首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bhat R  Wedemeyer WJ  Scheraga HA 《Biochemistry》2003,42(19):5722-5728
The kinetics of cis-trans isomerization of individual X-Pro peptide groups is used to study the backbone dynamics of bovine pancreatic ribonuclease A (RNase A). We previously developed and validated a fluorescence method for monitoring the cis-trans isomerization of the Tyr92-Pro93 and Asn113-Pro114 peptide groups of RNase A under unfolding conditions [Juminaga, D., Wedemeyer, W. J., and Scheraga, H. A. (1998) Biochemistry 37, 11614-11620]. The essence of this method is to introduce a fluorescent residue (Tyr or Trp) in a position adjacent to the isomerizing proline (if one is not already present) and to eliminate the fluorescence of other such residues adjacent to prolines by mutating them to phenylalanine. Here, we extend this method to observe the cis-trans isomerization of these peptide groups under folding conditions using two site-directed mutants (Y92F and Y115F) of RNase A. Both isomerizations decelerate with increasing concentrations of GdnHCl, with nearly identical m values (1.11 and 1.19 M(-1), respectively) and extrapolated zero-GdnHCl time constants (42 and 32 s, respectively); by contrast, under unfolding conditions, the cis-trans isomerizations of both Pro93 and Pro114 are independent of GdnHCl concentration. Remarkably, the isomerization rates under folding conditions at GdnHCl concentrations above 1 M are significantly slower than those measured under unfolding conditions. The temperature dependence of the Pro114 isomerization under folding conditions is also unusual; whereas Pro93 exhibits an activation energy typical of proline isomerization (19.4 kcal/mol), Pro114 exhibits a sharply reduced activation energy of 5.7 kcal/mol. A structurally plausible model accounts for these results and, in particular, shows that folding conditions strongly accelerate the cis-trans isomerization of both peptide groups to their native cis conformation, suggesting the presence of flickering local structure in their beta-hairpins.  相似文献   

2.
Vicinal coupling constants between various nuclei provide backbone and side-chain conformational information for a series of asparagine- and tyrosine-containing peptides in DMSO and in H2O. By enriching Tyr of Ac-Asn-Pro-Tyr-NHMe with 15N, it has been possible to distinguish between the resonances of the two side-chain beta protons of Tyr. Analysis of the coupling constants in terms of the distributions of side-chain conformations in these peptides indicates that the addition of Asn to the Pro-Tyr sequence leads to a less random conformational distribution. When compared to the side-chain rotamer distribution of Ac-Asn-NHMe and Ac-Tyr-NHMe, particular Asn and Tyr side-chain conformations of Ac-Asn-Pro-Tyr-NHMe are stabilized in dimethylsulfoxide solution. The interaction(s) which stabilize a unique Tyr side-chain conformation of Ac-Asn-Pro-Tyr-NHMe in dimethylsulfoxide are not present in Ac-Ala-Pro-Tyr-NHMe and are unaffected by the addition of Val-Pro to the C-terminus of Asn-Pro-Tyr. In water, a preferential stabilization of one Asn side-chain conformation of Ac-Asn-Pro-Tyr-NHMe is also observed, while the Tyr side-chain rotamer distribution is similar to that of Ac-Tyr-NHMe. An interaction between the Asn side chain and the Pro-Tyr-NHMe backbone was previously shown to stabilize a beta-bend conformation at Pro-Tyr in water. Data are also presented for Ac-Tyr-Pro-Asn-NHMe, for which local interactions do not stabilize particular backbone conformations in dimethylsulfoxide or in water. The conformations of the peptides studied here are relatively insensitive to temperatures between 27 degrees and 62 degrees, both in dimethylsulfoxide and in water. The sequences Asn-Pro-Tyr and Tyr-Pro-Asn occur in ribonuclease A, and these tripeptides serve as models for the interactions involved in the folding of this protein.  相似文献   

