首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, peptide bond cleavages at carboxy- and amino-sides of the aspartic residue in a peptide model via direct (concerted and step-wise) and cyclic intermediate hydrolysis reaction pathways were explored computationally. The energetics, thermodynamic properties, rate constants, and equilibrium constants of all hydrolysis reactions, as well as their energy profiles were computed at the B3LYP/6-311++G(d,p) level of theory. The result indicated that peptide bond cleavage of the Asp residue occurred most preferentially via the cyclic intermediate hydrolysis pathway. In all reaction pathways, cleavage of the peptide bond at the amino-side occurred less preferentially than at the carboxy-side. The overall reaction rate constants of peptide bond cleavage of the Asp residue at the carboxy-side for the assisted system were, in increasing order: concerted < step-wise < cyclic intermediate.  相似文献   

2.
A simple and site-specific nonenzymatic method based on pyrolysis has been developed to cleave peptides and proteins. Pyrolytic cleavage was found to be specific and rapid as it induced a cleavage at the C-terminal side of aspartic acid in the temperature range of 220-250 degrees C in 10 s. Electrospray ionization (ESI) mass spectrometry (MS) and tandem-MS (MS/MS) were used to characterize and identify pyrolysis cleavage products, confirming that sequence information is conserved after the pyrolysis process in both peptides and protein tested. This suggests that pyrolysis-induced cleavage at aspartyl residues can be used as a rapid protein digestion procedure for the generation of sequence-specific protein biomarkers.  相似文献   

3.
Conversion of the carboxylic acid side chain of aspartic acid in the peptide pyroGlu·Asp·Phe·amide to a carboxamidomethylamine side chain (structure l) results in the tryptic hydrolysis of the peptide at the Asp-Phe bond.  相似文献   

4.
Small ubiquitin-like modifier (SUMO)-specific protease SENP1 processes SUMO-1, SUMO-2 and SUMO-3 to mature forms and deconjugates them from modified proteins. To establish the proteolytic mechanism, we determined structures of catalytically inactive SENP1 bound to SUMO-1-modified RanGAP1 and to unprocessed SUMO-1. In each case, the scissile peptide bond is kinked at a right angle to the C-terminal tail of SUMO-1 and has the cis configuration of the amide nitrogens. SENP1 preferentially processes SUMO-1 over SUMO-2, but binding thermodynamics of full-length SUMO-1 and SUMO-2 to SENP1 and K(m) values for processing are very similar. However, k(cat) values differ by 50-fold. Thus, discrimination between unprocessed SUMO-1 and SUMO-2 by SENP1 is based on a catalytic step rather than substrate binding and is likely to reflect differences in the ability of SENP1 to correctly orientate the scissile bonds in SUMO-1 and SUMO-2.  相似文献   

5.
M N James  A R Sielecki 《Biochemistry》1985,24(14):3701-3713
The X-ray crystal structures of native penicillopepsin and of its complex with a synthetic analogue of the inhibitor pepstatin have been refined recently at 1.8-A resolution. These highly refined structures permit a detailed examination of peptide hydrolysis in the aspartic proteinases. Complexes of penicillopepsin with substrate and catalytic intermediates were modeled, by using computer graphics, with minimal perturbation of the observed inhibitor complex. A thallium ion binding experiment shows that the position of solvent molecule O39, between Asp-33(32) and Asp-213(215) in the native structure, is favorable for cations, a fact that places constraints on possible mechanisms. A mechanism for hydrolysis is proposed in which Asp-213(215) acts as an electrophile by protonating the carbonyl oxygen of the substrate, thereby polarizing the carbon-oxygen bond, a water molecule bound to Asp-33(32) (O284 in the native structure) attacks the carbonyl carbon as the nucleophile in a general-base mechanism, the newly pyramidal peptide nitrogen is protonated, either from the solvent after nitrogen inversion or by an internal proton transfer via Asp-213(215) from a hydroxyl of the tetrahedral carbon, and the tetrahedral intermediate breaks down in a manner consistent with the stereoelectronic hypothesis. The models permit the rationalization of observed subsite preferences for substrates and may be useful in predicting subsite preferences of other aspartic proteinases.  相似文献   

