首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enhancement of the internal quantum efficiency (IQE) of deep-ultraviolet Al x Ga1-x N/Al y Ga1-y N (x < y) quantum wells (QWs) by fabricating one-dimensional Al nanogratings on a QW structure for inducing surface plasmon (SP) coupling is demonstrated. Through temperature-dependent photoluminescence (PL) measurement, the enhancements of IQE in different emission polarizations are illustrated. Due to the small difference in energy band level between the heavy/light hole and split-off valence bands, the IQEs of the transverse electric- (TE-) and transverse magnetic- (TM-) polarized emissions are about the same. When emission polarization is perpendicular to Al-grating ridges, the SP resonance mode for coupling with the QWs is dominated by localized surface plasmon (LSP). When emission polarization is parallel with Al-grating ridges, the coupled SP resonance mode may mix LSP and SP polariton. In this polarization, LSP can be excited because of the width fluctuation of a grating ridge. When the excitation laser polarization is perpendicular to Al-grating ridges, the strong LSP resonance at the excitation laser wavelength leads to stronger excitation and hence higher IQE levels.  相似文献   

2.
The land surface phenology (LSP) start of season (SOS) metric signals the seasonal onset of vegetation activity, including canopy growth and associated increases in land-atmosphere water, energy and carbon (CO2) exchanges influencing weather and climate variability. The vegetation optical depth (VOD) parameter determined from satellite passive microwave remote sensing provides for global LSP monitoring that is sensitive to changes in vegetation canopy water content and biomass, and insensitive to atmosphere and solar illumination constraints. Direct field measures of canopy water content and biomass changes desired for LSP validation are generally lacking due to the prohibitive costs of maintaining regional monitoring networks. Alternatively, a normalized microwave reflectance index (NMRI) derived from GPS base station measurements is sensitive to daily vegetation water content changes and may provide for effective microwave LSP validation. We compared multiyear (2007–2011) NMRI and satellite VOD records at over 300 GPS sites in North America, and their derived SOS metrics for a subset of 24 homogenous land cover sites to investigate VOD and NMRI correspondence, and potential NMRI utility for LSP validation. Significant correlations (P?<?0.05) were found at 276 of 305 sites (90.5 %), with generally favorable correspondence in the resulting SOS metrics (r 2?=?0.73, P?<?0.001, RMSE = 36.8 days). This study is the first attempt to compare satellite microwave LSP metrics to a GPS network derived reflectance index and highlights both the utility and limitations of the NMRI data for LSP validation, including spatial scale discrepancies between local NMRI measurements and relatively coarse satellite VOD retrievals.  相似文献   

3.
In this paper, we propose a new far-field nanofocusing lens with elongated depth of focus (DOF) under near-infrared (NIR) wavelength. The surface plasmons can be excited by using the hybrid metal–insulator–metal (MIM) subwavelength structure under the NIR wavelength. The constructive interference of surface plasmons launched by the subwavelength MIM structure can form a nanoscale focus that is modulated by the novel metal grating from the near field to the far field. The numerical simulations demonstrated that a nanoscale focal spot (in plane focal area 0.177λ 2) with elongated DOF (3.358λ) and long focal length (5.084λ) can be realized with reasonably designing parameters of the lens. By controlling the positions of the inner radii of each slit ring and the grating width, the focal length, focal spot, and DOF can be tuned easily. This design method, which can obtain the nanoscale focal spot and micron DOF in far field under NIR illumination, paved the road for utilizing the NIR plasmonic lens in superresolution optical microscopic imaging, optical trapping, biosensing, and complex wavefront/beam shaper.  相似文献   

4.
We investigate the optical spectrum of a multilayer metallic slab using multiple-scattering formalism. A thin silver film is attached to a periodic array of heterodimers consisting of two vertically spaced silver nanoparticles of different radii. Depending on the radius of nanoparticles, heterodimer array presents a simple nanoscale geometry which gives rise to remarkable plasmonic properties of multipolar resonances. Due to the coherent interference of the localized nanoparticle plasmons (discrete mode) and surface plasmon polaritons of metallic film (continuous mode), the reflection spectrum represents a sharp asymmetric Fano resonance dip, which is strongly sensitive to the refractive index of the surrounding embedded dielectric host. The physical features contribute to a highly efficient plasmonic sensor for refractive index sensing with sensitivity of ~1.5?×?10?3 RIU/nm.  相似文献   