3.
We examine the role of the conformational restriction imposed by constrained ends of a protein loop on the determination of a strained loop conformation. The Lys 116-Pro 117 peptide bond of staphylococcal nuclease A exists in equilibrium between the cis and trans isomers. The folded protein favors the strained cis isomer with an occupancy of 90%. This peptide bond is contained in a solvent-exposed, flexible loop of residues 112-117 whose ends are anchored by Val 111 and Asn 118. Asn 118 is constrained by 2 side-chain hydrogen bonds. We investigate the importance of this constraint by replacing Asn 118 with aspartate, alanine, and glycine. We found that removing 1 or more of the hydrogen bonds observed in Asn 118 stabilizes the trans configuration over the cis configuration. By protonating the Asp 118 side chain of N118D through decreased pH, the hydrogen bonding character of Asp 118 approached that of Asn 118 in nuclease A, and the cis configuration was stabilized relative to the trans configuration. These data suggest that the rigid anchoring of the loop end is important in establishing the strained cis conformation. The segment of residues 112-117 in nuclease A provides a promising model system for study of the basic principles that determine polypeptide conformations. Such studies could be useful in the rational design or redesign of protein molecules.  相似文献   

4.
Kinetic intermediates in protein folding are short-lived and therefore difficult to detect and to characterize. In the folding of polypeptide chains with incorrect isomers of Xaa-Pro peptide bonds the final rate-limiting transition to the native state is slow, since it is coupled to prolyl isomerization. Incorrect prolyl isomers thus act as effective traps for folding intermediates and allow their properties to be studied more easily. We employed this strategy to investigate the mechanism of slow folding of ribonuclease T1. In our experiments we use a mutant form of this protein with a single cis peptide bond at proline 39. During refolding, protein chains with an incorrect trans proline 39 can rapidly form extensive secondary structure. The CD signal in the amide region is regained within the dead-time of stopped-flow mixing (15 ms), indicating a fast formation of the single alpha-helix of ribonuclease T1. This step is correlated with partial formation of a hydrophobic core, because the fluorescence emission maximum of tryptophan 59 is shifted from 349 nm to 325 nm within less than a second. After about 20 s of refolding an intermediate is present that shows about 40% enzymatic activity compared to the completely refolded protein. In addition, the solvent accessibility of tryptophan 59 is drastically reduced in this intermediate and comparable to that of the native state as determined by acrylamide quenching of the tryptophan fluorescence. Activity and quenching measurements have long dead-times and therefore we do not know whether enzymatic activity and solvent accessibility also change in the time range of milliseconds. At this stage of folding at least part of the beta-sheet structure is already present, since it hosts the active site of the enzyme. The trans to cis isomerization of the tyrosine 38-proline 39 peptide bond in the intermediate and consequently the formation of native protein is very slow (tau = 6,500 s at pH 5.0 and 10 degrees C). It is accompanied by an additional increase in tryptophan fluorescence, by the development of the fine structure of the tryptophan emission spectrum, and by the regain of the full enzymatic activity. This indicates that the packing of the hydrophobic core, which involves both tryptophan 59 and proline 39, is optimized in this step. Apparently, refolding polypeptide chains with an incorrect prolyl isomer can very rapidly form partially folded intermediates with native-like properties.  相似文献   

5.
M D Bruch  J Rizo  L M Gierasch 《Biopolymers》1992,32(12):1741-1754
In an effort to explore the influence of interfacial environments on reverse turns, we have performed a detailed analysis by nmr of the solution conformations of two cyclic pentapeptides in sodium dodecyl sulfate (SDS) micelles. The first peptide, cyclo (D-Phe1-Pro2-Gly3-D-Ala4-Pro5), adopts a single rigid conformation in solution (either chloroform or dimethylsulfoxide) and in crystals, whereas the second, cyclo (Gly1-Pro2-D-Phe3-Gly4-Val5), is much more flexible and adopts different conformations in the crystal and in solution. Both of these peptides are solubilized by SDS micelles, and nmr relaxation rates indicate that they are both partially immobilized by interaction with the micelles. Furthermore, some amide protons in both peptides participate in hydrogen bonds with water. In the presence of micelles, the former peptide retains a conformation essentially the same as that found in crystals and in solution, which consists of a beta turn and an inverse gamma turn. However, the micellar environment has a significant effect on the latter peptide. In particular, the population of a conformer containing a cis Gly-Pro peptide bond is increased significantly. The most likely conformation of the cis isomer, determined by a combination of nmr and restrained molecular dynamics, contains a Gly1-Pro2 delta turn and a gamma turn about D-Phe3. The nmr data on the trans isomer indicate that this isomer is averaging between two conformations that differ mainly in the orientation of the D-Phe3-Gly4 peptide bond.  相似文献   

