首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, computations of density functional theory (DFT) were carried out to investigate the nature of interactions in solid 2,6-dibromo-4-nitroaniline (DBNA). This system was selected to mimic the hydrogen/halogen bonding found within crystal structures as well as within biological molecules. DFT (M06-2X/6-311++G**) calculations indicated that the binding energies for different of interactions lie in the range between ?1.66 and ?9.77 kcal mol?1. The quantum theory of atoms in molecules (QTAIM) was applied to provide more insight into the nature of these interactions. Symmetry-adapted perturbation theory (SAPT) analysis indicated that stability of the Br···Br halogen bonds is predicted to be attributable mainly to dispersion, while electrostatic forces, which have been widely believed to be responsible for these types of interactions, play a smaller role. Our results indicate that, for those nuclei participating in hydrogen/halogen bonding interactions, nuclear quadrupole resonance parameters exhibit considerable changes on going from the isolated molecule model to crystalline DBNA.
Figure
Electrostatic potential mapped on the surface of 2,6-dibromo-4-nitroaniline (DBNA) molecular electron density (0.001 e au?3). Color ranges for V S(r), in kcal?mol?1: red > 26.5, yellow 26.5–5.7, green 5.7– ?15.1, blue < ?15.1. Black circles Surface maxima, blue surface minima  相似文献   

2.
To improve understanding of the unimolecular decomposition mechanism of 1,2,4-butanetriol trinitrate (BTTN) in the gas phase, density functional theory calculations were performed to determine various decomposition pathways at the B3LYP/6-311G** level. Two main mechanisms for the unimolecular decomposition of BTTN were found. In the first, homolysis of one of the O–NO2 bonds occurs to form ?NO2 and CH2ONO2CHONO2CH2CH2O?, which subsequently decomposes to form CH3CHO + ?CHO + 3NO2 + HCHO. In the second, successive HONO elimination reactions yield three HONO and OHCCH2CHONO2CH2ONO2 fragments, which subsequently decompose to form CH3CHO + 2CO + 3HONO. We also found that the first pathway has a slightly lower activation energy than the second. The results show that the pathway involving O–NO2 cleavage is slightly more energetically favorable than that involving HONO elimination.  相似文献   

3.
Theoretical methods based on density functional theory have been employed to analyze the exchange interactions in an Fe5 complex. The calculated exchange coupling constants are consistent with an S = 15/2 ground state and agree well with those reported previously for other FeIII polynuclear complexes. The strongest antiferromagnetic interactions are those through a double oxo-benzotriazole bridging ligand, where the benzotriazole ligand seems to play a minor role and the exchange coupling constants present values typical of single oxo bridging systems.  相似文献   

4.
Lu Y  Li H  Zhu X  Liu H  Zhu W 《Journal of molecular modeling》2012,18(7):3311-3320
The structures and properties of noncovalent interactions involving three imidazoliophane receptors 1-3 and halide anions have been investigated by means of density functional theory calculations. To account for the influence of the solvent environment, the implicit polarized continuum model was also employed. For the halogenated cyclophane receptors 1 and 2, the halide ions are held by a bidentate array of halogen bonds (C-Br/C-I...X(-)), while multiple hydrogen-bonding interactions (C-H...X(-)) are present in the complexes of the nonhalogenated macrocyclic receptor 3. To accommodate the negatively charged guest anions, the structures of 1 and 2 fully reorganize into a calix-like shape, while both the imidazole and benzene rings in 3 tend to point towards the anions and thus rotate to form a cage-like shape. In both the gas phase and aqueous solution, the binding affinities of the anions for halogen-bonding receptors 1 and 2 become stronger than those for hydrogen-bonding receptor 3. The results reported here should prove to be of great value in the design and synthesis of effective and selective anion receptors based on halogen bonding.  相似文献   

5.
M Nina  B Roux    J C Smith 《Biophysical journal》1995,68(1):25-39
The light-driven proton pump, bacteriorhodopsin (bR) contains a retinal molecule with a Schiff base moiety that can participate in hydrogen-bonding interactions in an internal, water-containing channel. Here we combine quantum chemistry and molecular mechanics techniques to determine the geometries and energetics of retinal Schiff base-water interactions. Ab initio molecular orbital calculations are used to determine potential surfaces for water-Schiff base hydrogen-bonding and to characterize the energetics of rotation of the C-C single bond distal and adjacent to the Schiff base NH group. The ab initio results are combined with semiempirical quantum chemistry calculations to produce a data set used for the parameterization of a molecular mechanics energy function for retinal. Using the molecular mechanics force field the hydrated retinal and associated bR protein environment are energy-minimized and the resulting geometries examined. Two distinct sites are found in which water molecules can have hydrogen-bonding interactions with the Schiff base: one near the NH group of the Schiff base in a polar region directed towards the extracellular side, and the other near a retinal CH group in a relatively nonpolar region, directed towards the cytoplasmic side.  相似文献   