5.
Strong electromagnetic field enhancement that occurs under conditions of the surface plasmon excitation in metallic nanoparticles deposited on a semiconductor surface is a very efficient and promising tool for increasing the optical absorption within semiconductor solar cells and, hence, their photocurrent response. The enhancement of the optical absorption in thin-film silicon solar cells via the excitation of localized surface plasmons in spherical silver nanoparticles is investigated. Using the effective medium model, the effect of the nanoparticle size and the surface coverage on that enhancement is analyzed. The optimum configuration and the nanoparticle parameters leading to the maximum enhancement in the optical absorption and the photocurrent response in a single p-n junction silicon cell are obtained. The effect of coupling between the silicon layer and the surface plasmon fields on the efficiency of the above enhancement is quantified as well.  相似文献   

6.
Exciton-plasmon coupling can significantly modify the spectral response of semiconductor quantum dots in a metal nanoparticle-semiconductor complex system. β-In2S3 quantum dots of size ~3 nm and Ag nanospheres of size ~100 nm were synthesized by chemical route and coated over glass substrates. In the strong coupling regime, the plasmons are shown to mediate indirect Coulomb interaction between the quantum dots. In the proximity of Ag plasmons, the excitonic binding energy of the β-In2S3 quantum dots increases by ~500 meV, indicating that the interaction potential between the quantum dots is positive and repulsive in nature. This interaction also leads to strong coupling of the defect levels in the SQD complex. The defect emission wavelength can be enhanced by an order of 102 or shifted from red region (~650 nm) to green (~550 nm) by controlling the plasmon-induced defect level coupling. The experimental observation demonstrates one of the theoretically predicted consequences of exciton-plasmon interaction. This work demonstrates the possibility of harnessing the potential of the two complimentary systems (semiconductor quantum dots and metal nanoparticles) to achieve controllable emission and absorption properties for fabrication of nano plasmonic devices.  相似文献   

7.
Intrinsic properties of surface plasmons (SPs) excited with Kretschmann configuration were analyzed as a function of wavelength, including the propagation length, the penetration depth, the Goos–Hänchen (GH) shift, and the field enhancement. The calculated results indicate that there exists a critical thickness (t cr) of the gold layer and that the maximum GH shift occurring exactly at the SP resonance wavelength (λ R) rapidly varies from positive to negative with changing of the gold layer thickness from t?<?t cr to t?>?t cr. The maximum field enhancement happens not at λ R but at a wavelength smaller than λ R due to the phase retardation between the transmitted and reflected light. Simulations also reveal that a broadband collimated near-infrared beam can simultaneously excite two SPs with different responses to a refractive index (RI) change: the shorter-wavelength SP able to make a small redshift and the longer-wavelength SP capable of yielding a large blueshift. Only the shorter-wavelength SP was experimentally observed and its RI sensitivity was measured to increase from 3,539 nm/RIU at λ R?=?707.6 nm to 57,143 nm/RIU at λ R?=?1,398 nm. The SP at λ R?=?1,013 nm moved to λ R?=?1,029 nm in response to the saturation adsorption of bovine serum albumin, and the corresponding surface coverage was determined to be Γ?=?1.565 ng/mm2 based on a quasilinear dependence of Γ on the resonance wavelength shift (?λ R) deduced theoretically. Butyrylcholinesterase adsorption from a dilute solution of 10 nM protein in phosphate buffer solution leads to a redshift of ?λ R?=?10 nm, corresponding to Γ?≈?0.97 ng/mm2.  相似文献   

