首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
How do lithium atoms affect the first hyperpolarizability (β0) of boron–nitrogen (BN) edge-doped graphene. In this work, using pentacene as graphene model, Lin@BN-1 edge-doped pentacene and Lin@BN-2 edge-doped pentacene (n?=?1, 5) were designed to study this problem. First, two models (BN-1 edge-doped pentacene, and BN-2 edge-doped pentacene ) were formed by doping the BN into the pentacene with different order, and then Li@BN-1 edge-doped pentacene and Li@ BN-2 edge-doped pentacene were obtained by substituting the H atom in BN edge-doped pentacene with a Li atom. The results show that the first hyperpolarizabilities of BN-1 edge-doped pentacene and Li@BN-1 edge-doped pentacene were 4059 a.u. and 6249 a.u., respectively; the first hyperpolarizabilities of BN-2 edge-doped pentacene and Li@BN-2 edge-doped pentacene were 2491 a.u. and 4265 a.u., respectively. The results indicate that the effect of Li substitution is to greatly increase the β0 value. To further enhance the first hyperpolarizability, Li5@ BN-1 edge-doped pentacene and Li5@BN-2 edge-doped pentacene were designed, and were found to exhibit considerably larger first hyperpolarizabilities (β0) (12,112 a.u. and 7921a.u., respectively). This work may inspire further study of the nonlinear properties of BN edge-doped graphene.  相似文献   

3.
An extracellular β-glucosidase (BGL) from Fusarium oxysporum was purified to homogeneity by a single chromatography step on a gel filtration column. The optimum activity of BGL on cellobiose was observed at pH 5.0 and 60 °C. Under the same conditions, the K m and V max values for p-nitrophenyl β-d-glucopyranoside and cellobiose were 2.53 mM, 268 U?mg protein?1 and 20.3 mM, 193 U?mg protein?1, respectively. The F. oxysporum BGL enzyme was highly stable at acidic pH (t 1/2?=?470 min at pH 3). A commercial BGL Novo188 (Novozymes) and F. oxysporum BGL were compared in their ability to supplement Celluclast 1.5 L (Novozymes). In comparison with the commercial Novo188 (267 mg?g substrate?1), F. oxysporum BGL supplementation released more reducing sugars (330 mg?g substrate?1) from cellulose under simulated gastric conditions. These properties make F. oxysporum BGL a good candidate as a new commercial BGL to improve the nutrient bioavailability of animal feed.  相似文献   

4.
By employing the Ehrenfest "phase space" trajectory method for studying quantum chaos, developed in our laboratory, the present study reveals that the H2 molecule under intense laser fields of three different intensities, I?=?1?×?1014 W/cm2, 5?×?1014 W/cm2, and 1?×?1015 W/cm2, does not show quantum chaos. A similar conclusion is also reached through the Loschmidt echo (also called quantum fidelity) calculations reported here for the first time for a real molecule under intense laser fields. Thus, a long-standing conjecture about the possible existence of quantum chaos in atoms and molecules under intense laser fields has finally been tested and not found to be valid in the present case.  相似文献   

5.
Electro-optical characterization of the photoreceptor disk membrane vesicle is performed by examining the electric field and concentration dependence of the steady-state birefringence of aqueous suspensions of the vesicles. The electric polarizability anisotropy is found to be negative and of large magnitude: α12 = ?(1?3) × 10?10 cm3. The optical anisotropy is determined to be also negative but of small magnitude: g1 ?g2 = ?1 × 10?7. The specific Kerr constant deduced from the concentration dependence of the Kerr constant is found to be very large: Ksp = 7 × 10?4 c.s.u. Upon deforming the vesicles osmotically from the spherical shell to the disk structure, the steady-state birefringence increases by an order of magnitude which is attributed solely to the increase in optical anisotropy attending the corresponding change in the geometric eccentricity of the vesicle. A plausible birefringence mechanism based on the known structural features of the vesicles is proposed, which would account for these findings.  相似文献   

