首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of assimilation and senescence by the fruit in monocarpic plants   总被引:1,自引:0,他引:1  
Intercellular acidic isoperoxidases (EC 1.11.1.7) isolated from exponentially growing lupin ( Lupinus albus . L. cv. multolupa) hypocotyls are under the control of exogenously applied auxins. Application of auxins leads to a short-term reduction in the level of free intercellular peroxidases, and this effect is associated with a binding of these free peroxidases to the cell walls, probably mediated by an acidification of the cell wall. The ratio of free intercellular peroxidases to the total intercellular peroxidase activity, varies along the axis of exponentially growing hypocotyls. It has a V-shaped distribution with the minimum value in the elongation III-zone, where high levels of auxins have previously been implied in differentiation. This minimum value coincides spatially with the first signs of cell wall thickening in the hypocotyl cells and, paradoxically, it is out of phase with respect to the maximal cell elongation. On the other hand, the ratio of free intercellular peroxidases reaches its maximal values in both the most undiffercntiated phloem cells and the differentiated xylem cells. High levels of free intercellular peroxidase activity in phloem cells are hard to explain, since phloem cell walls remain unlignified during almost all stages of differentiation. However, association of free intercellular peroxidase activity with xylem cells is clearly associated with the lignification of the xylem cell walls. The physiological significance of the binding vs release of intercellular peroxidase is discussed in relation to the catalytic properties and stability at acidic pH of both the bound and free forms of this enzyme.  相似文献   

2.
Chromatographic investigation of a methanolic extract of white lupin roots has revealed the presence of six new dihydrofuranoisoflavones (lupinisoflavones A-F). Three monoprenylated (3,3-dimethylallyl-substituted) isoflavones (wighteone, luteone and licoisoflavone A), two diprenylated isoflavones [6,3′-di(3,3-dimethylallyl)genistein (lupalbigenin) and 6,3′-di(3,3-dimethylallyl)-2′-hydroxygenistein (2′-hydroxylupalbigenin)] and two pyranoisoflavones (parvisoflavone B and licoisoflavone B) have also been isolated from the same source. In addition to genistein, leaf extracts of L. italbus contain 3′-O-methylorobol which is presumed to be the precursor of lupisoflavone [5,7,4′-trihydroxy-3′-methoxy-6-(3,3-dimethylallyl)isoflavone]. Probable biogenetic relationships between the prenylated, and dihydrofurano-and pyrano-substituted isoflavones in roots and leaves of L. albus are briefly discussed.  相似文献   

3.
The distribution of basic soluble isoperoxidases along the growth gradient of lupin hypocotyl was studied in order to establish the role of these isoenzymes in controlling polarly transported indole-3yl-acetic acid (IAA) levels. The observation that the levels of basic isoperoxidases, which diminish from the young (vascular differentiating) to the older (vascular differentiated) tissues, are related with previously reported IAA oxidation rates in decapitated plants, suggests that these isoenzymes can play a role in the oxidation of IAA during polar transport. The fact that the level of basic isoperoxidases is controlled by IAA in hypocotyl sections harvested from different growth zones is in accordance with the previously described adaptative activation of basic isoperoxidases to IAA content. This adaptative activation of basic isoperoxidases might constitute the basic characteristic of a system of subcellular oscillators, coupled at the cellular level, necessary to generate the supracellular auxinwave associated with auxin transport.  相似文献   

4.
The distribution of basic soluble isoperoxidases along the growth gradient of lupin hypocotyl was studied in order to establish the role of these isoenzymes in controlling polarly transported indole-3yl-acetic acid (IAA) levels. The observation that the levels of basic isoperoxidases, which diminish from the young (vascular differentiating) to the older (vascular differentiated) tissues, are related with previously reported IAA oxidation rates in decapitated plants, suggests that these isoenzymes can play a role in the oxidation of IAA during polar transport. The fact that the level of basic isoperoxidases is controlled by IAA in hypocotyl sections harvested from different growth zones is in accordance with the previously described adaptative activation of basic isoperoxidases to IAA content. This adaptative activation of basic isoperoxidases might constitute the basic characteristic of a system of subcellular oscillators, coupled at the cellular level, necessary to generate the supracellular auxinwave associated with auxin transport.  相似文献   