8.
Modeling of nonlinear optical properties of spherical core–shell gold–silver and silver–gold nanoparticles (NPs) placed in water was carried out on the base of extended Mie theory. Efficiency cross sections of absorption σ abs, scattering σ sca, and extinction σ ext of radiation with wavelengths λ?=?400 and 532 nm for core–shell NPs with constant core radii r 00?=?5, 10, 20, and 40 nm and in the range of relative radii r 1/r 00?=?1–8 were calculated (r 1 is the radius of shell). Dependences of optical properties of gold–silver and silver–gold NPs on increasing of core radius r 0 in the range 0???r 1 under condition r 1?=?const and increasing of r 0 under r 1???r 0?=?const were investigated. Results show the nonlinear behavior of optical properties of core–shell gold–silver and silver–gold NPs on radiation wavelengths (optical indexes of metals), different core and shell radii, and their correlation, on relative NP radii r 1/r 00. An increase and decrease of absorption, scattering, and extinction efficiency cross sections of core–shell NPs with changing of wavelengths, core and shell radii, and relative NP radii r 1/r 00 are established. These dependences can be used for experimental investigation of the interesting first stages of shell formation on core and optical determination of core–shell NP parameters.  相似文献   

9.
The total energies, growth patterns, equilibrium geometries, relative stabilities, hardnesses, intramolecular charge transfer, and magnetic moments of HoSi n (n?=?12–20) clusters have been reexamined theoretically using two different density functional schemes in combination with relativistic small-core Stuttgart effective core potentials (ECP28MWB) for the Ho atoms. The results show that when n?=?12–15, the most stable structures are predicted to be exohedral frameworks with a quartet ground state, but when n?=?16–20, they are predicted to be endohedral frameworks with a sextuplet ground state. These trend in stability across the clusters (gauged from their dissociation energies) was found to be approximately the same regardless of the DFT scheme used in the calculations, with HoSi13, HoSi16, HoSi18, and HoSi20 calculated to be more stable than the other clusters. The results obtained for cluster hardness indicated that doping the Ho atom into Si13 and Si16 leads to the most stable HoSi n clusters, while doping Ho into the other Si n clusters increases the photochemical sensitivity of the cluster. Analyses of intracluster charge transfer and magnetic moments revealed that charge always shifts from the Ho atom to the Si n cluster during the creation of exohedral HoSi n (n?=?12–15) structures. However, the direction of charge transfer is reversed during the creation of endohedral HoSi n (n?=?16–20) structures, which implies that Ho acts as an electron acceptor when it is encapsulated in the Si n cage. Furthermore, when the most stable exohedral HoSi n (n?=?12–15) structures are generated, the 4f electrons of Ho are virtually unchanged and barely participate in intracluster bonding. However, in the most stable endohedral HoSi n (n?=?16–20) frameworks, a 4f electron does participate in bonding. It does this by transferring to the 5d orbital, which hybridizes with the 6s and 6p orbitals and then interacts with Si valence sp orbitals. Meanwhile, the total magnetic moments of the HoSi n (n?=?16–20) clusters are considerably higher than those of HoSi n (n?=?12–15). Interestingly, the endohedral HoSi16 and HoSi20 clusters can be viewed as the most suitable building blocks for novel high-density magnetic storage nanomaterials and for novel optical and optoelectronic photosensitive nanomaterials, respectively.  相似文献   

10.
Gold nanoparticles (GNP) have been used in a variety of localized surface plasmon resonance (LSPR)-based optical sensor systems and in a variety of forms, such as colloidal suspensions, immobilized GNP on flat surfaces or optical fibres. A key parameter affecting the sensitivity of these systems is the effective depth of penetration of the surface plasmons. This study aims to determine the plasmon penetration depth in the case of an immobilized GNP-based LSPR optical biosensor. The optical biosensor used for experimentation is a U-bend fibre optic probe of 200-μm core diameter and 1.5-mm bend diameter on which GNP is immobilized. Formation of multilayered nanostructures on the immobilized GNP was used to investigate the field of the localized surface plasmons. Two multilayered nanostructures were explored in this study, viz. a polyelectrolyte multilayer formed by layer-by-layer (LBL) deposition of oppositely charged polyelectrolytes and an immunoglobulin G (IgG) multilayer formed through sequential immobilization of two mutually specific antibodies. Measurement of LSPR absorbance change with deposition of each analyte layer was used to determine the plasmon penetration depth (d P) of the LSPR biosensor. Probing the plasmon field with an IgG multilayer gave rise to at least twofold higher d P compared to d P obtained from the polyelectrolyte multilayer. The effect of GNP size was also studied, and GNP of three diameters, viz. 18, 36 and 45 nm, were used. The 36-nm-diameter GNP exhibited the highest d P. The outcomes of this study may provide leads for optimization of LSPR-based sensors for various biosensing applications.  相似文献   

