首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of gap junction channels on cardiac impulse propagation is complex. This review focuses on the differential expression of connexins in the heart and the biophysical properties of gap junction channels under normal and disease conditions. Structural determinants of impulse propagation have been gained from biochemical and immunocytochemical studies performed on tissue extracts and intact cardiac tissue. These have defined the distinctive connexin coexpression patterns and relative levels in different cardiac tissues. Functional determinants of impulse propagation have emerged from electrophysiological experiments carried out on cell pairs. The static properties (channel number and conductance) limit the current flow between adjacent cardiomyocytes and thus set the basic conduction velocity. The dynamic properties (voltage-sensitive gating and kinetics of channels) are responsible for a modulation of the conduction velocity during propagated action potentials. The effect is moderate and depends on the type of Cx and channel. For homomeric-homotypic channels, the influence is small to medium; for homomeric-heterotypic channels, it is medium to strong. Since no data are currently available on heteromeric channels, their influence on impulse propagation is speculative. The modulation by gap junction channels is most prominent in tissues at the boundaries between cardiac tissues such as sinoatrial node-atrial muscle, atrioventricular node-His bundle, His bundle-bundle branch and Purkinje fibers-ventricular muscle. The data predict facilitation of orthodromic propagation.  相似文献   

2.
Gap junction channels are an integral part of the conduction or propagation of an action potential from cell to cell. Gap junctions have rather unique gating and permeability properties which permit the movement of molecules from cell to cell. These molecules may not be directly linked to action potentials but can alter nonjunctional processes within cells, which in turn can affect conduction velocity. The data described in this review reveal that, for the majority of excitable cells, there are two limiting factors, with respect to gap junctions, that affect the conduction/propagation of action potentials. These are (1) the total number of channels and (2) the selective permeability of the channels. Interestingly, voltage dependence and the time course of voltage inactivation (kinetics) are not rate limiting steps under normal physiological conditions for any of the connexins studied so far. Only specialized rectifying electrical synapses utilize strong voltage dependence and rapid kinetics to permit or deny the continued propagation of an action potential.  相似文献   

3.
The effects of octanol on longitudinal propagation in guinea pig papillary muscles were measured by intracellular microelectrodes. These data were compared with alterations in conduction induced by stepwise removal of gap junction channels in computer simulations of propagation based on a discontinuous cable model. Octanol reduced the velocity (theta) of propagating action potentials (APs) from 53.2 +/- 3.5 to less than 6.6 +/- 2.1 cm/s before block occurred. The maximal rate of rise (Vmax) changed in a biphasic manner, increasing from 133.1 +/- 5.4 in controls to 201.7 +/- 11.0 V/s when theta was 20.5 +/- 2.8 cm/s, and then declining to less than 58.6 +/- 15.2 V/s just before block. The input resistance and time constant of the AP foot increased, and the ascending limb of phase-plane loops became increasingly nonlinear and notched during octanol treatment. All effects of octanol reversed upon washout. A strand of cardiac tissue was modeled as a discontinuous cable composed of 40 cells, each with 10 isopotential membrane segments described by Beeler-Reuter kinetics, and coupled by a variable number of gap junction channels (156 pS). Decreasing the number of channels from 40,000 to 400 to 60 slowed conduction from 62.6 to 16.4 to 3.1 cm/s. As noted in the experimental data, Vmax increased from 103 to 130 and then fell to less than 96 V/s. The AP foot increased and became nonexponential. Distinct notches developed during phase 1 of the APs at slower propagation velocities in the experiments and simulations. The close similarities between the experimental and theoretical data obtained in this study supports the applicability of a discontinuous cable model for describing longitudinal propagation in the heart.  相似文献   

4.
Cardiac cells are electrically coupled through gap junction channels, which allow ionic current to spread intercellularly from one cell to the next. In addition, it is possible that cardiac cells are coupled through the electric potential in the junctional cleft space between neighboring cells. We develop and analyze a mathematical model of two cells coupled through a common junctional cleft potential. Consistent with more detailed models, we find that the coupling mechanism is highly parameter dependent. Analysis of our model reveals that there are two time scales involved, and the dynamics of the slow subsystem provide new mathematical insight into how the coupling mechanism works. We find that there are two distinct types of propagation failure and we are able to characterize parameter space into regions of propagation success and the two different types of propagation failure.  相似文献   