5.
An investigation of the HPLC analytical conditions for simple isoflavones, prenylated isoflavones and some of their glucosyl derivatives resulted in reasonable separation and total elution in 35 min when using a reversed-phase C18 Lichrospher column and a gradient elution system of MeCN-THF-H2O. This method was successfully applied to quantify the changes in isoflavonoid constituents in white lupin (Lupinus albus L.) tissues: (a) young legumes (pods and seeds) during maturation, and (b) soaked, germinating seeds. In developing legumes, genistein and 2'-hydroxygenistein, as well as their prenylated derivatives, were present in the pods as the major components, together with minor amounts of glucosides, whereas only minute amounts of isoflavonoids were detectable in the ripening seeds. When soaked with water, mature lupin seeds which normally contain trace amounts of isoflavonoids, started rapidly to biosynthesize simple isoflavones and accumulate large amounts of genistein 7-O-glucoside and its 6"-O-malonyl derivative. These dynamic changes are discussed in relation to the role of isoflavonoids in the lupin defense system.  相似文献   

6.
Graham TL 《Plant physiology》1991,95(2):594-603
The distribution of flavonoids, isoflavonoids, and their conjugates in developing soybean (Glycine max L.) seedling organs and in root and seed exudates has been examined. Conjugates of the isoflavones daidzein and genistein are major metabolites in all embryonic organs within the dry seed and in seedling roots, hypocotyl, and cotyledon tissues at all times after germination. Primary leaf tissues undergo a programmed shift from isoflavonoid to flavonoid metabolism 3 days after germination and become largely predominated by glycosides of the flavonols kampferol, quercetin, and isorhamnetin by 5 days. Cotyledons contain relatively constant and very high levels of conjugates of both daidzein and genistein. Hypocotyl tissues contain a third unidentified compound, P19.3, also present in multiple conjugated forms. Conjugates of daidzein, genistein, and P19.3 are at their highest levels in the hypocotyl hook and fall off progressively down the hypocotyl. These isoflavones also undergo a programmed and dramatic decrease between 2 and 4 days in the hypocotyl hook. All root sections are predominated by daidzein and its conjugates, particularly in the root tip, where they reach the highest levels in the seedling. Light has a pronounced effect on the distribution of the isoflavones; in the dark, isoflavone levels in the root tips are greatly reduced, while those in the cotyledons are higher. Finally, the conjugates of daidzein and genistein and several unidentified aromatic metabolites are selectively excreted into root and seed exudates. Analysis of seed exudates suggests that this is a continuous, but saturable event.  相似文献   

7.
Phloem sap was collected from white lupin (Lupinus albus L.), cowpea (Vigna unguiculata L.) and castor bean (Ricinus communis L.) and analysed for gibberellins (GAs) using gas chromatography-mass spectrometry (GC-MS). A large number of GAs were found in the phloem exudate of all three species, particularly where the sap was collected from pods (white lupin and cowpea) and in these legumes GAs representing both the early C-13-hydroxylation and non-hydroxylation pathways of biosynthesis were identified. In the sap collected from the vegetative tissues of castor bean the number of GAs identified was fewer than that in the other species, representing mainly the non-hydroxylation pathway. Data from sap collected from the pedicel and stylar ends of pods and by making feeds of radiolabelled GAs to seeds in situ in white lupin indicate that the GAs present in the phloem are derived mainly from the vegetative tissues of the plant. No evidence for metabolism of GAs in the phloem could be found.  相似文献   

