首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 This study describes the inheritance and linkage map positions of two low phytic acid barley (Hordeum vulgare) mutations, lpa1-1 and lpa2-1, that dramatically reduce grain phytic acid content and increase inorganic seed phosphorus (P). Wide-cross, F2 mapping populations were constructed by mating six-rowed varieties, ‘Steptoe’ and/or ‘Morex’, with two-rowed ‘Harrington’lpa donor lines homozygous for either lpa1-1 or lpa2-1. The barley lpa1-1 mutation showed normal inheritance patterns, whereas a deficiency of homozygous lpa2-1/lpa2-1 F2 plants was observed. We identified a codominant, STS-PCR marker (aMSU21) that cosegregated with lpa1-1 in a population of 41 F2 plants. The aMSU21 marker was then mapped to a locus on barley chromosome 2H, using a North American Barley Genome Mapping Project (NABGMP) doubled haploid population (‘Harrington’בMorex’). We determined that lpa2-1 is located within a recombination interval of approximately 30 cM between two AFLP markers that were subsequently mapped to barley chromosome 7H by integration with the same NABGMP population. Recent comparative mapping studies indicate conserved genetic map orders of several homologous molecular marker loci in maize and the Triticeae species that also show corresponding linkage to the biochemically similar lpa2 mutations of maize and barley. This observation suggests that barley and maize lpa2 mutations may affect orthologous genes. No such evidence for correspondence of the phenotypically similar lpa1 mutations of barley and maize has been revealed. Received: 22 September 1997 / Accepted: 2 December 1997  相似文献   

2.
Low phytic acid grains can provide a solution to dietary micronutrient deficiency and environmental pollution. A low phytic acid 1-1 (lpa1-1) barley mutant was identified using forward genetics and the mutant gene was mapped to chromosome 2HL. Comparative genomic analysis revealed that the lpa1-1 gene was located in the syntenic region of the rice Os-lpa-MH86-1 gene on chromosome 4. The gene ortholog of rice Os-lpa-MH86-1 (designated as HvST) was isolated from barley using polymerase chain reaction and mapped to chromosome 2HL in a doubled haploid population of Clipper×Sahara. The results demonstrate the collinearity between the rice Os-lpa-MH86-1 gene and the barley lpa1-1 region. Sequence analysis of HvST revealed a single base pair substitution (C→T transition) in the last exon of the gene in lpa1-1 (M422), which resulted in a nonsense mutation. These results will facilitate our understanding of the molecular mechanisms controlling the low phytic acid phenotype and assist in the development of a diagnostic marker for the selection of the lpa1-1 gene in barley.  相似文献   

3.
Shattering is an essential seed dispersal mechanism in wild species. It is believed that independent mutations at orthologous loci led to convergent domestication of cereal crops. To investigate genetic relationships of Triticeae shattering genes with those of other grasses, we mapped spike-, barrel- (B-type), and wedge-type (W-type) spikelet disarticulation genes in wheat and its wild relatives. The Br1 gene for W-type disarticulation was mapped to a region delimited by Xpsr598 and Xpsr1196 on the short arm of chromosomes 3A in Triticum timopheevii and 3S in Aegilops speltoides. The spike- and W-type disarticulation genes are allelic at Br1 in Ae. speltoides. The B-type disarticulation gene, designated as Br2, was mapped to an interval of 4.4 cM between Xmwg2013 and Xpsr170 on the long arm of chromosome 3D in Aegilops tauschii, the D-genome donor of common wheat. Therefore, B- and W-type disarticulations are governed by two different orthologous loci on group-3 chromosomes. Based on map position, orthologs of Br1 and Br2 were not detected in barley, maize, rice, and sorghum, indicating multiple genetic pathways for shattering in grasses. The implications of the mapping results are discussed with regard to the evolution of polyploid wheat and domestication of cereals.Supplementary material is available in the online version of this article at  相似文献   