6.
7.
Several reports have highlighted the interest of replacing Gly, a frequent amino acid within bioactive peptides, by azaGly (Agly) to improve their stability, activity or for the design of prodrugs. Because metal catalysis is increasingly used for tailoring peptide molecules, we have studied the stability of Agly peptides in the presence of metal ions. In this study, we show that Cu(II), unlike other metal ions such as Fe(II), Fe(III), Pd(II), or Pt(II), induces the cleavage of Agly peptides at room temperature and pH 7.3. The cleavage occurred in the absence of an anchoring His residue within the peptide but it was accelerated when this amino acid was present in the sequence. The influence of His residue on the cleavage rate was minimal when His and Agly were adjacent, whereas large effects were observed for distant His residues. The reaction between Cu(II) and Agly peptides induced the formation of Cu(I) species, which could be detected using bicinchoninic acid as a probe. The nature of products formed in this reaction allowed suggesting a mechanism for the Cu(II)‐induced cleavage of Agly peptides. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Protein splicing elements (inteins), capable of catalyzing controllable peptide bond cleavage reactions, have been used to separate recombinant proteins from affinity tags during affinity purification. Since the inteins eliminate the use of a protease in the recovery process, the intein-mediated purification system has the potential to significantly reduce recovery costs for the industrial production of recombinant proteins. Thus far, the intein system has only been examined and utilized for expression and purification of recombinant proteins at the laboratory scale for cells cultivated at low cell densities. In this study, protein splicing and in vitro cleavage of intein fusion proteins expressed in high-cell-density fed-batch fermentations of recombinant Escherichia coli were examined. Three model intein fusion constructs were used to examine the stability and splicing/cleavage activities of the fusion proteins produced under high-cell-density conditions. The data indicated that the intein fusion protein containing the wild-type intein catalyzed efficient in vivo protein splicing during high-cell-density cultivation. Also, the intein fusion proteins containing modified inteins catalyzed efficient thiol-induced in vitro cleavage reactions. The results of this study demonstrated the potential feasibility of using the intein-mediated protein purification system for industrial-scale production of recombinant proteins.  相似文献   

9.
Cleavage of specific peptide bonds occurs with aging in the alpha A subunit of bovine alpha-crystallin. One of the breaks occurs at residue Asn-101. This same residue undergoes in vivo deamidation, isomerization, and racemization. Deamidation and isomerization are known to occur via succinimide ring formation of labile asparagine residues. Model studies on peptides have shown that imide formation can also lead to peptide bond cleavage (Geiger, T., and Clarke, S. (1987) J. Biol. Chem. 262, 785-794). In that case, both asparagine and aspartic acid amide would be expected as C termini of the truncated polypeptide, and this is indeed the case in the alpha A-(1-101)-chain. This thus represents a first example of nonenzymatic in vivo peptide bond cleavage in an aging protein through the formation of a succinimide intermediate. In addition, we found that in bovine lens no detectable conversion (through the action of protein-carboxyl methyltransferase) of isoaspartyl to normal aspartyl residues occurs in vivo after deamidation of Asn-101.  相似文献   