8.
The secondary vascular tissues (xylem and phloem) of woody plants originate from a vascular cambium and develop as radially oriented files of cells. The secondary phloem is composed of three or four cell types, which are organised into characteristic recurrent cellular sequences within the radial cell files of this tissue. There is a gradient of auxin (indole acetic acid) across both the cambium and the immediately postmitotic cells within the xylem and phloem domains, and it is believed that this morphogen, probably in concert with other morphogenic factors, is closely associated with the determination and differentiation of the different cells types in each tissue. A hypothesis is developed that, in conjunction with the positional values conferred by the graded radial distribution of morphogen, cell divisions at particular positions within the cambium are sufficient to determine not only each of the phloem cell types but also their recurrent pattern of differentiation within each radial cell file.  相似文献   

9.
Miller , Robert H. (U. Nevada, Reno.) Morphology of Humulus luppulus. II. Secondary growth in the root and seedling vascularization. Amer. Jour. Bot. 46(4): 269–277. Illus. 1959.—In the primary state the roots of Humulus lupulus L. have a diarch xylem plate with 2 strands of primary phloem lying on either side of the primary xylem. Secondary histogenesis is described for the primary root. Fibrous and fleshy storage roots are developed by the hop plant and their respective developmental and anatomical structures are described. Lateral roots are initiated in the pericycle opposite the protoxylem poles. The architecture of these secondary roots is similar to that of the primary root. The seedling develops a fleshy storage organ through secondary growth of the primary root and the hypocotyl. The hypocotyl eventually resembles a fleshy taproot throughout most of its extent. The vascular cambium differentiates large amounts of parenchymatous tissues. A relatively smaller amount of tracheary tissue is formed. The secondary phloem comprises a high percentage of phloem parenchyma and ray cells containing numerous large starch grains, and constitutes the larger portion of the fleshy storage root. Numerous thick-walled lignified fibers occur throughout the secondary vascular tissues. Resin and tannin cells are abundantly distributed. A phellogen is differentiated from the pericycle and develops a persistent periderm on the outer surface of the fleshy storage organ. A relatively short transition region occurs in the upper part of the hypocotyl. The transition takes place from a radially alternate arrangement of the vascular tissues in the root to a collateral arrangement in the cotyledons.  相似文献   

10.
Royo J  Gómez E  Balandín M  Muñiz LM  Hueros G 《Planta》2006,224(6):1303-1314
Single cell sap sampling and analysis were used to measure the longitudinal and radial distribution of sucrose, glucose and fructose in the apical cell division zone and in the basal, elongated zone of the Ricinus hypocotyl. Sucrose and hexose increased in concentration from the apex to the base of the seedling axis. In the cell division zone low hexose and sucrose concentrations prevailed in cortex and pith, with a slightly higher hexose concentration in pith cells. The sucrose concentrations in sieve tubes and in phloem were much higher than in the cortex and pith cells. In the basal zone of the hypocotyl high levels of sucrose in phloem, cortex and pith were found, therefore radial, diffusional sucrose flow away from the phloem was considered unlikely. It is proposed that radial flow of growth-water to the hypocotyl periphery together with the down-regulation of a sucrose transporter at the phloem leads to a preferential sucrose flow to the expanding cortex. The pith cells, which do not experience flow of growth-water, are probably insufficiently supplied with sucrose from the phloem resulting eventually in cell death as the plant grows. Shortage of sucrose supply, experimentally achieved by removal of the endosperm, led to sucrose hydrolysis in the pith. The sucrose levels in the other tissues decreased less. It appears that the hydrolysis to hexose was initiated to maintain the osmotic value in the pith cell sap. It is speculated that high hexose levels in the cells are indicative of insufficient sucrose supply via the phloem and that the pith cells are confronted with that situation during early seedling development.  相似文献   

11.
The transport of assimilates from source to sink tissues is mediated by the phloem. Along the vascular system the phloem changes its physiological function from loading phloem to transport and unloading phloem. Sucrose carrier proteins have been identified in the transport phloem, but it is unclear whether the physiological role of these transporters is phloem unloading of sucrose or retrieval of apoplasmic sucrose back into the sieve element/companion cell complex. Here, we describe the dynamic expression of the Ricinus communis sucrose carrier RcSCR1 in the hypocotyl at different sink strengths. Our results indicate that phloem unloading in castor bean is not catalysed by the phloem loader RcSCR1. However, this sucrose carrier represents the molecular basis of the sucrose retrieval mechanism along the transport phloem, which is dynamically adjusted to the sink strength. As a consequence, we assume that other release carrier(s) exist in sink tissues, such as the hypocotyl, in R. communis.  相似文献   