4.
Phytate is the primary form of phosphorus found in mature cereal grain. This form of phosphorus is not available to monogastric animals due to a lack of the enzyme phytase in their digestive tract. Several barley low phytic acid (lpa) mutants have been identified that contain substantial decreases in seed phytate accompanied by concomitant increases in inorganic phosphorus. Seed homozygous for low phytic acid 1-1 (lpa1-1) or low phytic acid 2-1 (lpa2-1) has a 50% and 70% decrease in seed phytate respectively. These mutations were previously mapped to chromosomes 2HL and 7HL respectively. The RFLP marker ABC153 located in the same region of 2H was converted to a sequence-characterized-amplified-region (SCAR) marker. Segregation analysis of the CDC McGwire × Lp422 doubled haploid population confirmed linkage between the SCAR marker and the lpa1-1 locus with 15% recombination. A third low phytic acid mutant, M635, has a 75% decrease in phytate. This mutation was located to chromosome 1HL by linkage with an inter-simple sequence repeat (ISSR) based marker (LP75) identified through bulked-segregant analysis, and has been designated lpa3-1. Based on analysis of recombination between marker LP75 and low phytic acid in an additional mutant line M955 (95% phytate decrease), lpa3-1 and the mutation in M955 are in the same region on chromosome 1HL, and may be allelic.  相似文献   

5.
To individuate candidate genes (CGs) for a set of barley developmental mutants, a synteny approach comparing the genomes of barley and rice has been introduced. Based on map positions of mutants, sequenced RFLP markers linked to the target loci were selected. The markers were mapped in silico by BLAST searches against the rice genome sequence and chromosomal regions syntenous to barley target intervals were identified. Rice syntenous regions were defined for 15 barley chromosomal intervals hosting 23 mutant loci affecting plant height (brh1; brh2; sld4), shoot and inflorescence branching (als; brc1; cul-2, -3, -5, -15, -16; dub1; mnd6; vrs1), development of leaves (lig) and leaf-like organs (cal-b19, -C15, -d4; lks5; suKD-25; suKE-74; suKF-76; trd; trp). Annotation of 110 Mb of rice genomic sequence made it possible to screen for putative CGs which are listed together with the reasons supporting mutant–gene associations. For two loci, CGs were identified with a clear probability to represent the locus considered. These include FRIZZY PANICLE, a candidate for the brc1 barley mutant, and the rice ortholog of maize Liguleless1 (Lg1), a candidate for the barley lig locus on chromosome 2H. For this locus, the validity of the approach was supported by the PCR-amplification of a genomic fragment of the orthologous barley sequence. SNP mapping located this fragment on chromosome 2H in the region hosting the lig genetic locus. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

6.
In this study, comparative high resolution genetic mapping of the GA-insensitive dwarfing gene sdw3 of barley revealed highly conserved macrosynteny of the target region on barley chromosome 2HS with rice chromosome 7L. A rice contig covering the sdw3-orthologous region was identified and subsequently exploited for marker saturation of the target interval in barley. This was achieved by (1) mapping of rice markers from the orthologous region of the rice genetic map, (2) mapping of rice ESTs that had been physically localized on the rice contig, or (3) mapping of barley ESTs that show strong sequence similarity to coding sequences present in the rice contig. Finally, the sdw3 gene was mapped to an interval of 0.55 cM in barley, corresponding to a physical distance of about 252 kb in rice, after employing orthologous EST-derived rice markers. Three putative ORFs were identified in this interval in rice, which exhibited significant sequence similarity to known signal regulator genes from different species. These ORFs can serve as starting points for the map-based isolation of the sdw3 gene from barley.Communicated by R. Hagemann  相似文献   

7.
Comparative RFLP mapping has revealed extensive conservation of marker order in different grass genomes. However, microcolinearity studies at the sequence level have shown rapid genome evolution and many exceptions to colinearity. Most of these studies have focused on a limited size of genomic fragment and the extent of microcolinearity over large distances or across entire genomes remains poorly characterized in grasses. Here, we have investigated the microcolinearity between the rice genome and a total of 1,500 kb from physical BAC contigs on wheat chromosome 1AS. Using ESTs mapped in wheat chromosome bins as an additional source of physical data, we have identified 27 conserved orthologous sequences between wheat chromosome 1AS and a region of 1,210 kb located on rice chromosome 5S. Our results extend the orthology described earlier between wheat chromosome group 1S and rice chromosome 5S. Microcolinearity was found to be frequently disrupted by rearrangements which must have occurred after the divergence of wheat and rice. At the Lr10 orthologous loci, microrearrangements were due to the insertion of mobile elements, but also originated from gene movement, amplification, deletion and inversion. These mechanisms of genome evolution are at the origin of the mosaic conservation observed between the orthologous regions. Finally, in silico mapping of wheat genes identified an intragenomic colinearity between fragments from rice chromosome 1L and 5S, suggesting an ancestral segmental duplication in rice.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

