首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We report the results of a theoretical ab initio study of methylation in Watson-Crick A:T base pairs. Equilibrium geometries were obtained without symmetry restrictions by the gradient procedure at DFT level of theory with the standard 6-31G(d) basis set. Each local minima was verified by energy second derivative calculations. Single-point calculations for the DFT geometries have been performed at the MP2/6-31G(d,p), MP2/6-31++G(d,p), and MP2/6-311++G(2d,2p) levels of theory. The geometrical parameters, relative stabilities and counterpoise corrected interaction energies are reported. In addition, using a variation-perturbation energy decomposition scheme, we have found the important contributions to the total interaction energy.  相似文献   

2.
We describe an improved force field parameter set for the generalized AMBER force field (GAFF) for urea. Quantum chemical computations were used to obtain geometrical and energetic parameters of urea dimers and larger oligomers using AM1 semiempirical MO theory, density functional theory at the B3LYP/6-31G(d,p) level, MP2 and CCSD ab initio calculations with the 6-311++G(d,p), aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ basis sets, and with the CBS-QB3 and CBS-APNO complete basis set methods. Seven different urea dimer structures were optimized at the MP2/aug-cc-pVDZ level to obtain accurate interaction energies. Atomic partial charges were calculated at the MP2/aug-cc-pVDZ level with the restrained electrostatic potential (RESP) fitting approach. The interaction energies computed with these new RESP charges in the force field are consistent with those obtained from CCSD and MP2 calculations. The linear dimer structure calculated using the force field with modified geometrical parameters and the new RESP charge set agrees well with available experimental data.  相似文献   

3.
Methylation of DNA occurs most readily at N(3), N(7), and O(6) of purine bases and N(3) and O(2) of pyrimidines. Methylated bases are continuously formed through endogenous and exogenous mechanisms. The results of a theoretical ab initio study on the methylation of G:C base pair components are reported. The geometries of the local minima were optimized without symmetry restrictions by the gradient procedure at DFT level of theory and were verified by energy second derivative calculations. The standard 6-31G(d) basis set was used. The single-point calculations have been performed at the MP2/6-31G(d,p), MP2/6-31++G(d,p), and MP2/6-311++G(2d,2p) levels of theory. The geometrical parameters, relative stability and counterpoise corrected interaction energies are reported. Also, using a variation-perturbation energy decomposition scheme we have found the vital contributions to the total interaction energy.  相似文献   

4.
Ar–CF4 intermolecular interaction potential is studied by ab initio calculations at the MP2 and CCSD(T) levels of theory containing the so-called bond functions ({3s3p2d1f} basis set was chosen) both with and without a correction for the basis-set superposition error. The calculations were performed with Dunning's correlation consistent basis sets (aug-cc-pVXZ, X = D, T, Q, 5) to extrapolate the Ar–CF4 potential energy minimum and intermolecular distance to their complete basis set (CBS) limits. It is shown that the addition of bond functions results in a dramatic improvement in the convergence of the calculated interaction energies at the MP2/aug-cc-pVTZ level. The MP2/{3s3p2d1f}-aug-cc-pVTZ potential energy surface even approaches the CCSD(T)/aug-cc-pVQZ potential energy surface. The potential energy minima and the intermolecular distances are both significantly closer to the CBS limit when using the bond functions, and it implies that adding bond functions in the calculation has a great effect on the interaction energies. We also find that with bond functions included in the CCSD(T)/aug-cc-pVDZ model chemistry, the potential energy minima are extremely close to the CBS limit and are better than the CCSD(T)/aug-cc-pVQZ values. Several levels of theory described in the text were used to determine pairwise analytic potential energy surfaces for Ar+CF4. The analytic potential energy surfaces are in very good agreement with the ab initio values.  相似文献   

5.
Abstract

Methylation of DNA occurs most readily at N(3), N(7), and O(6) of purine bases and N(3) and O(2) of pyrimidines. Methylated bases are continuously formed through endogenous and exogenous mechanisms. The results of a theoretical ab initio study on the methylation of G:C base pair components are reported. The geometries of the local minima were optimized without symmetry restrictions by the gradient procedure at DFT level of theory and were verified by energy second derivative calculations. The standard 6–31G(d) basis set was used. The single-point calculations have been performed at the MP2/6–31G(d,p), MP2/6–31++G(d,p), and MP2/6–311++G(2d,2p) levels of theory. The geometrical parameters, relative stability and counterpoise corrected interaction energies are reported. Also, using a variation-perturbation energy decomposition scheme we have found the vital contributions to the total interaction energy.  相似文献   