10.
The amyloid beta peptides (Abeta) are the major components of the senile plaques characteristic of Alzheimer's disease. Abeta peptides are generated from the cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. Beta-secretase (BACE), a type-I transmembrane aspartyl protease, cleaves APP first to generate a 99-amino acid membrane-associated fragment (CT99) containing the N terminus of Abeta peptides. Gamma-secretase, a multi-protein complex, then cleaves within the transmembrane region of CT99 to generate the C termini of Abeta peptides. The production of Abeta peptides is, therefore, dependent on the activities of both BACE and gamma-secretase. The cleavage of APP by BACE is believed to be a prerequisite for gamma-secretase-mediated processing. In the present study, we provide evidence both in vitro and in cells that BACE-mediated cleavage between amino acid residues 34 and 35 (Abeta-34 site) in the Abeta region is dependent on gamma-secretase activity. In vitro, the Abeta-34 site is processed specifically by BACE1 and BACE2, but not by cathepsin D, a closely related aspartyl protease. Moreover, the cleavage of the Abeta-34 site by BACE1 or BACE2 occurred only when Abeta 1- 40 peptide, a gamma-secretase cleavage product, was used as substrate, not the non-cleaved CT99. In cells, overexpression of BACE1 or BACE2 dramatically increased the production of the Abeta 1-34 species. More importantly, the cellular production of Abeta 1-34 species induced by overexpression of BACE1 or BACE2 was blocked by a number of known gamma-secretase inhibitors in a concentration-dependent manner. These gamma-secretase inhibitors had no effect on enzymatic activity of BACE1 or BACE2 in vitro. Our data thus suggest that gamma-secretase cleavage of CT99 is a prerequisite for BACE-mediated processing at Abeta-34 site. Therefore, BACE and gamma-secretase activity can be mutually dependent.  相似文献   

11.
12.
The membrane fusion protein of murine leukemia virus is a trimer of a disulfide-linked peripheral-transmembrane (SU-TM) subunit complex. The intersubunit disulfide bond is in SU linked to a disulfide bond isomerization motif, CXXC, with which the virus controls its fusion reaction (M. Wallin, M. Ekstr?m, and H. Garoff, EMBO J. 23:54-65, 2004). Upon receptor binding the isomerase rearranges the intersubunit disulfide bond into a disulfide bond isomer within the motif. This facilitates SU dissociation and fusion activation in the TM subunit. In the present study we have asked whether furin cleavage of the Env precursor potentiates the isomerase to be triggered. To this end we accumulated the late form of the precursor, gp90, in the cell by incubation in the presence of a furin-inhibiting peptide. The isomerization was done by NP-40 incubation or by a heat pulse under alkylation-free conditions. The cells were lysed in the presence of alkylator, and the precursor was immunoprecipitated, gel isolated, deglycosylated, and subjected to complete trypsin digestion. Disulfide-linked peptide complexes were separated by sodium dodecyl sulfate-tricine-polyacrylamide gel electrophoresis under nonreducing conditions. This assay revealed the size of the characteristic major disulfide-linked peptide complex that differentiates the two isomers of the disulfide bond between Cys336 (or Cys339) and Cys563, i.e., the bond corresponding to the intersubunit disulfide bond. The analyses showed that the isomerase was five- to eightfold more resistant to triggering in the precursor than in the mature, cleaved form. This suggests that the isomerase becomes potentiated for triggering by a structural change in Env that is induced by furin cleavage in the cell.  相似文献   

13.
Urea treatment of the big form of somatostatin obtained from rat pancreas resulted in a conversion into the small form of somatostatin. Further dissociation does not occur with mercaptoethanol. The results indicate that the existence of big somatostatin is dependent upon the formation of a non-covalent bond of the tetradecapeptide with another peptide fragment.  相似文献   

14.
We report here the results on N-acetyl-L-proline-N'-methylamide (Ac-Pro-NHMe) calculated at the HF/6-31+G(d) level with the conductor-like polarizable continuum model (CPCM) of self-consistent reaction field methods to investigate the changes of backbone and prolyl ring along the cis-trans isomerization of the prolyl peptide bond. From the potential energy surface, the barrier to ring flip from the down-puckered conformation to the up-puckered one is estimated to be 2.5 and 3.2 kcal/mol for trans and cis conformers of Ac-Pro-NHMe, respectively. In particular, the ring flip seems to be inaccessible in the intermediate regions between trans and cis conformations, because of higher barriers (approximately 13-19 kcal/mol) to rotation of the prolyl peptide bond. The torsion angles for backbone and prolyl ring vary largely around the transition states at omega' approximately 120 degrees and -70 degrees for the prolyl peptide bond. Three kinds of puckering amplitudes show the same trend of puckering along the cis-trans isomerization although their absolute values are different. In particular, trans and cis conformations have the almost same degree of puckering. The cis populations and barriers to rotation of the prolyl peptide bond for Ac-Pro-NHMe are increased with the increase of solvent polarity, which is mainly ascribed to the decreases of relative free energies for cis conformations and the increase of relative free energies for transition states.  相似文献   