12.
The transport and metabolism of indole-3-acetic acid (IAA) was studied in etiolated lupin (Lupinus albus L, cv. Multolupa) hypocotyls, following application of dual-isotope-labelled indole-3-acetic acid, [5-3H]IAA plus [1-14C]IAA, to decapitated plants. To study the radial distribution of the transported and metabolized IAA, experiments were carried out with plants in which the stele was separated from the cortex by a glass capillary. After local application of labelled IAA to the cortex, radioactivity remained immobilized in the cortex, near the application point, showing that polar transport cannot occur in the outer tissues. However, following application of IAA to the stele, radioactivity appeared in the cortex in those hypocotyl sections below the first 1 cm (in which the capillary was inserted), and the basipetal IAA movement was similar to that observed after application of IAA to the complete cut surface. In both assays, longitudinal distribution of 14C and 3H in the stele outside the first 1 cm was positively correlated with that of cortex, indicating that there was a lateral migration of IAA from the transport pathway (in the stele) to the outer tissues and that this migration depended on the amount of IAA in the stele. Both tissues (stele and cortex) exhibited intensive IAA metabolism, decarboxylation being higher in the stele than in the cortex while IAA conjugation was the opposite. Decapitation of the seedlings caused a drastic reduction of hypocotyl growth in the 24 h following decapitation, unless the hypocotyls were treated apically with IAA. Thus, exogenous IAA, polarly transported, was able to substitute the endogenous source of auxin (cotyledons plus meristem) to permit hypocotyl growth. It is proposed that IAA escapes from the transporting cells (in the stele) to the outer tissues in order to reach the growth-responsive cells. The IAA metabolism in the outer tissues could generate the IAA gradient necessary for the maintenance of its lateral flow, and consequently the auxin-induced cell elongation.  相似文献   

13.
The aim of this study was to test the hypothesis that newly‐acquired boron (B) undergoes rapid xylem‐to‐phloem transfer in plants with restricted mobility. Analysis of the element accumulation and water usage by shoots of intact broccoli ( Brassica oleracea var. italica Plenck cv. Commander) and lupin ( Lupinus albus L. cv. Ultra) plants provided with a non‐deficient supply of B, revealed that the concentration of various mineral elements (K, P, Mg, Ca, B, Fe, Zn, Mo, Cu, Mn) in xylem sap of intact plants ranged from 0.3 µ M to 3.5 m M , with B being present at 2.9‐3.5 µ M . For each element assayed, the concentration was higher in phloem exudate (1.6 µ M to 91 m M ) than in xylem sap; B was present at about 0.4 m M . Intact broccoli and lupin plants or detached transpiring broccoli shoots were supplied simultaneously with enriched 10B, strontium (a xylem marker) and rubidium (a xylem/phloem marker) during early reproductive growth. The contents of these three compounds were determined in foliage and florets or fruits as a function of time (i.e. up to 12 h and 4 days for broccoli and lupin plants, respectively), and the content in florets or fruits was expressed as a percent of the total recovered. In general, the percent recovery of both 10B and rubidium in florets or fruits was similar and markedly greater than that for strontium, even at the earliest harvest times (within 2 h for broccoli and 1 day for lupin). The data indicate that in plants with restricted B mobility, B is supplied to sink tissues in the phloem, and the extent of B xylem‐to‐phloem transfer is closely determined by current uptake.  相似文献   