5.
To investigate how intercellular coupling can be changed during Ca2+ overloading of ventricular muscle, we studied Ca2+ signals in individual cells and the histochemistry of the major gap junction channel, connexin43 (Cx43), using multicellular preparations. Papillary muscles were obtained from guinea pig ventricles and loaded with rhod-2. Sequential Ca2+ images of surface cells were obtained with a confocal microscope. In intact muscles, all cells showed simultaneous Ca2+ transients in response to field stimulation over a field of view of 0.3 x 0.3 mm2. In severely Ca2+-overloaded muscles, obtained by high-frequency stimulation in nonflowing Krebs solution, cells became less responsive to stimulation. Furthermore, nonsimultaneous but serial onsets of Ca2+ transients were often detected, suggesting a propagation delay of action potentials. The time lag of the onset between two aligned cells was sometimes as long as 100 ms. Similar lags were also observed in muscles with gap junction channels inhibited by heptanol. To investigate whether the phosphorylation state of Cx43 is affected in Ca2+-overloaded muscles, the distributions of phosphorylated and nonphosphorylated Cx43 were determined using specific antibodies. Most of the Cx43 was phosphorylated in the nonoverloaded muscles, whereas nonphosphorylated Cx43 was significantly elevated in severely Ca2+-overloaded muscles. Our results suggest that the propagation delay of action potential within a small area, a few square millimeters, can be a cause of abnormal conduction and a microreentry in Ca2+-overloaded heart. Inactivation of Na+ channels and inhibition of gap junctional communication may underlie the cell-to-cell propagation delay. Ca2+ transient; connexin43; propagation delay; gap junction; arrhythmia  相似文献   

6.
The gap junction and voltage-gated Na+ channel play an important role in the action potential propagation. The purpose of this study was to elucidate the roles of subcellular Na+ channel distribution in action potential propagation. To achieve this, we constructed the myocardial strand model, which can calculate the current via intercellular cleft (electric-field mechanism) together with gap-junctional current (gap-junctional mechanism). We conducted simulations of action potential propagation in a myofiber model where cardiomyocytes were electrically coupled with gap junctions alone or with both the gap junctions and the electric field mechanism. Then we found that the action potential propagation was greatly affected by the subcellular distribution of Na+ channels in the presence of the electric field mechanism. The presence of Na+ channels in the lateral membrane was important to ensure the stability of propagation under conditions of reduced gap-junctional coupling. In the poorly coupled tissue with sufficient Na+ channels in the lateral membrane, the slowing of action potential propagation resulted from the periodic and intermittent dysfunction of the electric field mechanism. The changes in the subcellular Na+ channel distribution might be in part responsible for the homeostatic excitation propagation in the diseased heart.  相似文献   

7.
When modelling tissue-level cardiac electrophysiology, a continuum approximation to the discrete cell-level equations, known as the bidomain equations, is often used to maintain computational tractability. Analysing the derivation of the bidomain equations allows us to investigate how microstructure, in particular gap junctions that electrically connect cells, affect tissue-level conductivity properties. Using a one-dimensional cable model, we derive a modified form of the bidomain equations that take gap junctions into account, and compare results of simulations using both the discrete and continuum models, finding that the underlying conduction velocity of the action potential ceases to match up between models when gap junctions are introduced at physiologically realistic coupling levels. We show that this effect is magnified by: (i) modelling gap junctions with reduced conductivity; (ii) increasing the conductance of the fast sodium channel; and (iii) an increase in myocyte length. From this, we conclude that the conduction velocity arising from the bidomain equations may not be an accurate representation of the underlying discrete system. In particular, the bidomain equations are less likely to be valid when modelling certain diseased states whose symptoms include a reduction in gap junction coupling or an increase in myocyte length.  相似文献   