6.
7.
The synthesis of organic polymers containing metal carbonyl moieties is described. The reaction of [Mo(CO)4(bipy)] with poly-4-vinylpyridine proceeds smoothly to give [Mo(CO)3(bipy)(poly-4-vinylpyridine)] which has a fac configuration. The thermal chemistry of a variety of polymer-bound metal carbonyl compounds is also presented, as is evidence for the formation of [W(CO)4(poly-4-vinylpyridinestyrene)] from [W(CO)5(poly-4-vinylpyridinestyrene)]. Included is evidence for the decarbonylation of polymer-bound metal compounds resulting in polymers which contain fully decarbonylated metal centres. Preliminary photochemical investigations indicate the generation of active coordinatively unsaturated metal carbonyl species in polymer matrices at low temperatures.  相似文献   

8.
9.
10.
C5a is an inflammatory mediator that evokes a variety of immune effector functions including chemotaxis, cell activation, spasmogenesis, and immune modulation. It is well established that the effector site in C5a is located in the C-terminal region, although other regions in C5a also contribute to receptor interaction. We have examined the N-terminal region (NTR) of human C5a by replacing selected residues in the NTR with glycine via site-directed mutagenesis. Mutants of rC5a were expressed as fusion proteins, and rC5a was isolated after factor Xa cleavage. The potency of the mutants was evaluated by measuring both neutrophil chemotaxis and degranulation (beta-glucuronidase release). Mutants that contained the single residue substitutions Ile-6-->Gly or Tyr-13-->Gly were reduced in potency to 4-30% compared with wild-type rC5a. Other single-site glycine substitutions at positions Leu-2, Ala-10, Lys-4, Lys-5, Glu-7, Glu-8, and Lys-14 showed little effect on C5a potency. The double mutant, Ile-6-->Gly/Tyr-13-->Gly, was reduced in potency to < 0.2%, which correlated with a correspondingly low binding affinity for neutrophil C5a receptors. Circular dichroism studies revealed a 40% reduction in alpha-helical content for the double mutant, suggesting that the NTR contributes stabilizing interactions that maintain local secondary or tertiary structure of C5a important for receptor interaction. We conclude that the N-terminal region in C5a is involved in receptor binding either through direct interaction with the receptor or by stabilizing a binding site elsewhere in the intact C5a molecule.  相似文献   

11.

S-containing amino acids can lead to two types of local NH···S interactions which bridge backbone NH sites to the side chain to form either intra- or inter-residue H-bonds. The present work reports on the conformational preferences of S-methyl-l-cysteine, Cys(Me), using a variety of investigating tools, ranging from quantum chemistry simulations, gas-phase UV and IR laser spectroscopy, and solution state IR and NMR spectroscopies, on model compounds comprising one or two Cys(Me) residues. We demonstrate that in gas phase and in low polarity solution, the C- and N-capped model compound for one Cys(Me) residue adopts a preferred C5–C6γ conformation which combines an intra-residue N–H···O=C backbone interaction (C5) and an inter-residue N–H···S interaction implicating the side-chain sulfur atom (C6γ). In contrast, the dominant conformation of the C- and N-capped model compound featuring two consecutive Cys(Me) residues is a regular type I β-turn. This structure is incompatible with concomitant C6γ interactions, which are no longer in evidence. Instead, C5γ interactions occur, that are fully consistent with the turn geometry and additionally stabilize the structure. Comparison with the thietane amino acid Attc, which exhibits a rigid cyclic side chain, pinpoints the significance of side chain flexibility for the specific conformational behavior of Cys(Me).