11.
Two new series of 5-subtituted and 5,6-disubstituted pyrrolo[2,3-d]pyrimidine octamides (4ao and 6ag) and their corresponding free amines 5am and 7ag have been synthesized and biologically evaluated for their antiproliferative activity against three human cancer cell lines. The 5,6-disubstituted octamides 6dg as well as the amine derivative 7b have shown the best anticancer activity with single digit micromolar GI50 values over the tested cancer cells, and low cytotoxic effects (GI50?>?10.0?µM) against HFF-1 normal cell. A structure activity relationship (SAR) study has been established and disclosed that terminal octamide moiety at C2 as well as disubstitution with fluorobenzyl piperazines at C5 and C6 of pyrrolo[2,3-d]pyrimidine are the key structural features prerequisite for best antiproliferative activity. Moreover, the most active member 6f was tested for its antiproliferative activity over a panel of 60 cancer cell lines at NCI, and exhibited distinct broad spectrum anticancer activity with submicromolar GI50 and TGI values over multiple cancer cells. Kinase profile of compound 6f over 53 oncogenic kinases at 10?µM concentration showed its highly selective inhibitory activity towards FGFR4, Tie2 and TrkA kinases. The observed activity of 6f against TrkA (IC50?=?2.25?µM), FGFR4 (IC50?=?6.71?µM) and Tie2 (IC50?=?6.84?µM) was explained by molecular docking study, which also proposed that 6f may be a type III kinase inhibitor, binding to an allosteric site rather than kinase hinge region. Overall, compound 6f may serve as a promising anticancer lead compound that could be further optimized for development of potent anticancer agents.  相似文献   

12.
Dental fluorosis (DF) is one of the important performances of endemic fluorosis. Some studies indicated that estrogen receptor (ESR) gene polymorphisms were associated with bone metabolism-related diseases. Therefore, it is possible that the variation in ESR genotypes will be associated with DF status. A case?Ccontrol study was conducted among children aged 8?C12 years with (n?=?75) or without (n?=?165) DF in China to investigate the relationship between ESR gene polymorphisms and DF. Gene polymorphisms were genotyped using the PCR-RFLP procedure. Children carrying R allele of ER RsaI had significantly increased risk of DF (Odds ratio (OR)?=?1.821; 95% confidence interval (CI), 1.013?C3.274) compared to children carrying r allele of ER RsaI in endemic fluorosis villages. For children with high-loaded fluoride status, carrying X allele of ESR?? XbaI had a significantly decreased risk of DF (OR?=?0.542; 95% CI, 0.314?C0.936) compared to carrying x allele. This study provides the first evidence of an association between polymorphisms in the ESR gene with DF in high-fluoride-exposed populations. Further studies are needed to confirm the association.  相似文献   

13.

Surfaces of metallic films and metallic nanoparticles can strongly confine electromagnetic field through its coupling to propagating or localized surface plasmons. This interaction is associated with large enhancement of the field intensity and local optical density of states which provides means to increase excitation rate, raise quantum yield, and control far field angular distribution of fluorescence light emitted by organic dyes and quantum dots. Such emitters are commonly used as labels in assays for detection of chemical and biological species. Their interaction with surface plasmons allows amplifying fluorescence signal (brightness) that accompanies molecular binding events by several orders of magnitude. In conjunction with interfacial architectures for the specific capture of target analyte on a metallic surface, plasmon-enhanced fluorescence (PEF) that is also referred to as metal-enhanced fluorescence (MEF) represents an attractive method for shortening detection times and increasing sensitivity of various fluorescence-based analytical technologies. This review provides an introduction to fundamentals of PEF, illustrates current developments in design of metallic nanostructures for efficient fluorescence signal amplification that utilizes propagating and localized surface plasmons, and summarizes current implementations to biosensors for detection of trace amounts of biomarkers, toxins, and pathogens that are relevant to medical diagnostics and food control.