6.
A systematic theoretical investigation on the interaction energies of halogen-ionic bridges formed between halide ions and the polar H atoms bonded to N of protein moieties has been carried out by employing a variety of density functional methods. In this procedure, full geometry optimizations are performed at the Møller-Plesset second-order perturbation (MP2) level of theory in conjunction with the Dunning’s augmented correlation-consistent basis set, aug-cc-pVDZ. Subsequently, two distinct basis sets, i.e. 6-311++G(df,pd) and aug-cc-pVTZ, are employed in the following single-point calculations so as to check the stability of the results obtained at the different levels of DFT. The performance of DFT methods has been evaluated by comparing the results with those obtained from the rigorous MP2 theory. It is shown that the B98, B97-1, and M05 give the lowest root-mean-square error (RMSE) for predicting fluoride-binding energies, M05-2X, MPW1B95, and MPW1PW91 have the best performance in reproducing chloride-binding energies, B97-1, PBEKCIS, and PBE1KCIS present the optimal result for bromide-binding energies, while B97-1, MPW1PW91, and TPSS perform most well on iodide-binding energies. The popular B3LYP functional seems to be quite modest for studying halide-protein moiety interactions. In addition, the PBE1KCIS functional provide accuracies close to the computationally expensive MP2 method for the calculation of interaction energies of all halide-binding systems.  相似文献   

7.
The effect of microsolvation on zwitterionic glycine, considering both (-NH3(+)) as proton donor and (-COO(-)) as proton acceptor at correlated ab initio (MP2) level and density functional methods (B3LYP, PW91, MPW1PW91 and PBE) using 6-311++G** basis set has been reported. DFT methods have been employed so as to compare the performance/quality of different gradient-corrected correlation functionals (PW91, PBE), hybrid functionals (B3LYP, MPW1PW91) and to predict the near quantitative structural and vibrational properties, at reduced computational cost. B3LYP method outperforms among the different DFT methods for the computed hydrogen bond distances and found closer to the value obtained by correlated MP2 level, whereas MPW1PW91 and PBE methods shows very similar values but approximately 0.03 A less, compared to B3LYP method. MP2 calculation and single point CCSD(T)//MP2 calculation have been considered to decompose the interaction energy, including corrections for basis set superposition error (BSSE). Moreover, charge distribution analysis has also been carried out to understand the long raised questions, how and why the two body energies have significant contribution to the total binding energy.  相似文献   

8.
The DFT-B3LYP and MP2 methods with 6-311G** and 6-311++G** basis sets have been applied to study the complexation energies of the host-guest complexes between the cone calix[4]arene and Li+ or Na+ on the B3LYP optimized geometries. A comparison of the complexation energies obtained from the MP2(full) with those from MP2(fc) method is also carried out. The result shows that it is essential to introduce the diffuse basis set into the geometry optimizations and complexation energy calculations of the alkali-metal cation-π interaction complexes of calix[4]arene, and the D e values show a maximum of 21.13 kJ mol−1 (14.45% of relative error) between the MP2(full)/6-311++G** and MP2(fc)/6-311++G** method. For Li+ cation, the complexation is mainly energetically stabilized by the lower rim/cation (namely O–Li+) interaction. However, binding energies and NBO analyses confirm that Na+ cation prefers to enter the calix[4]arene cavity and the cation-π interaction is predominant, which contradicts the previous low-level theoretical studies. Furthermore, the complexation with Li+ is preferred over that with Na+ by at least 12.70 kJ mol−1 at MP2(full)/6-311++G**//B3LYP/6-311++G** level.   相似文献   

9.
10.
The structural stability of halocarbonyl azides CXO-NNN (X=F, Cl and Br) was investigated by DFT and MP2 calculations using the 6-311++G** basis set. From the calculations, the molecules were found to have an s-cis<--> s-trans conformational equilibrium with cis being the lower -energy form. Full energy optimizations were carried out for the transition states and the minima at the B3LYP/6 -311++G** and MP2/6 -311++G** levels, from which the rotational barriers were calculated to be of the order 8-10 kcal x mol(-1). The vibrational frequencies were computed at the DFT -B3LYP level and the vibrational assignments for the normal modes of the stable conformers were made on the basis of normal coordinate calculations.  相似文献   