8.
A number of mutations affecting seed development in barley (Hordeum vulgare L.) have been known for many years; however, to date, no research has been reported that elucidates the molecular structure of the causal genes. As a first step, we initiated the linkage mapping of the two shrunken endosperm genes seg8 and sex1 using microsatellite markers. The recessive gene seg8 was mapped in the centromeric region of chromosome 7H to a 4.6 cM interval flanked by markers GBM1516 and Bmag341. The recessive sex1 gene showed xenia effects and was located in the centromeric region of barley chromosome 6H, which is in accordance to the previously reported chromosomal location in the classical linkage map. It was flanked by markers GBM5012 and GBM1063 in a 4.2 cM interval. EST-derived microsatellite markers were used to establish the syntenic relationships to the genomic rice sequences. Two orthologous sites on rice chromosome 2 flanking a 4.1 Mb sequence had homology to the respective barley markers in the sex1 region. For the markers in the seg8 region orthologous sites on rice chromosome 6 were detected.  相似文献   

9.
Phytic acid (PA, myo-inositol 1,2,3,4,5,6-hexakisphosphate), or its salt form, phytate, is commonly regarded as the major anti-nutritional component in cereal and legume grains. Breeding of low phytic acid (lpa) crops has recently been considered as a potential way to increase nutritional quality of crop products. In this study, eight independent lpa rice mutant lines from both indica and japonica subspecies were developed through physical and chemical mutagenesis. Among them, five are non-lethal while the other three are homozygous lethal. None of the lethal lines could produce homozygous lpa plants through seed germination and growth under field conditions, but two of them could be rescued through in vitro culture of mature embryos. The non-lethal lpa mutants had lower PA content ranging from 34 to 64% that of their corresponding parent and four of them had an unchanged total P level. All the lpa mutations were inherited in a single recessive gene model and at least four lpa mutations were identified mutually non-allelic, while the other two remain to be verified. One mutation was mapped on chromosome 2 between microsatellite locus RM3542 and RM482, falling in the same region as the previously mapped lpa1-1 locus did; another lpa mutation was mapped on chromosome 3, tightly linked to RM3199 with a genetic distance of 1.198 cM. The latter mutation was very likely to have happened to the LOC_Os03g52760, a homolog of the maize myo-inositol kinase (EC 2.7.1.64) gene. The present work greatly expands the number of loci that could influence the biosynthesis of PA in rice, making rice an excellent model system for research in this area.  相似文献   

10.
Conventionally, the genetics of species of the family Gramineae have been studied separately. Comparative mapping using DNA markers offers a method of combining the research efforts in each species. In this study, we developed consensus maps for members of the Triticeae tribe (Triticum aestivum, T. tauschii, andHordeum spp.) and compared them to rice, maize and oat. The aneuploid stocks available in wheat are invaluable for comparative mapping because almost every DNA fragment can be allocated to a chromosome arm, thus preventing erroneous conclusions about probes that could not be mapped due to a lack of polymorphism between mapping parents. The orders of the markers detected by probes mapped in rice, maize and oat were conserved for 93, 92 and 94% of the length of Triticeae consensus maps, respectively. The chromosome segments duplicated within the maize genome by ancient polyploidization events were identified by homoeology of segments from two maize chromosomes to regions of one Triticeae chromosome. Homoeologous segments conserved across Triticeae species, rice, maize, and oat can be identified for each Triticeae chromosome. Putative orthologous loci for several simply inherited and quantitatively inherited traits in Gramineae species were identified.Communicated by H. Saedler  相似文献   

11.
The 5S rDNA locus on the long arm of barley chromosome 2(2H) was genetically mapped in two crosses in relation to 30 other RFLP loci. Comparison of the genetic maps with the previously published physical position of the 5S rDNA, determined by in-situ hybridization, showed that there was a marked discrepancy between physical and genetic distance in both crosses, with recombination being less frequent in the proximal part of the arm. Pooled information from the present study and other published genetic maps showed that at least 26 of the 44 (59%) RFLPs that have been mapped on 2(2H)L lie distal to the 5S rDNA locus even though this region is only 27% of the physical length of the arm. The distribution of RFLP markers is significantly different from expected (P < 0.01), implying that the low-copy sequences used for RFLP analysis occur more frequently in distal regions of the arm and, or, that sequences in distal regions are more polymorphic.  相似文献   