6.
Jois SD  Balasubramaniam A 《Peptides》2003,24(7):1035-1043
Two NPY analogue peptides, BVD10 (Ile-Asn-Pro-Ile-Tyr-Arg-Leu-Arg-Tyr-OMe) and BVD15 (Ile-Asn-Pro-Ile-Tyr-Arg-Leu-Arg-Tyr-NH(2)) were characterized conformationally by NMR, CD and molecular dynamics simulations. The two peptides exhibit different secondary structure characteristics in trifluoroethanol. BVD10 exhibits a structure with two consecutive beta-turns at Asn2-Pro3-Ile4-Tyr5 and Ile4-Tyr5-Arg6-Leu7. BVD15 exhibits a helical type of structure along with a beta-turn at Asn2-Pro3-Ile4-Tyr5. Molecular modeling studies suggested that the C-terminus Tyr9 is oriented in different directions in the two peptides. The difference in the structures of peptides observed may contribute to the Y(1) selectivity of BVD10 relative to BVD15.  相似文献   

7.
Stress and strain in staphylococcal nuclease.   总被引:5,自引:5,他引:0       下载免费PDF全文
Protein molecules generally adopt a tertiary structure in which all backbone and side chain conformations are arranged in local energy minima; however, in several well-refined protein structures examples of locally strained geometries, such as cis peptide bonds, have been observed. Staphylococcal nuclease A contains a single cis peptide bond between residues Lys 116 and Pro 117 within a type VIa beta-turn. Alternative native folded forms of nuclease A have been detected by NMR spectroscopy and attributed to a mixture of cis and trans isomers at the Lys 116-Pro 117 peptide bond. Analyses of nuclease variants K116G and K116A by NMR spectroscopy and X-ray crystallography are reported herein. The structure of K116A is indistinguishable from that of nuclease A, including a cis 116-117 peptide bond (92% populated in solution). The overall fold of K116G is also indistinguishable from nuclease A except in the region of the substitution (residues 112-117), which contains a predominantly trans Gly 116-Pro 117 peptide bond (80% populated in solution). Both Lys and Ala would be prohibited from adopting the backbone conformation of Gly 116 due to steric clashes between the beta-carbon and the surrounding residues. One explanation for these results is that the position of the ends of the residue 112-117 loop only allow trans conformations where the local backbone interactions associated with the phi and psi torsion angles are strained. When the 116-117 peptide bond is cis, less strained backbone conformations are available. Thus the relaxation of the backbone strain intrinsic to the trans conformation compensates for the energetically unfavorable cis X-Pro peptide bond. With the removal of the side chain from residue 116 (K116G), the backbone strain of the trans conformation is reduced to the point that the conformation associated with the cis peptide bond is no longer favorable.  相似文献   

8.
Wedemeyer WJ  Welker E  Scheraga HA 《Biochemistry》2002,41(50):14637-14644
Proline cis-trans isomerization plays a key role in the rate-determining steps of protein folding. The energetic origin of this isomerization process is summarized, and the folding and unfolding of disulfide-intact bovine pancreatic ribonuclease A is used as an example to illustrate the kinetics and structural features of conformational changes from the heterogeneous unfolded state (consisting of cis and trans isomers of X-Pro peptide groups) to the native structure in which only one set of proline isomers is present.  相似文献   

9.
Two-dimensional proton nuclear magnetic resonance spectroscopy at 500 MHz has been carried out on the cyclic decapeptide antagonist of gonadotropin-releasing hormone: cyclo-(delta 3-Pro1-D-pClPhe2-D-Trp3-Ser4-Tyr5-D-Trp6-NMeLeu7-Arg8- Pro9-beta-Ala 10). The antagonist exists in two slowly interconverting conformations. All data are consistent with the conclusion that one form has all-trans peptide bonds and the other has a cis beta-Ala10-delta3-Pro1 bond. With the use of sequential assignment methods, chemical shift assignments were obtained for all backbone and side-chain protons of both conformational isomers except for the serine and tyrosine hydroxyl groups and the C gamma, C delta, and guanidinium group protons of the arginine. Temperature dependence of spectral parameters and magnitudes of observed nuclear Overhauser effects support the interpretation that both conformers of the antagonist consist of two beta-turns (type II', D-Trp6-NMeLeu7; type II, delta 3-Pro1-D-pClPhe2) connected by extended antiparallel beta-like strands.  相似文献   

