliandra, Gliricidia sepium (Gliricidia) and Codariocalyx gyroides (Codariocalyx), (ii) variations in N2 fixation due to season or tree age were determined, (iii) estimates of Pfix derived with the 15N natural abundance technique were compared with values obtained from 15N enrichment or xylem sap ureide procedures to determine whether the previous conclusions about Calliandra's ability to fix N had resulted from specific problems with the natural abundance methodology used in the earlier studies.Inoculated seedlings of each of the three shrub legume species were planted in dense stands (1.5 m rows, 0.5 m between trees) in two randomised blocks. The northern block was used solely for natural abundance measurements, while 15N-enriched KNO3 (10 atom % 15N excess) was applied four times over a 52 week period to plots in the southern block. The non-nodulating tree legume Senna spectabilis (formally Cassia spectabilis) was used as a non-N2-fixing reference for the 15N-based procedures, with Guinea grass (Panicum maximum) included as an additional non-fixing check. Growth by the trees above 75 cm was first cut and removed after 22 weeks and regrowth was subsequently pruned periodically for another 95 weeks. Sampling for dry matter production, N yield and estimates of Pfix were restricted to the central four of the 32 plants which constituted each replicate plot. Information generated during the 117 week study indicated that estimates of Pfix by 15N natural abundance were closely similar to values derived with 15N-enrichment or sap ureides. The data indicated that Calliandra had a reduced reliance upon N2 fixation relative to Gliricidia and Codariocalyx for the first 65 weeks after establishment. This appeared to be due to more prolifc root growth by Calliandra than either of the other N2-fixing species and an ability to extract a greater proportion of its N requirements from soil mineral N. However, after week 65 and for the remainder of the experiment, estimates of Pfix for Calliandra were similar to the other shrub legumes. Over 117 weeks, prunings from Calliandra and Gliricidia had removed 52–58 t dry matter ha-1, and between 1471 and 1678 kg N ha-1, of which 1026–1063 kg N ha-1 was estimated to have been derived from N2 fixation. At the time of final harvest, 65–73% of the fixed N was present in shoot regrowth of the N2 fixing shrubs, 9–18% in the roots, 15% in the trunk, and 2–6% in fallen leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号