6.
Use of chemical pesticides in agriculture harms humans, non-target organisms and environments, and causes increase resistance against chemicals. In order to develop an effective bio-pesticide against coleopterans, particularly against Agelastica alni (Coleoptera: Chrysomelidae) which is one of the serious pests of alder leaf and hazelnut, we tested the insecticidal effect of 21 Bacillus isolates against the larvae and adults of the pest. Bacillus thuringiensis var. tenebrionis-Xd3 (Btt-Xd3) showed the highest insecticidal effect based on screening tests. For toxin protein production and high sporulation of Xd3, the most suitable medium, pH and temperature conditions were determined as nutrient broth medium enriched with salts, pH 7 and 30?°C, respectively. Sporulated Btt-Xd3 in nutrient broth medium enriched with salts transferred to fermentation medium containing soybean flour, glucose and salts. After fermentation, the mixture was dried in a spray dryer, and spore count of the powder product was determined as 1.6?×?1010 c.f.u. g?1. Moisture content, suspensibility and wettability of the formulation were determined as 8.3, 86% and 21 s, respectively. Lethal concentrations (LC50) of formulated Btt-Xd3 were determined as 0.15?×?105 c.f.u. ml?1 for larvae at laboratory conditions. LC50 values were also determined as 0.45?×?106 c.f.u. ml?1 at the field condition on larval stage. Our results showed that a new bio-pesticide developed from B. thuringiensis tenebrionis (Xd3) (Btt-Xd3) may be valuable as a biological control agent for coleopteran pests.  相似文献   

7.
This study focused on the cloning, expression, and characterization of ginsenoside-transforming recombinant β-glucosidase from Actinosynnema mirum KACC 20028T in order to biotransform ginsenosides efficiently. The gene, termed as bglAm, encoding a β-glucosidase (BglAm) belonging to the glycoside hydrolase family 3 was cloned. bglAm consisted of 1,830 bp (609 amino acid residues) with a predicted molecular mass of 65,277 Da. This enzyme was overexpressed in Escherichia coli BL21(DE3) using a GST-fused pGEX 4T-1 vector system. The recombinant BglAm was purified with a GST·bind agarose resin and characterized. The optimum conditions of the recombinant BglAm were pH 7.0 and 37 °C. BglAm could hydrolyze the outer and inner glucose moieties at the C3 and C20 of the protopanaxadiol-type ginsenosides (i.e., Rb1 and Rd, gypenoside XVII) to produce protopanaxadiol via gypenoside LXXV, F2, and Rh2(S) with various pathways. BglAm can effectively transform the ginsenoside Rb1 to gypenoside XVII and Rd to F2; the K m values of Rb1 and Rd were 0.69?±?0.06 and 0.45?±?0.02 mM, respectively, and the V max values were 16.13?±?0.29 and 51.56?±?1.35 μmol min?1 mg?1 of protein, respectively. Furthermore, BglAm could convert the protopanaxatriol-type ginsenoside Re and Rg1 into Rg2(S) and Rh1(S) hydrolyzing the attached glucose moiety at the C6 and C20 positions, respectively. These various ginsenoside-hydrolyzing pathways of BglAm may assist in producing the minor ginsenosides from abundant major ginsenosides.  相似文献   

8.
In this study, chlorophyll fluorescence parameters (?F/F m′, F v/F m) and oxygen evolution of female vegetative tissues of Porphyra katadai var. hemiphylla in unisexual culture (FV) and in mixed culture with male vegetative tissues (FV-M) were followed at 5–20 °C, 10 and 80 μmol photons m?2 s?1. The formation of reproductive tissues was closely correlated with decreasing photosynthetic activities. At the same temperature the tissues cultured under 80 μmol photons m?2 s?1 showed a greater extent of maturation than those under 10 μmol photons m?2 s?1, and their decrease in photosynthesis was also larger. Under the same light intensity the extent of maturation increased with increasing temperature, and both cultures showed higher values of ?F/F m′ and F v/F m at 10 and 15 °C, while their oxygen evolution became negative at 15–20 °C during the later period. Under the same culture condition the maturation of FV-M culture was relatively faster than that of FV culture, while their photosynthetic activity, especially ?F/F m′, was lower.  相似文献   