10.
Proline peptide group isomerization can result in kinetic barriers in protein folding. In particular, the cis proline peptide conformation at Tyr92-Pro93 of bovine pancreatic ribonuclease A (RNase A) has been proposed to be crucial for chain folding initiation. Mutation of this proline-93 to alanine results in an RNase A molecule, P93A, that exhibits unfolding/refolding kinetics consistent with a cis Tyr92-Ala93 peptide group conformation in the folded structure (Dodge RW, Scheraga HA, 1996, Biochemistry 35:1548-1559). Here, we describe the analysis of backbone proton resonance assignments for P93A together with nuclear Overhauser effect data that provide spectroscopic evidence for a type VI beta-bend conformation with a cis Tyr92-Ala93 peptide group in the folded structure. This is in contrast to the reported X-ray crystal structure of [Pro93Gly]-RNase A (Schultz LW, Hargraves SR, Klink TA, Raines RT, 1998, Protein Sci 7:1620-1625), in which Tyr92-Gly93 forms a type-II beta-bend with a trans peptide group conformation. While a glycine residue at position 93 accommodates a type-II bend (with a positive value of phi93), RNase A molecules with either proline or alanine residues at this position appear to require a cis peptide group with a type-VI beta-bend for proper folding. These results support the view that a cis Pro93 conformation is crucial for proper folding of wild-type RNase A.  相似文献   

11.
Although the vast majority of peptide bonds in folded proteins are found in the trans conformation, a small percentage are found in the less energetically favorable cis conformation. Though the mechanism of cis peptide bond formation remains unknown, the role of local aromatics has been emphasized in the literature. This paper presents results from a comprehensive statistical analysis of both the local and nonlocal (i.e., tertiary) environment around cis peptides. In addition to an increased frequency of aromatic residues in the local environment around cis peptides, a number of nonlocal differences in protein secondary and tertiary structure between cis and trans peptides are found: (i) coil regions containing cis peptides are almost twice as long as those without cis peptides and include more Tyr and Pro residues; (ii) cis peptides occur with high frequencies in coil regions near large beta-structures; (iii) there is a nonlocal enrichment of Cys, His, Tyr, and Ser in the tertiary environment surrounding cis peptides when compared to trans peptides; and (iv) on average, cis peptides make fewer medium-range and more long-range contacts than trans peptides do. On the basis of these observations, it is concluded that nonlocal factors play a significant role in cis peptide formation, which has not been fully appreciated previously. An autocatalytic model for cis peptide formation is discussed as are consequences for protein folding.  相似文献   

12.
Meng HY  Thomas KM  Lee AE  Zondlo NJ 《Biopolymers》2006,84(2):192-204
Cis-trans isomerization of amide bonds plays critical roles in protein molecular recognition, protein folding, protein misfolding, and disease. Aromatic-proline sequences are particularly prone to exhibit cis amide bonds. The roles of residues adjacent to a tyrosine-proline residue pair on cis-trans isomerism were examined. A short series of peptides XYPZ was synthesized and cis-trans isomerism was analyzed. Based on these initial studies, a series of peptides XYPN, X = all 20 canonical amino acids, was synthesized and analyzed by NMR for i residue effects on cis-trans isomerization. The following effects were observed: (a) aromatic residues immediately preceding Tyr-Pro disfavor cis amide bonds, with K(trans/cis)= 5.7-8.0, W > Y > F; (b) proline residues preceding Tyr-Pro lead to multiple species, exhibiting cis-trans isomerization of either or both X-Pro amide bonds; and (c) other residues exhibit similar values of K(trans/cis) (= 2.9-4.2), with Thr and protonated His exhibiting the highest fraction cis. beta-Branched and short polar residues were somewhat more favorable in stabilizing the cis conformation. Phosphorylation of serine at the i position modestly increases the stability of the cis conformer. In addition, the effect of the i+3 residue was examined in a limited series of peptides TYPZ. NMR data indicated that aromatic residues, Pro, Asn, Ala, and Val at the i+3 residue all favor cis amide bonds, with aromatic residues and Asn favoring more compact phi at Tyr(cis) and Ala and Pro favoring more extended phi at Tyr(cis). D-Alanine at the i+3 position particularly disfavors cis amide bonds.  相似文献   