14.
Epigeal germination of a dicot, like lupin (Lupinus albus L.), produces a seedling with a characteristic hypocotyl, which grows in darkness showing a steep growth gradient with an elongation zone just below the apex. The role of phytohormones, such as auxin and ethylene, in etiolated hypocotyl growth has been the object of our research for some time. The recent cloning and expression of three genes of influx and efflux carriers for polar auxin transport (LaAUX1, LaPIN1 and LaPIN3) reinforces a previous model proposed to explain the accumulation of auxin in the upper growth zone of the hypocotyl.Key words: auxin carriers, auxin transport gradient, etiolated hypocotyl growth, Lupinus albusMost plants show a typical axial polar and branched (dendritic) morphology to compensate for their immobility by optimally exploiting the resources available in a limited environment.From Julius von Sachs1 to Tsvi Sachs2 many plant physiologists sought to explain how the axis is maintained and what type of signals are interchanged between poles. It was demonstrated that auxins were the determining factors in maintaining the polarity in shoots and roots and a reductionistic approach leads to conclude that such polarity had to be established at the cellular level. A chemiosmotic theory was then proposed, which implied an asymmetric distribution of efflux carriers at the bottom of a cell, linked to pH gradients to maintain different undissociated/dissociated forms of auxin separated between apoplast and symplast spaces.3In recent years, the use of Arabidopsis thaliana as a plant model has given additional support to the hypothesis that polar auxin transport is restricted to certain cells and mediated by influx (AUX1 and LAX1–4 proteins) and efflux carriers (PIN1–8 proteins).46 Currently, we have a good idea of the topology of Arabidopsis carrier distribution, especially in roots.4,5 Additional (MDR/PGP)7 or parallel (TRH1)8 components of the transport system are now emerging.However, while accepting the enormous advances and contributions to plant science provided by the use of Arabidopsis thaliana, we remain true (loyal) to the particular model adopted by the Department of Plant Biology, University of Murcia (Spain) in the 1970''s: the hypocotyl of lupin seedlings cultivated in darkness. In such conditions, the organ grows heterotrophically and longer than in light.The cotyledons and meristem at the top supply nutrients and hormones in a basipetal direction.The hypocotyl is a cylindrical column, with a radial symmetry that clearly shows differentiated tissues: epidermis, cortex, vascular cylinder and pith. Its size allows surgical separation of the tissues using suitable glass capillaries.At the beginning lupin was chosen because it had higher IAA-oxidase activity than pea, bean, oat or barley seedlings. At the time, it was thought that growth was mainly controlled through auxin catabolism (a fruitful line involving peroxidases was developed later). However, the etiolated hypocotyl was soon adopted preferentially by our group because of its qualities as a model for studying the relationship between hormone levels (auxin and ethylene) and growth. Our Portuguese colleagues have also used lupin as a model with successful results.9Bellow, we detail the landmarks of our research to date. Hypocotyl growth shows a characteristic pattern. Unlike plants grown in the light, in which all the cells along the hypocotyl elongate continuously throughout the growth period,10,11 there is a steep growth gradient in the dark with an elongation zone just below the apex12 (see Fig. 1 for details). This cell growth pattern in etiolated hypocotyls was described in lupin and then in Arabidopsis.11 In this pattern, it is important to note that there is compensation along the organ between the cell diameter and the cell wall thickness. Once the cell growth pattern was known, we investigated its relation with the level of two phytohormones, auxin and ethylene, which might participate in the growth regulation. Special attention was paid to the distribution of endogenous IAA and its relation with growth. The results showed good correlation between the auxin levels and the cell size.13,14 Auxin from the apex appears to be responsible for hypocotyl growth, since decapitation of seedlings strongly reduced growth, which was restored after the application of exogenous IAA to the cut surface.15 In light of the fact that growth depended on auxin from the apex, we investigated the nature of the auxin transport and demonstrated that this transport is polarized and sensitive to inhibition by specific inhibitors of polar auxin transport (PAT) such as 2,3,5-triiodobenzoic acid and 1-N-naphthylphtalamic acid (NPA).16,17 Basipetal PAT mainly occurred in the stele,15 while cells in the epidermis and outer cortex are the limiting factor in auxin-induced shoot growth.1820 The finding that during PAT auxin can move laterally from transporting cells in the stele to the outer tissues of the elongation zone15 could explain the apparent conflict between the localization of PAT and the auxin target cells for elongation. In fact, epidermal cells acted as a sink for lateral auxin movement (LAM).17Open in a separate windowFigure 1Distribution of growth and cell size along the hypocotyl in etiolated lupin seedlings. At 3 d, hypocotyls were marked with ink, delimiting four 5-mm long zones including the apical, middle and basal zones. The hypocotyl growth ceased at day 12 and almost no growth was observed in the basal zone after day 3. From 3 to 6 d the growth was localized between the apical and basal zones, while most growth occurring from 6 to 12 d was localized in apical and middle zones. The