  相似文献   

14.
In order to estimate microalgal carbon assimilation or production of Chlorella fusca cultures based on electron transport rate (ETR) as in vivo chlorophyll a fluorescence, it is necessary to determine the photosynthetic yield and the absorbed quanta by measuring the incident irradiance and the fraction of absorbed light, i.e., absorptance or absorption coefficient in the photosynthetic active radiation (PAR) region of the spectra. Due to difficulties associated with the determination of light absorption, ETR is commonly expressed as relative units (rETR) although this is not a good estimator of the photosynthetic production since photobiological responses depend on the absorbed light. The quantitative filter technique (QFT) is commonly used to measure the absorbed quanta of cells retained on a filter (AbQf) as estimator of the absorbed quanta of cell suspensions (AbQs) determined by using integrating spheres. In this study, light attenuation of thin-layer cell suspensions is determined by using a measuring system designed to reduce the scattering. The light attenuation is related to the absorptance as the fraction of absorbed light by both indoor and outdoor C. fusca cultures of different cell densities. A linear relation between AbQf and AbQs (R 2?=?0.9902, p?<?0.01) was observed, AbQf?=?1.98?×?AbQs, being 1.98 an amplification factor to convert AbQs values into AbQf ones. On the other hand, depending on the culture system, the convenience of the use of the absorptance, light absorption or specific light absorption coefficient expressed per area (thin-layer cascade or flat panel cultivators), volume (cylindrical and tubular photobioreactors), or chlorophyll units (any type of cultivation system) is discussed. The procedure for the measurement of light absorption presented in this study for C. fusca could be applied in other phytoplankton groups. The absorbed quanta as determined in this study can be used to express absolute ETR instead of relative ETR, since the first one provides much more relevant photobiological information of microalgae culture systems.  相似文献   

15.
《BBA》1986,848(2):155-166
The optical characteristics and pathway of energy transfer in the C phycocyanin trimer isolated from the thermophilic cyanobacterium Mastigocladus laminosus were investigated at steady state by absorption, circular dichroism, fluorescence and fluorescence polarization spectroscopy. Based on the comparison of optical data with the 3-dimensional structure of the C-phycocyanin trimer determined by X-ray analysis (Schirmer, T., Bode, W., Huber, R., Sidler, W. and Zuber, H. (1984) in Proceedings of the Symposium on Optical Properties and Structure of Tetrapyrroles, (Blauer, G. and Sund, M., eds.), pp. 445–449, Walter de Gruyter, Berlin, and (1985) J. Mol. Biol. 184, 257–277), the functional assignment of three types of chromophore was established. An α subunit has an s chromophore and the chromophores at the positions 84 and 155 in the amino acid sequence of the β subunit are assigned as f and s chromophores, respectively. In the C phycocyanin trimer energy transfer occurs from the α chromophore in one monomer to the βf chromophore in an adjacent monomer, and from the βs chromophore to the βf chromophore in the same monomer. The direction of energy flow is from the outside to the inside of the trimer, where the locus for the binding of a colourless polypeptide is postulated. In the phycobilisomes the energy concentrated at the βf chromophores might be transferred toward the allophycocyanin core mainly by the βf chromophores in the phycocyanin rods.  相似文献   

16.
Inelastic neutron scattering was used to study the effect of 5 and 40?mol% cholesterol on the lateral nanoscale dynamics of phospholipid membranes. By measuring the excitation spectrum at several lateral q || values (up to q ||?=?3 ??1), complete dispersion curves were determined of gel, fluid and liquid-ordered phase bilayers. The inclusion of cholesterol had a distinct effect on the collective dynamics of the bilayer’s hydrocarbon chains; specifically, we observed a pronounced stiffening of the membranes on the nanometer length scale in both gel and fluid bilayers, even though they were experiencing a higher degree of molecular disorder. Also, for the first time we determined the nanoscale dynamics in the high-cholesterol liquid-ordered phase of bilayers containing cholesterol. Namely, this phase appears to be “softer” than fluid bilayers, but better ordered than bilayers in the gel phase.  相似文献   