13.
Thermally unfolded staphylococcal nuclease has been rapidly quenched to temperatures near 0 degree C and the refolding behavior examined using an NMR kinetic experiment. Unfolded protein, exhibiting random coil chemical shifts, persists following the quench and refolds in two distinct kinetic phases. A protein folding intermediate with a trans Lys 116-Pro 117 peptide bond is transiently overpopulated and relaxes to the predominantly cis native cis-trans equilibrium. The rate of trans-->cis isomerization in the native-like nuclease intermediate is approximately 100-fold faster than that observed in a Lys-Pro model peptide. The activation enthalpy of 20 kcal/mol observed for the nuclease Lys 116-Pro 117 peptide bond is comparable to that observed for other X-Pro isomerizations.  相似文献   

14.
Refolding of b*C40A/C82A/P27A is comprised of several kinetically detectable folding phases. The slowest phase in refolding originates from trans-->cis isomerization of the Tyr47-Pro48 peptide bond being in cis conformation in the native state. This refolding phase can be accelerated by the peptidyl-prolyl cis/trans isomerase human cytosolic cyclophilin (Cyp18) with a kcat/K(M) of 254,000 M(-1) s(-1). The fast refolding phase is not influenced by the enzyme.  相似文献   

15.
The solution conformations of two potent antagonists of bradykinin (Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9), [Aca(-1),DArg0,Hyp3,Thi5,DPhe7,(N-Bzl)Gly8]BK (1) and [Aaa(-1),DArg0,Hyp3,Thi5,(2-DNal)7,Thi8]BK (2), were studied by using 2D NMR spectroscopy in DMSO-d6 and molecular dynamics simulations. The NMR spectra of peptide 1 reveals the existence of at least two isomers arising from isomerization across the DPhe7-(N-Bzl)Gly8 peptide bond. The more populated isomer possesses the cis peptide bond at this position. The ratio of cis/trans isomers amounted to 7:3. With both antagonists, the NMR data indicate a beta-turn structure for the Hyp3-Gly4 residues. In addition, for peptide 2, position 2,3 is likely to be occupied by turn-like structures. The cis peptide bond between DPhe7 and (N-Bzl)Gly8 in analogue 1 suggests type VI beta-turn at position 7,8. The molecular dynamics runs were performed on both peptides in DMSO solution. The results indicate that the structure of peptide 1 is characterized by type VIb beta-turn comprising residues Ser6-Arg9 and the betaI or betaII-turn involving the Pro2-Thi5 fragment, whereas peptide 2 shows the tendency towards the formation of type I beta-turn at position 2,3. The structures of both antagonists are stabilized by a salt bridge between the guanidine moiety of Arg1 and the carboxyl group of Arg9. Moreover, the side chain of DArg0 is apart of the rest of molecule and is not involved in structural elements except for a few calculated structures.  相似文献   

16.
The refolding of ribonuclease T1 is dominated by two major slow kinetic phases that show properties of proline isomerization reactions. We report here that the molecular origin of one of these processes is the trans----cis isomerization of the Ser54-Pro55 peptide bond, which is cis in the native protein but predominantly trans in unfolded ribonuclease T1. This is shown by a comparison of the wild type and a designed mutant protein where Ser54 and Pro55 were replaced by Gly54 and Asn55, respectively. This mutation leaves the thermal stability of the protein almost unchanged; however, in the absence of Pro55 one of the two slow phases in folding is abolished and the kinetic mechanism of refolding is dramatically simplified.  相似文献   