  相似文献   

12.
Ethanol and water are the solvents most commonly used to extract flavonoids from propolis. Do hydrogen-bonding interactions exist between flavonoids and ethanol/water? In this work, this question was addressed by using density functional theory (DFT) to provide information on the hydrogen-bonding interactions between flavonoids and ethanol/water. Chrysin and Galangin were chosen as the representative flavonoids. The investigated complexes included chrysin–H2O, chrysin–CH3CH2OH, galangin–H2O and galangin–CH3CH2OH dyads. Molecular geometries, hydrogen-bond binding energies, charges of monomers and dyads, and topological analysis were studied at the B3LYP/M062X level of theory with the 6?31++G(d,p) basis set. The main conclusions were: (1) nine and ten optimized hydrogen-bond geometries were obtained for chrysin–H2O/CH3CH2OH and galangin–H2O/CH3CH2OH complexes, respectively. (2) The hydrogen atoms except aromatic H1 and H5 and all of the oxygen atoms can form hydrogen-bonds with H2O and CH3CH2OH. Ethanol and water form strong hydrogen-bonds with the hydroxyl, carbonyl and ether groups in chrysin/galangin and form weak hydrogen-bonds with aromatic hydrogen atoms. Except in structures labeled A and B, chrysin and galangin interact more strongly with H2O than CH3CH2OH. (3) When chrysin and galangin form hydrogen-bonds with H2O and CH3CH2OH, charge transfers from the hydrogen-bond acceptor (H2O and CH3CH2OH in structures A, B, G, H, I, J) to the hydrogen-bond donor (chrysin and galangin in structure A, B, G, H, I, J). The stronger hydrogen-bond makes the hydrogen-bond donor lose more charge (A> B> G> H> I> J). (4) Most of the hydrogen-bonds in chrysin/galangin?H2O/CH3CH2OH complexes may be considered as electrostatic dominant, while C?O2···H in structures labeled E and C?O5···H in structures labeled J are hydrogen-bonds combined of electrostatic and covalent characters. H9, H7, and O4 are the preferred hydrogen-bonding sites.  相似文献   

13.
The solution structure of an RNA hairpin modelling the P5 helix of a group I intron, complexed with Co(NH3)63+, has been determined by nuclear magnetic resonance. Co(NH3)63+, which possesses a geometry very close to Mg(H2O)62+, was used to identify and characterize a Mg2+binding site in the RNA. Strong and positive intermolecular nuclear Overhauser effect (NOE) cross-peaks define a specific complex in which the Co(NH3)63+molecule is in the major groove of tandem G.U base-pairs. The structure of the RNA is characterized by a very low twist angle between the two G.U base-pairs, providing a flat and narrowed major groove. The Co(NH3)63+, although highly localized, is free to rotate to hydrogen bond in several ways to the O4 atoms of the uracil bases and to N7 and O6 of the guanine bases. Negative and small NOE cross-peaks to other protons in the sequence reveal a non-specific or delocalized interaction, characterized by a high mobility of the cobalt ion. Mn2+titrations of P5 show specific broadening of protons of the G.U base-pairs that form the metal ion binding site, in agreement with the NOE data from Co(NH3)63+. Binding constants for the interaction of Co(NH3)63+and of Mg2+to P5 were determined by monitoring imino proton chemical shifts during titration of the RNA with the metal ions. Dissociation constants are on the order of 0.1 mM for Co(NH3)63+and 1 mM for Mg2+. Binding studies were done on mutants with sequences corresponding to the three orientations of tandem G.U base-pairs. The affinities of Co(NH3)63+and Mg2+for the tandem G.U base-pairs depend strongly on their sequences; the differences can be understood in terms of the different structures of the corresponding metal ion-RNA complexes. Substitution of G.C or A.U for G.U pairs also affected the binding, as expected. These structural and thermodynamic results provide systematic new information about major groove metal ion binding in RNA.  相似文献   

14.
Ethanol is one of the most commonly used solvents to extract flavonoids from propolis. Hydrogen bonding interactions play an important role in the properties of liquid system. The main objective of the work is to study the hydrogen bonding interactions between flavonoid and ethanol. Luteolin is a very common flavonoid that has been found in different geographical and botanical propolis. In this work, it was selected as the representative flavonoid to do detailed research. The study was performed from a theoretical perspective using density functional theory (DFT) method. After careful optimization, there exist nine optimized geometries for the luteolin ? CH3CH2OH complex. The binding distance of X ? H···O, and the bond length, vibrational frequency, and electron density changes of X ? H all indicate the formation of the hydrogen bond in the optimized geometries. In the optimized geometries, it is found that: (1) except for the H2’, H5’, and H6’, CH3CH2OH has formed hydrogen bonds with all the hydrogen and oxygen atoms in luteolin. The hydrogen atoms in the hydroxyl groups of luteolin form the strongest hydrogen bonds with CH3CH2OH; (2) all of the hydrogen bonds are closed-shell interactions; (3) the strongest hydrogen bond is the O3’ ? H3’···O in structure A, while the weakest one is the C3 ? H3···O in structure E; (4) the hydrogen bonds of O3’ ? H3’···O, O ? H···O4, O ? H···O3’ and O ? H···O7 are medium strength and covalent dominant in nature. While the other hydrogen bonds are weak strength and possess a dominant character of the electrostatic interactions in nature.  相似文献   