9.
Twenty local isolates of entomopathogenic fungi were determined for control of the larvae and adults of Culex quinquefasciatus. In a laboratory experiment, a Penicillium sp. CM-010 caused 100 % mortality of third-instar larvae within 2 h using a conidial suspension of 1 × 106 conidia ml?1. Its LC50 was 3 × 105 conidia ml?1, and the lethal time (LT50) was 1.06 h. Cloning and sequencing of its internal transcribed spacer region indicated that this Penicillium species is Penicillium citrinum (100 % identity in 434 bp). Mortality of the adult was highest with Aspergillus flavus CM-011 followed with Metarhizium anisopliae CKM-048 from 1 × 109 conidia ml?1. P. citrinum CM-010 at 1 × 106 conidia ml?1 killed 100 % larvae within 2 h while Bacillus thuringiensis var. israelensis at 5 ITU ml?1 required 24 h. This P. citrinum CM-010 also greatly reduced survival of C. quinquefasciatus larvae in an unreplicated field test. Light and transmission electron micrographs showed that the fungal conidia were ingested by the larvae and deposited in the gut. The metabolite patulin was produced by P. citrinum CM-010 instead of citrinin.  相似文献   

10.
Epidemiological genetics established that heritability in determining the risk of myocardial infarction (MI) is substantially greater when MI occurs early in life. However, the genetic architecture of early-onset and late-onset MI was not compared. We analyzed genotype frequencies of SNPs in/near 20 genes whose protein products are involved in the pathogenesis of atherosclerosis in two groups of Russian patients with MI: the first group included patients with age of first MI onset <60 years (N?=?230) and the second group with onset ≥60 years (N?=?174). The control group of corresponding ethnicity consisted of 193 unrelated volunteers without cardiovascular diseases (93 individuals were over 60 years). We found that in the group of patients with age of onset <60 years, SNPs FGB rs1800788*T, TGFB1 rs1982073*T/T, ENOS rs2070744*C and CRP rs1130864*T/T were associated with risk of MI, whereas in patients with age of onset ≥60 years, only TGFB1 rs1982073*T/T was associated with risk of MI. Using APSampler software, we found composite markers associated with MI only in patients with early onset: FGB rs1800788*T?+?TGFB1 rs1982073*T; FGB rs1800788*T?+?LPL rs328*C?+?IL4 rs2243250*C; FGB rs1800788*T?+?ENOS rs2070744*C (Fisher p values of 1.4?×?10?6 to 2.2?×?10?5; the permutation p values of 1.1?×?10?5 to 3.0?×?10?4; ORs?=?2.67–2.54). Alleles included in the combinations were associated with MI less significantly and with lower ORs than the combinations themselves. The result showed a substantially greater contribution of the genetic component in the development of MI if it occurs early in life, and demonstrated the usefulness of genetic testing for young people.  相似文献   

11.
Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation, microalgae cultivation still requires more energy than it produces. Furthermore, invading organisms can lower efficiency of algae production. Simple environmental changes might be able to increase algae productivity while minimizing undesired organisms like competitive algae or predatory algae grazers. Microalgae are susceptible to pH changes. In many production systems, pH is kept below 8 by CO2 addition. Here, we uncouple the effects of pH and CO2 input, by using chemical pH buffers and investigate how pH influences Nannochloropsis salina growth and lipid accumulation as well as invading organisms. We used a wide range of pH levels (5, 6, 7, 8, 9, and 10). N. salina showed highest growth rates at pH 8 and 9 (0.19?±?0.008 and 0.19?±?0.011, respectively; mean ± SD). Maximum cell densities in these treatments were reached around 21 days into the experiment (95.6?×?106?±?9?×?106 cells mL?1 for pH 8 and 92.8?×?106?±?24?×?106 cells mL?1 for pH 9). Lipid accumulation of unbuffered controls were 21.8?±?5.8 % fatty acid methyl esters content by mass, and we were unable to trigger additional significant lipid accumulation by manipulating pH levels at the beginning of stationary phase. Ciliates (grazing predators) occurred in significant higher densities at pH 6 (56.9?±?39.6?×?104 organisms mL?1) than higher pH treatments (0.1–6.8?×?104 organisms mL?1). Furthermore, the addition of buffers themselves seemed to negatively impact diatoms (algal competitors). They were more abundant in an unbuffered control (12.7?±?5.1?×?104 organisms mL?1) than any of the pH treatments (3.6–4.7?×?104 organisms mL?1). In general, pH values of 8 to 9 might be most conducive to increasing algae production and minimizing invading organisms. CO2 addition seems more valuable to algae as an inorganic carbon source and not as an essential mechanism to reduce pH.  相似文献   