8.
The effect of gap junctional coupling, sodium ion channel distribution, and extracellular conductivity on transverse conduction in cardiac tissue is explored using a microdomain model that incorporates aspects of the inhomogeneous cellular structure. The propagation velocities found in our model are compared to those in the classic bidomain model and indicate a strong ephaptic microdomain contribution to conduction depending on the parameter regime. We show that ephaptic effects can be quite significant in the junctional spaces between cells, and that the cell activation sequence is modified substantially by these effects. Further, we find that transverse propagation can be maintained by ephaptic effects, even in the absence of gap junctional coupling. The mechanism by which this occurs is found to be cablelike in that the junctional regions act like inverted cables. Our results provide insight into several recent experimental studies that indirectly indicate a mode of action potential propagation that does not rely exclusively on gap junctions.  相似文献   

9.
The effect of gap junctional coupling, sodium ion channel distribution, and extracellular conductivity on transverse conduction in cardiac tissue is explored using a microdomain model that incorporates aspects of the inhomogeneous cellular structure. The propagation velocities found in our model are compared to those in the classic bidomain model and indicate a strong ephaptic microdomain contribution to conduction depending on the parameter regime. We show that ephaptic effects can be quite significant in the junctional spaces between cells, and that the cell activation sequence is modified substantially by these effects. Further, we find that transverse propagation can be maintained by ephaptic effects, even in the absence of gap junctional coupling. The mechanism by which this occurs is found to be cablelike in that the junctional regions act like inverted cables. Our results provide insight into several recent experimental studies that indirectly indicate a mode of action potential propagation that does not rely exclusively on gap junctions.  相似文献   

10.
In pathological conditions such as ischemic cardiomyopathy and heart failure, differentiation of fibroblasts into myofibroblasts may result in myocyte-fibroblast electrical coupling via gap junctions. We hypothesized that myofibroblast proliferation and increased heterocellular coupling significantly alter two-dimensional cardiac wave propagation and reentry dynamics. Co-cultures of myocytes and myofibroblasts from neonatal rat ventricles were optically mapped using a voltage-sensitive dye during pacing and sustained reentry. The myofibroblast/myocyte ratio was changed systematically, and junctional coupling of the myofibroblasts was reduced or increased using silencing RNAi or adenoviral overexpression of Cx43, respectively. Numerical simulations in two-dimensional models were used to quantify the effects of heterocellular coupling on conduction velocity (CV) and reentry dynamics. In both simulations and experiments, reentry frequency and CV diminished with larger myofibroblast/myocyte area ratios; complexity of propagation increased, resulting in wave fractionation and reentry multiplication. The relationship between CV and coupling was biphasic: an initial decrease in CV was followed by an increase as heterocellular coupling increased. Low heterocellular coupling resulted in fragmented and wavy wavefronts; at high coupling wavefronts became smoother. Heterocellular coupling alters conduction velocity, reentry stability, and complexity of wave propagation. The results provide novel insight into the mechanisms whereby electrical myocyte-myofibroblast interactions modify wave propagation and the propensity to reentrant arrhythmias.  相似文献   

11.
This work presents a discrete multidomain model that describes ionic diffusion pathways between connected cells and within the interstitium. Unlike classical models of impulse propagation, the intracellular and extracellular spaces are represented as spatially distinct volumes with dynamic/static boundary conditions that electrically couple neighboring spaces. The model is used to investigate the impact of nonuniform geometrical and electrical properties of the interstitial space surrounding a fiber on conduction velocity and action potential waveshape. Comparison of the multidomain and bidomain models shows that although the conduction velocity is relatively insensitive to cases that confine 50% of the membrane surface by narrow extracellular depths (≥2 nm), the action potential morphology varies greatly around the fiber perimeter, resulting in changes in the magnitude of extracellular potential in the tight spaces. Results also show that when the conductivity of the tight spaces is sufficiently reduced, the membrane adjacent to the tight space is eliminated from participating in propagation, and the conduction velocity increases. Owing to its ability to describe the spatial discontinuity of cardiac microstructure, the discrete multidomain can be used to determine appropriate tissue properties for use in classical macroscopic models such as the bidomain during normal and pathophysiological conditions.  相似文献   