cell size represents the cell length and cell diameter (the cell wall excluded) and corresponds to the second cell layer of cortex near the vascular cylinder. Similar results were obtained in cells from epidermis and pith. In each zone the cell length increased and the cell diameter showed little change during hypocotyl ageing. The final size at the end of the growth period varied along the hypocotyl, the cells becoming shorter and broader from the apical to the basal zones. In spite of the fact that cell diameter increased basipetally, no significant variation in hypocotyl diameter was found along the organ during the growth period. A morphometric study revealed that cell wall thickness in the apical cells was twice that in the basal cells at the end of the growth period i.e., the thinner apical cells had thicker cell walls, which may help explain the consistency of hypocotyl diameter along the organ.If PAT provides the auxin for growth and elongating growth is restricted to the apical region in etiolated hypocotyls, the question is: how does auxin accumulate in the elongation region?In a former study, we proposed that variations in auxin transport along actively growing lupin hypocotyl could produce such accumulation.21 Recently we extensively studied the variation of PAT along the lupin hypocotyls in seedlings of different ages, finding that certain parameters of PAT, such as transport intensity, polarity (basipetal vs acropetal) and sensitivity to NPA inhibition, showed a good correlation with the distribution of growth along the hypocotyl and its variation with ageing.22 These results suggest that a basipetally decreasing gradient in PAT along the hypocotyl may be responsible for the auxin distribution pattern controlling growth, since the existence of such a PAT gradient might generate the so-called barrier effect, which could produce an auxin gradient along the hypocotyl, the auxin content being higher in the apical elongation zone. To investigate whether these PAT variations can be explained in terms of auxin carrier distribution, we isolated three genes coding for auxin influx (LaAUX1) and efflux (LaPIN1 and LaPIN3) carriers, and studied their expression in different tissues along the hypocotyl at different ages.23 The expression of LaAUX1 and LaPIN3 occurred both in the stele and in the outer tissues, while the expression of LaPIN1 was restricted to the stele and showed a basipetally decreasing gradient along the hypocotyl. The decisive role ascribed to PIN1 in polar auxin transport due to its localization in the basal end of transporting cells,24 and the existence of such a gradient in the expression of LaPIN1 support the hypothesis of a barrier effect (generated by decreasing auxin transport) previously proposed as being responsible for the auxin gradient which controls the growth pattern in etiolated lupin hypocotyls.The acid-growth theory of auxin action was also tested, observing that the elongation growth of etiolated hypocotyl segments of lupin was stimulated by acid pH and IAA. Both factors stimulated growth in a more than additive way, suggesting a synergistic action between them.25 The recent finding of a soluble auxin receptor (intracellular) reinforces the interest of the above study (which has remained a “sleeping beauty”) because pH affects IAA uptake.There are still several questions that must be answered before we can fully understand the growth pattern exhibited by etiolated lupin hypocotyls. Thus, as regards the cause of the PAT gradient, other factors besides the LaPIN1 gradient must be considered. For example, auxin carriers such as some phosphoglycoproteins (PGP), are also expressed differentially along the Arabidopsis hypocotyl and specific PIN-PGP pairings influence PAT by modulating the rates of cellular auxin movement.7 The pathway (symplast or apoplast) and mechanism of LAM remains unknown. Although alternative mechanisms have been proposed,26 a previous study in lupin15 suggested that LAM is a diffusive process and that the IAA metabolism observed in the outer tissues might generate the radial gradient of auxin necessary for the maintenance of its lateral flow. It is thought that this metabolism of IAA occurs once the hormonal action is completed.25,27 Although NPA does not inhibit LAM, the involvement of auxin efflux carriers cannot be discarded. In fact, the role of PIN carriers in lateral auxin transport towards and from the stele has been described in the root.28 Other phytohormones besides auxin can modulate hypocotyl growth. Thus, the ethylene production rate, the 1-aminocyclopropane-1-carboxylic acid (ACC) content and the ACC oxidase activity decreased along the hypocotyl during the hypocotyl growth period.29 Sensitivity to exogenous ethylene varied during growth, the young apical region being less sensitive than the older basal region.30 Ethylene modified the cell growth pattern in the different tissues.31 The ethylene-induced lupin hypocotyl thickening was irreversible and mainly due to an increase in cell diameter. However, the inhibition of hypocotyl elongation produced by ethylene was reversible and involved irreversible inhibition of cell division and, paradoxically, stimulation of cell elongation to produce cells longer than those of the control.32Studies in Arabidopsis showed that the hypocotyl growth in both light- and dark-grown plants is a process driven by cross-talk between multiple hormones. Interactions between auxins, ethylene, gibberellins and brassinosteroids have been described.33,34 We think that the etiolated lupin hypocotyl remains a suitable model for confirming some of these results and for opening up new approaches in phytohormone research.  相似文献   