12.
Wild relatives of barley disperse their seeds at maturity by means of their brittle rachis. In cultivated barley, brittleness of the rachis was lost during domestication. Nonbrittle rachis of occidental barley lines is controlled by a single gene (btr1) on chromosome 3H. However, nonbrittle rachis of oriental barley lines is controlled by a major gene (btr2) on chromosome 3H and two quantitative trait loci on chromosomes 5HL and 7H. This result suggests multiple mutations of the genes involved in the formation of brittle rachis in oriental lines. The btr1 and btr2 loci did not recombine in the mapping population analyzed. This result agrees with the theory of tight linkage between the two loci. A high-density amplified fragment-length polymorphism (AFLP) map of the btr1/btr2 region was constructed, providing an average density of 0.08 cM/locus. A phylogenetic tree based on the AFLPs showed clear separation of occidental and oriental barley lines. Thus, barley consists of at least two lineages as far as revealed by molecular markers linked to nonbrittle rachis genes.Electronic Supplementary Material Supplementary material is available for this article at An erratum to this article can be found at  相似文献   

13.
The intervals containing two major quantitative trait loci (QTL) from a Spanish barley landrace conferring broad spectrum resistance to Blumeria graminis were subjected to marker saturation. First, all the available information on recently developed marker resources for barley was exploited. Then, a comparative genomic analysis of the QTL regions with other sequenced grass model species was performed. As a result of the first step, 32 new markers were added to the previous map and new flanking markers closer to both QTL were identified. Next, syntenic integration revealed that the barley target regions showed homology with regions on chromosome 6 of rice (Oryza sativa), chromosome 10 of Sorghum bicolor and chromosome 1 of Brachypodium distachyon. A nested insertion of ancestral syntenic blocks on Brachypodium chromosome 1 was confirmed. Based on sequence information of the most likely candidate orthologous genes, 23 new barley unigene-derived markers were developed and mapped within the barley target regions. The assessment of colinearity revealed an inversion on chromosome 7HL of barley compared to the other three grass species, and nearly perfect colinearity on chromosome 7HS. This two-step marker enrichment allowed for the refinement of the two QTL into much smaller intervals. Inspection of all predicted proteins for the barley unigenes identified within the QTL intervals did not reveal the presence of resistance gene candidates. This study demonstrates the usefulness of sequenced genomes for fine mapping and paves the way for the use of these two loci in barley breeding programs.  相似文献   

14.
Microsynteny with rice and comparative genetic mapping were used to identify candidate orthologous sequences to the rice Hd1(Se1) gene in Lolium perenne and Festuca pratensis. A F. pratensis bacterial artificial chromosome (BAC) library was screened with a marker (S2539) physically close to Hd1 in rice to identify the equivalent genomic region in F. pratensis. The BAC sequence was used to identify and map the same region in L. perenne. Predicted protein sequences for L. perenne and F. pratensis Hd1 candidates (LpHd1 and FpHd1) indicated they were CONSTANS-like zinc finger proteins with 61-62% sequence identity with rice Hd1 and 72% identity with barley HvCO1. LpHd1 and FpHd1 were physically linked in their respective genomes (< 4 kb) to marker S2539, which was mapped to L. perenne chromosome 7. The identified candidate orthologues of rice Hd1 and barley HvCO1 in L. perenne and F. pratensis map to chromosome 7, a region of the L. perenne genome which has a degree of conserved genetic synteny both with rice chromosome 6, which contains Hd1, and barley chromosome 7H, which contains HvCO1.  相似文献   

15.
The rapidly growing expressed sequence tag (EST) resources of species representing the Poacea family and availability of comprehensive sequence information for the rice (Oryza sativa) genome create an excellent opportunity for comparative genome analysis. Extensive synteny between rice chromosome 1 and barley (Hordeum vulgare L.) chromosome 3 has proven extremely useful for saturation mapping of chromosomal regions containing target genes of large-genome barley with conserved orthologous genes from the syntenic regions of the rice genome. Rph5 is a gene conferring resistance to the barley leaf rust pathogen Puccinia hordei. It was mapped to chromosome 3HS, which is syntenic with rice chromosome 1S. The objective of this study was to increase marker density within the sub-centimorgan region around Rph5, using sequence-tagged site (STS) markers that were developed based on barley ESTs syntenic to the phage (P1)-derived artificial chromosome (PAC) clones comprising the distal region of rice chromosome 1S. Five rice PAC clones were used as queries in a blastn search to screen 375,187 barley ESTs. Ninety-four non-redundant EST sequences were identified from the EST database and used as templates to design 174 pairs of primer combinations. As a result, 9 barley EST-based STS markers were incorporated into the ‘Bowman’ × ‘Magnif 102’ high-resolution map of the Rph5 region. More importantly, six markers, including five EST-derived STS sequences, were found to co-segregate with Rph5. The results of this study demonstrate the usefulness of rice genomic resources for efficient deployment of barley ESTs for marker saturation of targeted barley genomic regions.  相似文献   