12.
电突触耦合Chay神经元同步振荡的研究   总被引:4,自引:4,他引:0  
从微观解释异常神经元构建组织时癫痫样波形的相互制约关系对神经系统疾病的研究很有意义,而两神经元耦合特性的探索是重要的基础工作。采用Chay提供的Pacemaker神经元模型以电突触耦合来研究不同耦合强度对神经元动态时序的影响,并指出突触作用过程的混沌特征。给出并讨论了不同状态神经元相耦合时非线性振荡的数值计算结果,即:起搏神经元与处于冲动混沌状态神经元、处于冲动混沌和独态冲动状态的异常神经元、异常神经元与处于静息状态神经元的动态时序,还给出了部分相图以及Ca 离子浓度变化的特点。神经元这种负载特性的讨论有助于研究在活组织中癫痫发作的机理、传输和控制。  相似文献   

13.
The success or failure of the propagation of electrical activity in cardiac tissue is dependent on both cellular membrane characteristics and intercellular coupling properties. This paper considers a linear arrangement of individual bullfrog atrial cells that are resistively coupled end to end to form a cylindrical strand. The strand, in turn, is encased by an endothelial sheath that provides a restricted extracellular space and an ion diffusion barrier to the outer bathing medium. This encased strand serves as an idealized model of an atrial trabeculum. Excitable membrane characteristics of the atrial cell are specified in terms of a Hodgkin-Huxley type of model that is quantitatively based on single-microelectrode voltage clamp data from bullfrog atrial myocytes. This membrane model can simulate the behavior of normal cells as well as of ischemic cells that exhibit depressed electrophysiological behavior (e.g., decreased resting potential, upstroke velocity, peak height, and action potential duration). Depressed activity can be easily simulated with variation of a single model parameter, the gain of the Na+/K+ pump current (INaK). Intercellular coupling properties are specified in terms of a lumped resistive T-type network between adjacent cells. The atrial strand model provides a means for studying the theoretical aspects of slow conduction in a "hybrid" strand that consists of a central region of cells having abnormal membrane or coupling properties, flanked on either side by normal atrial cells. Both uniform and discontinuous conduction are simulated by means of appropriate changes in the coupling resistance between cells. In addition, by varying either the degree of depressed electrical activity or the intercalated disc resistance in the central zone of the strand, slow conduction or complete conduction block in that region is demonstrated. Since the cellular model used in this study is based on experimental data and closely mimics both the atrial action potential and the underlying membrane currents, it has the potential to (1) accurately represent the current and voltage wave-forms occurring in the region of intercalated discs and (2) provide detailed information regarding the mechanisms in intercellular current spread in the region of slow conduction.  相似文献   

14.
A number of fundamental properties of intercellular conduction in simulated cylindrical strands of cardiac tissue are examined. The paper is based on recent biophysical information describing the transmembrane ionic currents in bullfrog atrial cells as well as anatomical data on the structures (gap junctions) responsible for the coupling between cells in that tissue. A mathematical model of the single bullfrog atrial cell based on suction microelectrode single-cell voltage clamp data is employed, as well as a modified version of the well-known model of Heppner and Plonsey, to characterized the resistive connections between adjacent cells in a cardiac strand. In addition, the simulated cellular strand is assumed to be encased in a cylindrical, resistive endothelial sheath, thus forming an idealized atrial trabeculum; the trabeculum is immersed in an extensive volume conductor. It is possible to simulate both uniform and discontinuous conduction in this atrial strand model by appropriately changing the resistance of the intercalated discs that occur at cell boundaries. The conduction velocity achieved in the normal or control case is within the range of conduction velocities that have been measured for bullfrog atrial trabeculae using optical methods. Extracellular resistance is shown to have a significant effect on both conduction velocity and the critical value of disc resistance at which discontinuous conduction first occurs. Since the atrial cell model employed in this study is based on experimental data and can accurately simulate the atrial action potential, the transmembrane ionic currents generated by the model are capable of providing detailed information concerning the mechanisms of intercellular current spread, particularly in the region of the intercalated disc.  相似文献   