15.
G. V. Hoad 《Planta》1978,142(3):287-290
Abscisic acid (ABA) was identified by combined gas liquid chromatography-mass spectrometry in sieve-tube exudate collected from the cut stylar ends of white lupin fruit. Water stress caused an increase in ABA levels in leaf, seed and pod tissues and phloem exudate. When compared with levels in extracts of these tissues, the concentration of ABA in sieve-tube sap was very high. It is suggested that ABA is actively transported out of mature leaves in the phloem and this finding is discussed in terms of the ABA balance of the plant.Abbreviations ABA abscisic acid - GLC gas liquid chromatography  相似文献   

16.
The longitudinal distribution of unaltered radioactive indole-3-acetic acid (IAA), after application of [5-3H]-IAA to decapitated etiolated lupin hypocotyls. exhibited a wave-like pattern similar to that obtained with endogenous IAA. Waves of radioactive IAA were localizated both in the elongation zone and in the non-growing basal region of the hypocotyl. These IAA waves were transient because of basipetal polar transport and metabolism of IAA.
The level of endogenous IAA in different zones of the hypocotyl varied with age, following a wave-like pattern. During the elongation period of each zone, IAA was parallel to the bell-shaped curve of the growth rate. In addition, a role in secondary cell wall deposition is suggested for the other IAA wave that appeared after the cell elongation period, since an electron microscopic morphometric analysis of the cell wall showed that the cell wall thickness increased once the cell elongation ceased.
As the oscillation of endogenous IAA level occured in both space (distribution along the hypocotyl) and time (variation with age), it is suggested that the level of IAA really depended on the growth status of the cells. The response of the cells to the positional information submitted by the auxin waves as regards the growth status of the cell is discussed.  相似文献   

17.
Neo HH  Layzell DB 《Plant physiology》1997,113(1):259-267
The aim of the present study was to test the hypothesis that the N content or the composition of the phloem sap that supplies nodulated roots may play a role in the feedback regulation of nitrogenase activity by increasing nodule resistance to O2 diffusion. Treating shoots of lupin (Lupinus albus cv Manitoba) or soybean (Glycine max L. Merr. cv Maple Arrow) with 100 [mu]L L-1 NH3 caused a 1.3-fold (lupin) and 2.6-fold (soybean) increase in the total N content of phloem sap without altering its C content. The increase in phloem N was due primarily to a 4.8-fold (lupin) and 10.5-fold (soybean) increase in the concentration of glutamine N. In addition, there was a decline in both the apparent nitrogenase activity and total nitrogenase activity that began within 4 h and reached about 54% of its initial activity within 6 h of the start of the NH3 treatment. However, the potential nitrogenase activity values in the treated plants were not significantly different from those of the control plants. These results provide evidence that changes in the N composition of the phloem sap, particularly the glutamine content, may increase nodule resistance to O2 diffusion and, thereby, down-regulate nodule metabolism and nitrogenase activity by controlling the supply of O2 to the bacteria-infected cells.  相似文献   