12.
There has been considerable interest in cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. However, almost all mass cultures of algae are carbon-limited. Therefore, to reach a high biomass and oil productivities, the ideal selected microalgae will most likely need a source of inorganic carbon. Here, growth and lipid productivities of Tetraselmis suecica CS-187 and Chlorella sp were tested under various ranges of pH and different sources of inorganic carbon (untreated flue gas from coal-fired power plant, pure industrial CO2, pH-adjusted using HCl and sodium bicarbonate). Biomass and lipid productivities were highest at pH 7.5 (320?±?29.9 mg biomass L?1 day?1and 92?±?13.1 mg lipid L?1 day?1) and pH 7 (407?±?5.5 mg biomass L?1 day?1 and 99?±?17.2 mg lipid L?1 day?1) for T. suecica CS-187 and Chlorella sp, respectively. In general, biomass and lipid productivities were pH 7.5?>?pH 7?>?pH 8?>?pH 6.5 and pH 7?>?pH 7.5?=?pH 8?>?pH 6.5?>?pH 6?>?pH 5.5 for T. suecica CS-187 and Chlorella sp, respectively. The effect of various inorganic carbon on growth and productivities of T. suecica (regulated at pH?=?7.5) and Chlorella sp (regulated at pH?=?7) grown in bag photobioreactors was also examined outdoor at the International Power Hazelwood, Gippsland, Victoria, Australia. The highest biomass and lipid productivities of T. suecica (51.45?±?2.67 mg biomass L?1 day?1 and 14.8?±?2.46 mg lipid L?1 day?1) and Chlorella sp (60.00?±?2.4 mg biomass L?1 day?1 and 13.70?±?1.35 mg lipid L?1 day?1) were achieved when grown using CO2 as inorganic carbon source. No significant differences were found between CO2 and flue gas biomass and lipid productivities. While grown using CO2 and flue gas, biomass productivities were 10, 13 and 18 %, and 7, 14 and 19 % higher than NaHCO3, HCl and unregulated pH for T. suecica and Chlorella sp, respectively. Addition of inorganic carbon increased specific growth rate and lipid content but reduced biomass yield and cell weight of T. suecica. Addition of inorganic carbon increased yield but did not change specific growth rate, cell weight or content of the cell weight of Chlorella sp. Both strains showed significantly higher maximum quantum yield (Fv/Fm) when grown under optimum pH.  相似文献   

13.
The addition of bicarbonate (NaHCO3; 0, 1, or 2 g L?1) to microalgal cultures has been evaluated for two species (Tetraselmis suecica and Nannochloropsis salina) in respect of growth and biochemical composition. In batch cultures, addition of bicarbonate (1 g L?1) resulted in significantly (P?<?0.05) higher final mean cell abundances for both species. No differences in specific growth rates (SGRs) were recorded for T. suecica between treatments; however, increasing bicarbonate addition decreased SGR values in N. salina cultures. Bicarbonate addition (1 g L?1) significantly improved nitrate utilisation from the external media and photosynthetic efficiency (F v /F m ) in both species. For both T. suecica and N. salina, bicarbonate addition significantly increased the cellular concentrations of total pigments (3,432–3,587 and 19–37 fg cell?1, respectively) compared to cultures with no additional bicarbonate (1,727 and 11 fg cell?1, respectively). Moreover, final concentrations of total cellular fatty acids in T. suecica and N. salina cultures supplemented with 2 g L?1 bicarbonate (7.6?±?1.2 and 1.8?±?0.1 pg cell?1, respectively) were significantly higher than those cells supplemented with 0 or 1 g L?1 bicarbonate (3.2–3.5 and 0.9–1.0 pg cell?1, respectively). In nitrate-deplete cultures, bicarbonate addition caused species-specific differences in the rate of cellular lipid production, rates of change in fatty acid composition and final lipid levels. In summary, the addition of sodium bicarbonate is a viable strategy to increase cellular abundance and concentrations of pigments and lipids in some microalgae as well as the rate of lipid accumulation in nitrate-deplete cultures.  相似文献   