15.
Dakin K  Zhao Y  Li WH 《Nature methods》2005,2(1):55-62
Using a new class of photo-activatible fluorophores, we have developed a new imaging technique for measuring molecular transfer rates across gap junction connexin channels in intact living cells. This technique, named LAMP, involves local activation of a molecular fluorescent probe, NPE-HCCC2/AM, to optically label a cell. Subsequent dye transfer through gap junctions from labeled to unlabeled cells was quantified by fluorescence microscopy. Additional uncagings after prior dye transfers reached equilibrium enabled multiple measurements of dye transfer rates in the same coupled cell pair. Measurements in the same cell pair minimized variation due to differences in cell volume and number of gap junctions, allowing us to track acute changes in gap junction permeability. We applied the technique to study the regulation of gap junction coupling by intracellular Ca(2+) ([Ca(2+)](i)). Although agonist or ionomycin exposure can raise bulk [Ca(2+)](i) to levels higher than those caused by capacitative Ca(2+) influx, the LAMP assay revealed that only Ca(2+) influx through the plasma membrane store-operated Ca(2+) channels strongly reduced gap junction coupling. The noninvasive and quantitative nature of this imaging technique should facilitate future investigations of the dynamic regulation of gap junction communication.  相似文献   

16.
The intercalated disk (ID) is a specialized subcellular region that provides electrical and mechanical connections between myocytes in the heart. The ID has a clearly defined passive role in cardiac tissue, transmitting mechanical forces and electrical currents between cells. Recent studies have shown that Na+ channels, the primary current responsible for cardiac excitation, are preferentially localized at the ID, particularly within nanodomains such as the gap junction–adjacent perinexus and mechanical junction–associated adhesion-excitability nodes, and that perturbations of ID structure alter cardiac conduction. This suggests that the ID may play an important, active role in regulating conduction. However, the structures of the ID and intercellular cleft are not well characterized and, to date, no models have incorporated the influence of ID structure on conduction in cardiac tissue. In this study, we developed an approach to generate realistic finite element model (FEM) meshes replicating nanoscale of the ID structure, based on experimental measurements from transmission electron microscopy images. We then integrated measurements of the intercellular cleft electrical conductivity, derived from the FEM meshes, into a novel cardiac tissue model formulation. FEM-based calculations predict that the distribution of cleft conductances is sensitive to regional changes in ID structure, specifically the intermembrane separation and gap junction distribution. Tissue-scale simulations predict that ID structural heterogeneity leads to significant spatial variation in electrical polarization within the intercellular cleft. Importantly, we found that this heterogeneous cleft polarization regulates conduction by desynchronizing the activation of postjunctional Na+ currents. Additionally, these heterogeneities lead to a weaker dependence of conduction velocity on gap junctional coupling, compared with prior modeling formulations that neglect or simplify ID structure. Further, we found that disruption of local ID nanodomains can either slow or enhance conduction, depending on gap junctional coupling strength. Our study therefore suggests that ID nanoscale structure can play a significant role in regulating cardiac conduction.  相似文献   

17.
The electrical properties of gap junctions in cell pairs are usually studied by means of the dual voltage clamp method. The voltage across the junctional channels, however, cannot be controlled adequately due to an artificial resistance and a natural resistance, both connected in series with the gap junction. The access resistances to the cell interior of the recording pipettes make up the artificial resistance. The natural resistance consists of the cytoplasmic access resistances to the tightly packed gap junction channels in both cells. A mathematical model was constructed to calculate the actual voltage across each gap junction channel. The stochastic open-close kinetics of the individual channels were incorporated into this model. It is concluded that even in the ideal case of complete compensation of pipette series resistance, the number of channels comprised in the gap junction may be largely underestimated. Furthermore, normalized steady-state junctional conductance may be largely overestimated, so that transjunctional voltage dependence is easily masked. The model is used to discuss conclusions drawn from dual voltage clamp experiments and offers alternative explanations for various experimental observations.  相似文献   