17.
The most stable structures and electronic properties of TmSi n (n?=?3–10) clusters and their anions have been probed by using the ABCluster global search technique combined with the PBE, TPSSh, and B3LYP density functional methods. The results revealed that the most stable structures of neutral TmSi n and their anions can be regarded as substituting a Si atom of the ground state structure of Si n?+?1 with a Tm atom. The reliable AEAs, VDEs and simulated PES of TmSi n (n?=?3–10) are presented. Calculations of HOMO-LUMO gap revealed that introducing Tm atom to Si cluster can improve photochemical reactivity of the cluster. The NPA analyses indicated that the 4f electron of Tm atom in TmSi n (n?=?3–10) and their anions do not participate in bonding. The total magnetic moments of TmSi n are mainly provided by the 4f electrons of Tm atom. The dissociation energy of Tm atom from the most stable structure of TmSi n and their anions has been calculated to examine relative stability.  相似文献   

18.
A phenylthiophenyl-bearing Ru(II) complex of [Ru(bpy)2(Hbptip)](PF6)2 {bpy?=?2,2′-bipyridine, Hbptip?=?2-(4-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline} was synthesized and characterized by elemental analysis, 1H NMR spectroscopy, and electrospray ionization mass spectrometry. The ground- and excited-state acid–base properties of the complex were studied by UV–visible absorption and photoluminescence spectrophotometric pH titrations and the negative logarithm values of the ground-state acid ionization constants were derived to be pK a1?=?1.31?±?0.09 and pK a2?=?5.71?±?0.11 with the pK a2 associated deprotonation/protonation process occurring over 3 pK a units more acidic than thiophenyl-free parent complex of [Ru(bpy)2(Hpip)]2+ {Hpip?=?2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline}. The calf thymus DNA-binding properties of [Ru(bpy)2(Hbptip)]2+ in Tris–HCl buffer (pH 7.1 and 50?mM NaCl) were investigated by DNA viscosities and density functional theoretical calculations as well as UV–visible and emission spectroscopy techniques of UV–visible and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4?, DNA competitive binding with ethidium bromide, DNA melting experiments, and reverse salt effects. The complex was evidenced to bind to the DNA intercalatively with binding affinity being greater than those for previously reported analogs of [Ru(bpy)2(Hip)]2+, [Ru(bpy)2(Htip)]2+, and [Ru(bpy)2(Haptip)]2+ {Hip?=?1H-imidazo[4,5-f][1,10]phenanthroline, Htip?=?2-thiophenimidazo[4,5-f][1,10]phenanthroline, Haptip?=?2-(5-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline}.  相似文献   

19.
A series of 5-substitutedbenzylideneamino-2-butylbenzofuran-3-yl-4-methoxyphenyl methanones is synthesized and evaluated for antileishmanial and antioxidant activities. Compounds 4f (IC50?=?52.0?±?0.09?µg/ml), 4h (IC50?=?56.0?±?0.71?µg/ml) and 4l (IC50?=?59.3?±?0.55?µg/ml) were shown significant antileishmanial when compared with standard sodium stibogluconate (IC50?=?490.0?±?1.5?µg/ml). Antioxidant study revealed that compounds 4i (IC50?=?2.44?±?0.47?µg/ml) and 4l (IC50?=?3.69?±?0.44?µg/ml) have shown potent comparable activity when compared with standard ascorbic acid (IC50?=?3.31?±?0.34?µg/ml). Molecular docking study was carried out which replicating results of biological activity in case of initial hits 4f and 4h suggesting that these compounds have a potential to become lead molecules in drug discovery process. In silico ADME study was performed for predicting pharmacokinetic profile of the synthesised antileishmanial agents and expressed good oral drug like behaviour.  相似文献   

20.
We theoretically investigate the coupling between Tamm plasmons and localized surface plasmons (LSPs) as well as propagating surface plasmons (PSPs) in a multilayer structure consisting of a metallic nanowire array and a spatially separated metal–dielectric Bragg reflector (DBR). A clear anticrossing behavior of the resonances is observed in the dispersion diagram resulting from the coupling, which is well explained by the coupled oscillator model. The coupling also creates new hybrid LSP or PSP modes with narrow bandwidths and unique spectral features. Upon the excitation of these hybrid modes, the local fields underneath the nanowires for the hybrid LSPs or near the lower metal layer surface for the hybrid PSPs are both enhanced greatly as compared with those achieved in the structure without DBR, which has potential applications in nonlinear optics and surface-enhanced spectroscopies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号