14.
β-Mannanases (EC 3.2.1.78) can catalyze the cleavage of internal β-1,4-d-mannosidic linkages of mannan backbones, and they have found applications in food, feed, pulp and paper, oil, pharmaceutical and textile industries. Suitable amino acid substitution can promote access to the substrate-binding groove and maintain the substrate therein, which probably improves the substrate affinity and, thus, increases catalytic efficiency of the enzyme. In this study, to improve the substrate affinity of AuMan5A, a glycoside hydrolase (GH) family 5 β-mannanase from Aspergillus usamii, had its directed modification conducted by in silico design, and followed by site-directed mutagenesis. The mutant genes, Auman5A Y111F and Auman5A Y115F, were constructed by megaprimer PCR, respectively. Then, Auman5A and its mutant genes were expressed in Pichia pastoris GS115 successfully. The specific activities of purified recombinant β-mannanases (reAuMan5A, reAuMan5AY111F and reAuMan5AY115F) towards locust bean gum were 152.5, 199.6 and 218.9 U mg?1, respectively. The two mutants were found to be similar to reAuMan5A regarding temperature and pH characteristics. Nevertheless, the K m values of reAuMan5AY111F and reAuMan5AY115F, towards guar gum, decreased to 2.95 ± 0.22 and 2.39 ± 0.33 mg ml?1 from 4.49 ± 0.07 mg ml?1 of reAuMan5A, which would make reAuMan5AY111F and reAuMan5AY115F promising candidates for industrial processes. Structural analysis showed that the two mutants increased their affinity by decreasing the steric conflicts with those more complicated substrates. The results suggested that subtle conformational modification in the substrate-binding groove could substantially alter the substrate affinity of AuMan5A. This study laid a solid foundation for the directed modification of substrate affinities of β-mannanases and other enzymes.  相似文献   

15.
The hydrolytic activity of a recombinant β-glycosidase from Dictyoglomus turgidum that specifically hydrolyzed the xylose at the C-6 position and the glucose in protopanaxatriol (PPT)-type ginsenosides followed the order Rf > Rg1 > Re > R1 > Rh1 > R2. The production of aglycone protopanaxatriol (APPT) from ginsenoside Rf was optimal at pH 6.0, 80 °C, 1 mg ml?1 Rf, and 10.6 U ml?1 enzyme. Under these conditions, D. turgidum β-glycosidase converted ginsenoside R1 to APPT with a molar conversion yield of 75.6 % and a productivity of 15 mg l?1 h?1 after 24 h by the transformation pathway of R1 → R2 → Rh1 → APPT, whereas the complete conversion of ginsenosides Rf and Rg1 to APPT was achieved with a productivity of 1,515 mg l?1 h?1 after 6.6 h by the pathways of Rf → Rh1 → APPT and Rg1 → Rh1 → APPT, respectively. In addition, D. turgidum β-glycosidase produced 0.54 mg ml?1 APPT from 2.29 mg ml?1 PPT-type ginsenosides of Panax ginseng root extract after 24 h, with a molar conversion yield of 43.2 % and a productivity of 23 mg l?1 h?1, and 0.62 mg ml?1 APPT from 1.35 mg ml?1 PPT-type ginsenosides of Panax notoginseng root extract after 20 h, with a molar conversion yield of 81.2 % and a productivity of 31 mg l?1 h?1. This is the first report on the APPT production from ginseng root extract. Moreover, the concentrations, yields, and productivities of APPT achieved in the present study are the highest reported to date.  相似文献   

16.
The binding of one fluorine including triazole (C10H9FN4S, FTZ) to bovine serum albumin (BSA) was studied by spectroscopic techniques including fluorescence spectroscopy, UV–Vis absorption, and circular dichroism (CD) spectroscopy under simulative physiological conditions. Fluorescence data revealed that the fluorescence quenching of BSA by FTZ was the result of forming a complex of BSA–FTZ, and the binding constants (K a) at three different temperatures (298, 304, and 310 K) were 1.516?×?104, 1.627?×?104, and 1.711?×?104?mol L?1, respectively, according to the modified Stern–Volmer equation. The thermodynamic parameters ΔH and ΔS were estimated to be 7.752 kJ mol?1 and 125.217 J?mol?1?K?1, respectively, indicating that hydrophobic interaction played a major role in stabilizing the BSA–FTZ complex. It was observed that site I was the main binding site for FTZ to BSA from the competitive experiments. The distance r between donor (BSA) and acceptor (FTZ) was calculated to be 7.42 nm based on the Förster theory of non-radioactive energy transfer. Furthermore, the analysis of fluorescence data and CD data revealed that the conformation of BSA changed upon the interaction with FTZ.  相似文献   