11.
Detailed ab initio molecular orbital calculations on the interactions of molecular hydrogen, H2, with various poly-aromatic hydrocarbons (PAHs) as a model system for graphene were carried out to accurately describe the physisorption phenomenon. The binding energies corrected for the basis set superposition error, ΔEbind(BSSE), were obtained using the optimized geometries at the MP2 level with a large basis set and were compared with the single point binding energies, denoted as ΔEbind(BSSE-s), using large basis sets on the geometries optimized at the small basis sets, such as SVP and TZVP. The calculations showed that the ΔEbind(BSSE-s) values were similar to those at the MP2 level with the large basis sets. The binding strength increased gradually with increasing size of the PAHs. The ΔEbind(BSSE-s) for an infinite graphene sheet was estimated to be ?1.70 kcal mol?1 using the non-linear curve fitting method. The present work could be expected to provide more useful and reliable information on H2 physisorption.
Graphical abstract Detailed ab initio molecular orbital calculations on the interactions of molecular hydrogen with various poly-aromatic hydrocarbons as a model system for graphene indicate that the perpendicular type A is the most favorable and the binding energy on an infinite graphene sheet is estimated to be ?1.70 kcal mol?1.
  相似文献   

12.
High-level ab initio calculations have been performed on urea, methylurea, tetramethylurea and three isomers of dimethylurea to obtain accurate rotational barriers. Results of MP2(fc)/6-31 G(d) calculations are compared to those with lower basis sets and semiempirical calculations. The MM2(87) force field has been parameterized.  相似文献   

13.
A total of 16 pyrrolysine conformers in their zwitterionic forms are studied in gas and simulated aqueous phase using a polarizable continuum model (PCM). These conformers are selected on the basis of our study on the intrinsic conformational properties of non-ionic pyrrolysine molecule in gas phase [Das and Mandal (2013) J Mol Model 19:1695?1704]. In aqueous phase, the stable zwitterionic pyrrolysine conformers are characterized by full geometry optimization and vibrational frequency calculations using B3LYP/6-311++G(d,p) level of theory. Single point calculations are also carried out at MP2/6-311++G(d,p) level. Characteristic intramolecular hydrogen bonds present in each conformer, their relative energies, theoretically predicted vibrational spectra, rotational constants and dipole moments are systematically reported. The calculated relative energy range of the conformers at B3LYP/6-311++G(d,p) level is 5.19 kcal mol?1 whereas the same obtained by single point calculations at MP2/6-311++G(d,p) level is 4.58 kcal mol?1. A thorough analysis reveals that four types of intramolecular H-bonds are present in the conformers; all of which play key roles in determining the energetics and in imparting the observed conformations to the conformers. The vibrational frequencies are found to shift invariably toward the lower side of frequency scale corresponding to the presence of the H-bonds. This study also points out that conformers with diverse structural motifs may differ in their thermodynamical stability by a narrow range of relative energy. The effects of metal coordination on the relative stability order and structural features of the conformers are examined by complexing five zwitterionic conformers of pyrrolysine with Cu+2 through their carboxylate groups. The interaction enthalpies and Gibbs energies, rotational constants, vibrational frequencies and dipole moments of the metal complexes calculated at B3LYP level are also reported. The zwitterionic conformers of pyrrolysine are not stable in gas phase; after geometry optimization they are converted to the non-ionic forms.  相似文献   

14.
The tautomerism of uracil, 5-fluorouracil, and thymine has been investigated in the gas phase and in solution. Electron correlation effects were included in ab initio computations at the MP2 level, and DFT calculations were performed using the B3LYP level. Full geometry optimizations were conducted at the HF/6-31G**, HF/6-31+G**, and B3LYP/6-31+G** levels. Single-point MP2/6-31+G** calculations were performed on the HF/6-31+G** optimized geometries. The influence of the solvent was examined from self-consistent reaction field calculations performed with )=2.21 (1,4-dioxane) and )=78.54 (water). The calculated relative free energies ((G) indicate that substitution of uracil at the position group does not change the relative free energy order of the uracil tautomers in the gas phase and in 1,4-dioxane (except at the MP2 level) whereas this ordering changes in water. Attachment of a fluorine atom changes the relative free energy order of uracil tautomers in the gas phase and in solution.  相似文献   

15.
The energetics of the mechanism of proton transfer from a hydronium ion to one of the water molecules in its first solvation shell are studied using density functional theory and the Møller–Plesset perturbation (MP2) method. The potential energy surface of the proton transfer mechanism is obtained at the B3LYP and MP2 levels with the 6-311++G** basis set. Many-body analysis is applied to the proton transfer mechanism to obtain the change in relaxation energy, two-body, three-body and four-body energies when proton transfer occurs from the hydronium ion to one of the water molecules in its first solvation shell. It is observed that the binding energy (BE) of the complex decreases during the proton transfer process at both levels of theory. During the proton transfer process, the % contribution of the total two-body energy to the binding energy of the complex increases from 62.9 to 68.09% (39.9 to 45.95%), and that of the total three-body increases from 25.9 to 27.09% (24.16 to 26.17%) at the B3LYP/6-311++G** (MP2/ 6-311++G**) level. There is almost no change in the water–water–water three-body interaction energy during the proton transfer process at both levels of theory. The contribution of the relaxation energy and the total four-body energy to the binding energy of the complex is greater at the MP2 level than at the B3LYP level. Significant differences are found between the relaxation energies, the hydronium–water interaction energies and the four-body interaction energies at the B3LYP and MP2 levels.  相似文献   