17.
Proline-directed protein phosphorylation was shown to depend on the capacity of the targeted Ser(Thr)-Pro bond to exhibit conformational polymorphism. The cis/trans isomer specificity underlying ERK2-catalyzed phosphate transfer leads to a complete discrimination of the cis Ser(Thr)-Pro conformer of oligopeptide substrates. We investigated in vitro the ERK2-catalyzed phosphorylation of Aspergillus oryzae RNase T1 containing two Ser-Pro bonds both of which share high stabilization energy in their respective native state conformation, the cis Ser54-Pro and the trans Ser72-Pro moiety. Despite trans isomer specificity of ERK2, a doubly phosphorylated RNase T1 was found as the final reaction product. Similarly, the RNase T1 S54G/P55N and RNase T1 P73V variants, which retain the prolyl bond conformations of the RNase T1-wt, were both monophosphorylated with a catalytic efficiency kcat/KM of 425 M(-1) s(-1) and 1228 M(-1) s(-1), respectively. However, initial phosphorylation rates did not depend linearly on the ERK2 concentration. The phosphorylation rate of the resulting plateau region at high ERK2 concentrations can be increased up to threefold for the RNase T1 P73V variant in the presence of the peptidyl-prolyl cis/trans isomerase Cyclophilin 18, indicating a conformational interconversion as the rate limiting step in the catalyzed phosphate group transfer. Using peptidyl-prolyl cis/trans isomerases with different substrate specificity, we identified a native state conformational equilibrium of the Ser54-Pro bond with the minor trans Ser54-Pro bond as the phosphorylation-sensitive moiety. This technique can therefore be used for a determination of the ratio and the interconversion rates of prolyl bond isomers in the native state of proteins.  相似文献   

18.
After protein phosphorylation on certain serine or threonine residues preceding a proline (pSer/Thr-Pro), the function of certain phosphorylated protein is further regulated by cis-trans conformational change. Due to the lack of any tool to detect such two conformations in cells, however, it is not even known whether any cis or trans conformation exists in vivo, not to mention their conformation-specific functions or regulation. We developed a novel peptide chemistry technology to generate the first pair of antibodies that can distinguish cis from trans pThr231-Pro tau. Cis, but not trans, pThr231-tau appears early in mild cognitive impairment (MCI) neurons and further accumulates in only degenerating neurons as Alzheimer disease (AD) progresses, localizing to dystrophic neurites, which are known to correlate well with memory loss. Unlike trans p-tau, the cis cannot promote microtubule assembly, and is more resistant to dephosphorylation and degradation and more prone to aggregation. Pin1 accelerates cis to trans isomerization to prevent tau pathology in AD. Thus, during MCI and AD development, cis pThr231-Pro tau is the earliest detectable pathogenic tau conformation and antibodies and vaccines against the pathogenic cis p-tau may be used for the early diagnosis and treatment of AD. These findings offer in vivo approach to study conformational regulation of Pro-directed phosphorylation signaling.  相似文献   

19.
The C-terminal β-hairpin of RNase A contains a turn with a cis Asn113-Pro114 peptide bond. Pioneering pulsed HX experiments have shown that the C-terminal β-hairpin forms early during refolding. This is puzzling since the Asn113-Pro114 bond is predominately trans at this stage and this conformation destabilizes the native monomer. RNase A, when refolded at high concentration, forms a series of 3D domain-swapped oligomers. In the oligomers formed by C-terminal β-strand swapping, Asn113-Pro114 is trans and permits the formation of a new intersubunit β-sheet. We hypothesize that oligomeric species with trans Asn113-Pro114 may form during refolding. Such species could account for the HX results while comfortably accommodating Asn113-Pro114 in the trans conformation. Here, we test this hypothesis by employing chromatographic methods to detect oligomers forming in refolding conditions and find significant amounts of dimer. We propose that a 3D domain-swapped dimeric intermediate provides a minor alternative pathway for RNase A refolding.  相似文献   

20.
The conformational study on 20 Ac-Xaa-Pro-NHMe dipeptides has been carried out using an empirical potential function ECEPP/3 in order to investigate the factors responsible for the preference of proline puckering of the peptides with the trans or cis imide bond preceding the proline. The general conformational preference for down- and up-puckered dipeptides is calculated as trans-down > trans-up > cis-down > cis-up, which is reasonably in accord with that estimated by analyzing X-ray structures of proteins and the result for the single proline residue. The overestimated occurrence of trans-down conformations of proline seems to be caused by excluding long-range interactions that short dipeptides cannot have. The average computed occurrence of dipeptides with cis imide bonds is about 3%, somewhat lower than the value calculated for Ac-Pro-NHMe, which is close to experimental estimates obtained from X-ray structures of proteins. In particular, the interaction of the aromatic side chain of Xaa residue with the proline ring appears not to be strong enough to stabilize the stacked conformations of small dipeptides with cis imide bonds. The propensity to adopt trans or cis imide bond and to form secondary structures of Xaa-Pro sequences is discussed and compared with results obtained from X-ray structures of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号