15.
16.
Metal ions play key roles in the folding and function for many structured RNAs, including group I introns. We determined the X-ray crystal structure of the Azoarcus bacterial group I intron in complex with its 5' and 3' exons. In addition to 222 nucleotides of RNA, the model includes 18 Mg(2+) and K(+) ions. Five of the metals bind within 12 A of the scissile phosphate and coordinate the majority of the oxygen atoms biochemically implicated in conserved metal-RNA interactions. The metals are buried deep within the structure and form a multiple metal ion core that is critical to group I intron structure and function. Eight metal ions bind in other conserved regions of the intron structure, and the remaining five interact with peripheral structural elements. Each of the 18 metals mediates tertiary interactions, facilitates local bends in the sugar-phosphate backbone or binds in the major groove of helices. The group I intron has a rich history of biochemical efforts aimed to identify RNA-metal ion interactions. The structural data are correlated to the biochemical results to further understand the role of metal ions in group I intron structure and function.  相似文献   

17.
Atomic mutagenesis has emerged as a powerful tool to unravel specific interactions in complex RNA molecules. An early extensive study of analogs of the exogenous guanosine nucleophile in group I intron self-splicing by Bass and Cech demonstrated structure-function relationships analogous to those seen for protein ligands and provided strong evidence for a well-formed substrate binding site made of RNA. Subsequent functional and structural studies have confirmed these interacting sites and extended our understanding of them, with one notable exception. Whereas 7-methyl guanosine did not affect reactivity in the original study, a subsequent study revealed a deleterious effect of the seemingly more conservative 7-deaza substitution. Here we investigate this paradox, studying these and other analogs with the more thoroughly characterized ribozyme derived from the Tetrahymena group I intron. We found that the 7-deaza substitution lowers binding by ~20-fold, relative to the cognate exogenous guanosine nucleophile, whereas binding and reaction with 7-methyl and 8-aza-7-deaza substitutions have no effect. These and additional results suggest that there is no functionally important contact between the N7 atom of the exogenous guanosine and the ribozyme. Rather, they are consistent with indirect effects introduced by the N7 substitution on stacking interactions and/or solvation that are important for binding. The set of analogs used herein should be valuable in deciphering nucleic acid interactions and how they change through reaction cycles for other RNAs and RNA/protein complexes.  相似文献   

18.
A quantum chemistry study was carried out to investigate the strength and nature of halogen bond interactions in HXeH···XCCY complexes, where X = Cl, Br and Y = H, F, Cl, Br, CN, NC, C2H, CH3, OH, SH, NH2. Examination of the electrostatic potentials V(r) of the XCCY molecules reveals that the addition of substituents has a significant effect upon the most positive electrostatic potential on the surface of the interacting halogen atom. We found that the magnitude of atomic charges and multipole moments depends upon the halogen atom X and is rather sensitive to the electron-withdrawing/donating power of the remainder of the molecule. An excellent correlation was found between the most positive electrostatic potentials on the halogen atom and the interaction energies. For either HXeH···ClCCY or HXeH···BrCCY complexes, an approximate linear correlation between the interaction energies and halogens multipole moments are established, indicating that the electrostatic and polarization interactions are responsible for the stability of the complexes. According to energy decomposition analysis, it is revealed that the electrostatic interactions are the major source of the attraction in the HXeH···XCCY complexes. Furthermore, the changes in the electrostatic term are mainly responsible for the dependence of interaction energy on the halogen atom.
Graphical abstract
Electrostatic potential mapped on the surface of molecular electron density at the 0.001 electrons Bohr ?3 of HXeH. The color ranges in kcal mol?1 red >8.5, yellow 1.5 to 8.5, green ?5.5 to 1.5, blue <?5.5. Black and blue circles are referred to surface maxima and minima, respectively.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号