16.
The barrier and the potential-energy surface of the isomerization from aminoboranylidene (BNH2) to iminoborane (HBNH) have been studied using complete active space self-consistent field (CASSCF) with the 6−31+G(d, p) basis set and higher-level energy methods. The rate constants of the isomerization reaction are reported by employing the direct ab initio dynamics method. The geometries of all the stationary points were optimized using the B3LYP and CCSD methods with the cc-pVTZ and cc-pVQZ basis sets. The information along the intrinsic reaction coordinate (IRC) was also calculated at the CASSCF/6−31+G (d,p) level of theory. The energies were refined at the G3, G3MP2, G3MP2B3, CBS-Q, CBS-QB3, and two high-level (HL) methods based on the geometries optimized using CASSCF/6-31+G(d,p). The rate constants were evaluated using conventional transition-state theory (TST), canonical variational transition-state theory (CVT), and canonical variational transition-state theory with small curvature tunneling correction (CVT/SCT) and conventional transition-state theory with Eckart tunneling correction (TST/Eckart). According to the calculated results, we conclude that the tunneling effect is very important to this isomerization reaction.  相似文献   

17.
The hydrogen bonds formed by the interaction of nitriles with water, hydrogen fluoride, ammonia and hydrogen sulphide have been studied using B3LYP and second-order Møller–Plesset perturbation (MP2) methods and 6-311+ + G(d,p) basis set. The energies and structures of 80 hydrogen-bonded complexes between nitriles and small molecules were examined systematically using B3LYP and MP2 procedure. Categorisation of the hydrogen bonds involved in the various complexes led to an ordering of hydrogen bond donor and acceptor abilities for some functional groups. The interaction energies have been corrected for the basis set superposition error using Boy's counterpoise correction method. The Morokuma energy decomposition analysis reveals that the strong interactions are due to the attractive contributions from the electrostatic (ES), polarisation (PL) and charge transfer (CT) components. The topological parameters, electron density and Laplacian of electron density show excellent correlation with the hydrogen bond length. Natural bond orbital (NBO) analysis has also been performed to study the CT from proton acceptor to the antibonding orbital of the H–Y bond in the proton donor part of complexes. The frequency analysis of C–H…Y bond in the complexes indicates the blue-shifting nature largely in case of sp2 hybridised carbon atom.  相似文献   

18.
High level ab initio studies demonstrate substantial conformational flexibility of amino groups of nucleic acid bases. This flexibility is important for biological functions of DNA. Existing force field models of molecular mechanics do not describe this phenomenon due to a lack of quantitative experimental data necessary for an adjustment of empirical parameters. We have performed extensive calculations of nucleic acid bases at the MP2/6-31G(d,p) level of ab initio theory for broad set of amino group configurations. Two-dimensional maps of energy and geometrical characteristics as functions of two amino hydrogen torsions have been constructed. We approximate the maps by polynomial expressions, which can be used in molecular mechanics calculations. Detailed considerations of these maps enable us to propose a method for determination of numerical coefficients in the developed formulae using restricted sets of points obtained via higher-level calculations.  相似文献   

19.
Hoechst 33258 and its deprotonated forms have been examined in the gas-phase and in solution using quantum mechanical methods. Ab initio calculations at the HF level have been used to investigate the more relevant geometrical trends of such species, while proton affinities and gas-phase basicities were derived from B3LYP and MP2 electronic energies. Solvation energies were calculated using a dielectric continuum model: MST. The Delta(p)K(a) values were estimated by combining the gas-phase basicities and the free energies of solvation. Comparison of these Delta(p)K(a) values with experimentally reported data have been used to highlight the advantages and limitations of this strategy.  相似文献   

20.
We examined the conformational preferences of the 2-O-sulfated-3,6-α-D-anhydrogalactose (compound I) and two 1,3 linked disaccharides constituting-κ or ι-carrageenans using density functional and ab initio methods in gas phase and aqueous solution. Systematic modifications of two torsion angles leading to 324 and 144 starting geometries for the compound I and each disaccharide were used to generate adiabatic maps using B3LYP/6-31G(d). The lower energy conformers were then fully optimized using B3LYP, B3PW91 and MP2 with several basis sets. Overall, we discuss the impact of full relaxation on the energy and structure of the dominant conformations, present the performance comparison with previous molecular mechanics calculations if available, and determine whether our results are impacted, when polarization and diffuse functions are added to the 6-31G(d) basis set, or when the MP2 level of theory is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号