18.
Cell wall hydroxyproline-rich glycoproteins (HRGPs) and glycine-rich proteins (GRPs) were examined at the protein and at the mRNA levels in developing soybean tissues by tissue print immunoblots and RNA blots. In young soybean stems, HRGPs are expressed most heavily in cambium cells, in a few layers of cortex cells surrounding primary phloem, and in some parenchyma cells around the primary xylem, whereas GRPs are highly expressed in the primary xylem and also in the primary phloem. In older soybean stems, HRGP genes are expressed exclusively in cambium cells and GRP genes are most heavily expressed in newly differentiated secondary xylem cells. Similar expression patterns of HRGPs and of GRPs were found in soybean petioles, seedcoats, and young hypocotyls, and also in bean petioles and stems. HRGPs and GRPs become insolubilized in soybean stem cell walls. Three major HRGP mRNAs and two major GRP mRNAs accumulate in soybean stems. Soluble HRGPs are abundant in young hypocotyl apical regions and young root apical regions, whereas in hypocotyl and root mature regions, soluble HRGPs are found only in a few layers of cortex cells surrounding the vascular bundles. GRPs are specifically localized in primary xylem cell walls of young root. These results show that the gene expression of HRGPs and GRPs is developmentally regulated in a tissue-specific manner. In soybean tissues, HRGPs are most heavily expressed in meristematic cells and in some of those cells that may be under stress, whereas GRPs are expressed in all cells that are or are going to be lignified.  相似文献   

19.
The stem of Circaeaster agrestis Maxim. is very short but the length of hypocotyl is comparatively long, almost occupying the whole length of the plant. This tender hypocotyl is mainly supported by the thickening of cuticle on the outer wall of the epidermal cell and the primary xylem in the center. Between primary xylem and primary phloem there are 2–3 layers of parenchymatous cells, regularly or irregularly arranged, but no cambial zone can be recognized. The transition region where root and stem meet showed no evidence of twisting, splitting or inversion of the strands in the primary vascular tissues which are common in most of the dicots. The extending cotyledon traces differentiate directly from the parenchymatous cells which locate on the outside of the poles of primary xylem. The first and the second leaf traces are organized in the middle of the primary phloem.  相似文献   

20.
Novel cDNA clones encoding putative auxin influx and efflux carriers have been isolated and characterized from etiolated lupin (Lupinus albus L) hypocotyls. The full length of LaAUX1 and LaPIN1 and the partial length of LaPIN3 were obtained and the deduced amino acid sequence revealed a high degree of identity with the corresponding auxin carrier proteins from several species. The expression of these genes depended on the tissue, the hypocotyl zone and seedling age. LaAUX1 and LaPIN3 were expressed in stele and outer tissues, while LaPIN1 was restricted to the stele. From the above-mentioned results and taking into account the role proposed for the efflux carrier PIN1, it is suggested that LaPIN1 could mediate the basipetal auxin transport already described in this organ. LaAUX1 might facilitate auxin influx in the transport cells. The expression of the three genes decreased down the hypocotyl. The basipetally decreasing gradient in the expression of LaPIN1 coincides with previous results showing a similar gradient in the intensity and polarity of auxin transport. The decisive role ascribed to PIN1 in polar auxin transport due to its localization in the basal end of transporting cells and the existence of such a gradient in the expression of LaPIN1 support the hypothesis of a barrier effect (generated by decreasing auxin transport) previously proposed by our research group as being responsible for the auxin gradient, which controls the growth pattern in etiolated lupin hypocotyls. José Sánchez-Bravo, Manuel Acosta and Carlos Nicolás contributed equally to the paper. Nucleotide sequence database accession numbers: LaAUX1: AM235387; LaPIN1: AM235388; LaPIN3: AM407405.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号