15.
C L Liu  H Hatano 《FEBS letters》1974,42(3):352-354
  相似文献   

16.
Zhang J  Germann MW 《Biopolymers》2011,95(11):755-762
Secondary amide cis peptide bonds are of even lower abundance than the cis tertiary amide bonds of prolines, yet they are of biochemical importance. Using 2D NMR exchange spectroscopy (EXSY) we investigated the formation of cis peptide bonds in several oligopeptides: Ac-G-G-G-NH(2) , Ac-I-G-G-NH(2) , Ac-I-G-G-N-NH(2) and its cyclic form: I-G-G-N in dimethylsulfoxide (DMSO). From the NMR studies, using the amide protons as monitors, an occurrence of 0.13-0.23% of cis bonds was obtained at 296 K. The rate constants for the trans to cis conversion determined from 2D EXSY spectroscopy were 4-9 × 10(-3) s(-1) . Multiple minor conformations were detected for most peptide bonds. From their thermodynamic and kinetic properties the cis isomers are distinguished from minor trans isomers that appear because of an adjacent cis peptide bond. Solvent and sequence effects were investigated utilizing N-methylacetamide (NMA) and various peptides, which revealed a unique enthalpy profile in DMSO. The cyclization of a tetrapeptide resulted in greatly lowered cis populations and slower isomerization rates compared to its linear counterpart, further highlighting the impact of structural constraints.  相似文献   

17.
18.
19.
Energetics of peptide bond formation at elevated temperatures   总被引:1,自引:0,他引:1  
Summary The free energies of formation of the peptide bond between carbobenzoxy-glycine and L-phenylalanine amide in aqueous solution at temperatures up to 60°C were calculated from experimentally determined equilibrium constants. The reaction was catalyzed by a thermophylic enzyme. The thermodynamic energy barrier to peptide bond formation was found to decrease with increasing temperature: the standard free energy of peptide bond formation did appear to become negative in the region of 60°C. The possible significance of these results for peptide bond formation under prebiotic conditions is discussed.  相似文献   

20.
The unfolding-refolding of proteins is a cooperative process and, as judged by equilibrium properties, occurs in one step involving the native,N, and the unfoldedU, conformational states. Kinetic studies have shown that the denatured protein exists as a mixture of slow-(U)Sand fast-(U)Frefolding forms produced by proline peptidecis-trans isomerization. Proline residues inU Fare in the same configuration as in the native protein while they are in non-native configuration inU S. For protein folding to occur quicklyU Smust be converted intoU F. The fact that the equilibrium and kinetic properties of are the same as those found for prolinecis-trans isomerization taken together with the absence of slow phase in the kinetics of refolding of a protein devoid of proline, support this view. However, the absence of a linear correlation between half-time of reactivation of denatured enzymes and their proline-contents, as well as the dissimilarities in the kinetic properties of in unfolding and refolding experiments are not consistent with the model. Conformational energy calculation and experimental results on refolding of proteins suggest that some proline residues are non-essential. They will not block protein folding even in wrong isomeric form. The native-like folded structure with incorrect proline isomers will serve as intermediate state(s) in which these prolines will more readily isomerize to the correct isomeric form. The picture becomes more complex when one considers the consequence ofcis-trans isomerism of non-proline residues on protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号