16.
 Three quantitative trait loci (QTL) for tissue- culture response (Tcr) were mapped on chromosome 2B of hexaploid wheat (Triticum aestivum L.) using single-chromosome recombinant lines. Tcr-B1 and Tcr-B2, affecting both green spots initiation and shoot regeneration, were mapped in relation to RFLP markers in the centromere region and on the short arm of chromosome 2B, linked to the photoperiod-response gene Ppd2. A third QTL (Tcr-B3), influencing regeneration only, was closely related to the disease resistance locus Yr7/Sr9g on the long arm of chromosome 2B. The homoeologous relationships to the tissue-culture response loci Qsr, Qcg and Shd of barley are discussed. A possible influence of the earliness per se genes of wheat and barley is suggested. Received: 30 August 1996 / Accepted: 15 November 1996  相似文献   

17.
 Three mutant loci of rye determining absence of ligules (al), waxless plant (wa1) and waxy endosperm (Wx) characters were mapped in a single F2 population, comprising 84 individual plants. The three loci could be clearly tagged in relation to 7 (al on chromosome 2R), 4 (wa1 on chromosome 7R) or 6 (Wx on chromosome 4R) RFLP markers. The mapping data are compared with existing data for homoeologous regions containing equivalent mutants of wheat, barley, rice and maize. It is shown that the loci analysed are highly conserved across the cereal species, including rye. Received: 14 March 1997 / Accepted: 21 March 1997  相似文献   

18.
Barley (Hordeum vulgare L.) telomeres were investigated by means of pulsed field gel electrophoresis (PFGE) and in situ hybridization. In situ hybridization showed that a tandemly repeated satellite sequence has a subtelomeric location, and is present at thirteen of the fourteen chromosome ends. PFGE revealed that this satellite sequence is physically close to the telomeric repeat. Pulsed field gel electrophoresis was then used for segregation analysis and linkage mapping of several telomeric and satellite loci in a segregating doubled-haploid population. The telomeric repeat displayed a hypervariable segregation pattern with new alleles occurring in the progeny. Eight satellite and telomeric sites were mapped on an restriction fragment length polymorphism (RFLP)-map of barley, defining the ends of chromosome arms 1L, 2S, 3L, 4S, 4L, 5S and 6. One satellite locus mapped to an interstitial site on the long arm of chromosome 3. The pyhsical location of this locus was confirmed by in situ hybridization to wheat/barley addition line 3.  相似文献   

19.
To enhance the marker density of existing genetic maps of barley (Hordeum vulgare L.), a new set of microsatellite markers containing dinucleotide motifs was developed from genomic clones. Out of 254 primer pairs tested, a total of 167 primer pairs were classifed as functional in a panel of six barley cultivars and three H. spontaneum accessions, and of those, 127 primer pairs resulting in 133 loci were either mapped or located onto chromosomes. The polymorphism information content (PIC) ranged from 0.05 to 0.94 with an average of 0.60. The number of alleles per locus varied from 1 to 9. On average, 3.9 alleles per primer pair were observed. The RFLP frameworks of two previously published linkage maps were used to locate a total of 115 new microsatellite loci on at least one mapping population. The chromosomal assignment of 48 mapped loci was corroborated on a set of wheat-barley chromosome addition lines; 18 additional loci which were not polymorphic in the mapping populations were assigned to chromosomes by this method. The microsatellites were located on all seven linkage groups with four significant clusters in the centromeric regions of 2H, 3H, 6H and 7H. These newly developed microsatellites improve the density of existing barley microsatellite maps and can be used in genetic studies and breeding research.Communicated by G. Wenzel  相似文献   

20.
Leaf stripe is a seed-borne disease of barley (Hordeum vulgare) caused by Pyrenophora graminea. Little is known about the genetics of resistance to this pathogen. In the present work, QTL analysis was applied on two recombinant inbred line (RIL) populations derived from two- and six-rowed barley genotypes with different levels of partial resistance to barley leaf stripe. Quantitative trait loci for partial resistance were identified using the composite interval mapping (CIM) method of PLABQTL software, using the putative QTL markers as cofactors. In the L94 x 'Vada' mapping population, one QTL for resistance was detected on chromosome 2H; the same location as the leaf-stripe resistance gene Rdg1 mapped earlier in 'Alf', where it confers complete resistance to the pathogen. An additional minor-effect QTL was identified by further analyses in this segregating population on chromosome 7H. In L94 x C123, two QTLs for resistance were mapped, one each on chromosomes 7H and 2H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号