17.
Natural rubber is a valuable source of income in many tropical countries and rubber trees are increasingly planted in tropical areas, where they contribute to land-use changes that impact the global carbon cycle. However, little is known about the carbon balance of these plantations. We studied the soil carbon balance of a 15-year-old rubber plantation in Thailand and we specifically explored the seasonal dynamic of soil CO2 efflux (F S) in relation to seasonal changes in soil water content (W S) and soil temperature (T S), assessed the partitioning of F S between autotrophic (R A) and heterotrophic (R H) sources in a root trenching experiment and estimated the contribution of aboveground and belowground carbon inputs to the soil carbon budget. A multiplicative model combining both T S and W S explained 58 % of the seasonal variation of F S. Annual soil CO2 efflux averaged 1.88 kg C m?2 year?1 between May 2009 and April 2011 and R A and R H accounted for respectively 63 and 37 % of F S, after corrections of F S measured on trenched plots for root decomposition and for difference in soil water content. The 4-year average annual aboveground litterfall was 0.53 kg C m?2 year?1 while a conservative estimate of belowground carbon input into the soil was much lower (0.17 kg C m?2 year?1). Our results highlighted that belowground processes (root and rhizomicrobial respiration and the heterotrophic respiration related to belowground carbon input into the soil) have a larger contribution to soil CO2 efflux (72 %) than aboveground litter decomposition.  相似文献   

18.
Magnetically-modified Sphingomonas sp. was prepared using covalent binding of magnetic nanoparticles on to the cell surface. The magnetic modified bacteria were immobilized in the fixed-bed bioreactors (FBR) by internal and external magnetic fields for the biodetoxification of a model organophosphate, parathion: 93 % of substrate (50 mg parathion/l) was hydrolyzed at 0.5 ml/min in internal magnetic field fixed-bed bioreactor. The deactivation rate constants (at 1 ml/min) were 0.97 × 10?3, 1.24 × 10?3 and 4.17 × 10?3 h?1 for immobilized bacteria in external and internal magnetic field fixed-bed bioreactor and FBR, respectively. The deactivation rate constant for immobilized magnetically modified bacteria in external magnetic field fixed-bed bioreactor (EMFFBR) was 77 % lower than that of immobilized cells by entrapping method on porous basalt beads in FBR at 1 ml/min. Immobilized magnetic modified bacteria exhibited maximum enzyme stability in EMFFBR.  相似文献   

19.
A mathematical model is developed and a numerical analysis is performed for an electric breakdown in a hydrogen-air mixture with a low concentration of H2. It is shown that, at sufficiently low pressures p<10?2 atm, a small molecular-hydrogen additive (η=5×10?5–5×10?3) decreases the reduced field of an electric breakdown in air by a factor of more than 2 because of the appearance of an additional detachment process associated with the chain hydrogen-oxidation reaction. Detailed calculations are performed for the mean number density of negative oxygen ions [O 2 ? ]=103 cm?3 and the hydrogen concentration in air [H2]=0.5, 0.05, and 0.005%. It is found that, for [H2]=0.005%, the breakdown can develop under the action of a geoelectric field of 1.3 V/cm at p?10?4 atm.  相似文献   

20.
The conformation and the interaction of CHF2OCF2CHF2 (desflurane II) with one water molecule is investigated theoretically using the ab initio MP2/aug-cc-pvdz and DFT-based M062X/6-311++G(d,p) methods. The calculations include the optimized geometries, the harmonic frequencies of relevant vibrational modes along with a natural bond orbital (NBO) analysis including the NBO charges, the hybridization of the C atom and the intra- and intermolecular hyperconjugation energies. In the two most stable conformers, the CH bond of the F2HCO- group occupies the gauche position. The hyperconjugation energies are about the same for both conformers and the conformational preference depends on the interaction between the non-bonded F and H atoms. The deprotonation enthalpies of the CH bonds are about the same for both conformers, the proton affinity of the less stable conformer being 3 kcal mol?1 higher. Both conformers of desflurane II interact with water forming cyclic complexes characterized by CH…O and OH…F hydrogen bonds. The binding energies are moderate, ranging from ?2.4 to ?3.2 kcal mol?1 at the MP2 level. The origin of the blue shifts of the ν(CH) vibrations is analyzed. In three of the complexes, the water molecule acts as an electron donor. Interestingly, in these cases a charge transfer is also directed to the non bonded OH group of the water molecule. This effect seems to be a property of polyfluorinated ethers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号