18.
The ventricular action potential was applied to paired neonatal murine ventricular myocytes in the dual whole cell configuration. During peak action potential voltages >100 mV, junctional conductance (g(j)) declined by 50%. This transjunctional voltage (V(j))-dependent inactivation exhibited two time constants that became progressively faster with increasing V(j). G(j) returned to initial peak values during action potential repolarization and even exceeded peak g(j) values during the final 5% of repolarization. This facilitation of g(j) was observed <30 mV during linearly decreasing V(j) ramps. The same behavior was observed in ensemble averages of individual gap junction channels with unitary conductances of 100 pS or lower. Immunohistochemical fluorescent micrographs and immunoblots detect prominent amounts of connexin (Cx)43 and lesser amounts of Cx40 and Cx45 proteins in cultured ventricular myocytes. The time dependence of the g(j) curves and channel conductances are consistent with the properties of predominantly homomeric Cx43 gap junction channels. A mathematical model depicting two inactivation and two recovery phases accurately predicts the ventricular g(j) curves at different rates of stimulation and repolarization. Functional differences are apparent between ventricular myocytes and Cx43-transfected N2a cell gap junctions that may result from posttranslational modification. These observations suggest that gap junctions may play a role in the development of conduction block and the genesis and propagation of triggered arrhythmias under conditions of slowed conduction (<10 cm/s).  相似文献   

19.
Normal rat kidney (NRK) fibroblasts change their excitability properties through the various stages of cell proliferation. The present mathematical model has been developed to explain excitability of quiescent (serum deprived) NRK cells. It includes as cell membrane components, on the basis of patch-clamp experiments, an inwardly rectifying potassium conductance (GKir), an L-type calcium conductance (GCaL), a leak conductance (Gleak), an intracellular calcium-activated chloride conductance [GCl(Ca)], and a gap junctional conductance (Ggj), coupling neighboring cells in a hexagonal pattern. This membrane model has been extended with simple intracellular calcium dynamics resulting from calcium entry via GCaL channels, intracellular buffering, and calcium extrusion. It reproduces excitability of single NRK cells and cell clusters and intercellular action potential (AP) propagation in NRK cell monolayers. Excitation can be evoked by electrical stimulation, external potassium-induced depolarization, or hormone-induced intracellular calcium release. Analysis shows the roles of the various ion channels in the ultralong (30 s) NRK cell AP and reveals the particular role of intracellular calcium dynamics in this AP. We support our earlier conclusion (De Roos A, Willems PH, van Zoelen EJ, and Theuvenet AP. Am J Physiol Cell Physiol 273: C1900–C1907, 1997) that AP generation and propagation may act as a rapid mechanism for the propagation of intracellular calcium waves, thus contributing to fast intercellular calcium signaling. The present model serves as a starting point to further analyze excitability changes during contact inhibition and cell transformation. Hodgkin-Huxley model; intracellular calcium dynamics; L-type calcium conductance; inward rectifier; calcium-activated chloride conductance; gap junctional coupling  相似文献   

20.
The striatum is the biggest nucleus of the basal ganglia and receives input from almost all cortical regions, substantia nigra and the thalamus. Striatal neuronal circuitry is well characterized, but less is known about glial physiology. To this end, we evaluated astrocyte electrophysiological properties using whole-cell patch-clamp recording in dorsal striatal brain slices from P15 to P21 rat. The majority of cells (95%) were passive astrocytes that do not express any detectable voltage-gated channels. Passive astrocytes were subcategorized into three groups based on time-dependent current properties. The observed proportion of the different astrocyte subtypes did not change within the age range evaluated here, but was modulated during reduction of specific conductances and gap junction coupling. Striatal astrocytes were extensively interconnected and closure of gap junctions with octanol (1 mM), carbenoxolone (100 μM) or increased intracellular calcium (2 mM), significantly altered intrinsic properties. When simultaneously blocking potassium channels and gap junction coupling almost no passive conductance was detected, implying that the major currents in striatal astrocytes derive from potassium and gap junction conductance. Uncoupling of the syncytium reduced currents activated in response to a hyperpolarizing pulse, suggesting that changes in gap junction coupling alters astrocyte electrophysiological responses. Our findings indicate that the prevalent gap junction coupling is vital for astrocyte function in the striatum, and that whole-cell recordings will be distorted by currents activated in neighboring cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号