首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spermine-nucleic acid interactions: a theoretical study   总被引:7,自引:0,他引:7  
The interaction of spermine with nucleic acids is simulated theoretically using refined semi-empirical energy formulae and an advanced minimization procedure. Various nucleic acids are considered: model homopolymeric DNA's, a dodecamer (CGCGAATTCGCG) of type B-DNA, as well as a transfer RNA, tRNAPhe. The dominant role of electrostatic potential in determining the preferential binding sites of spermine is demonstrated in each of these cases and the role of counterions, nucleic acid structure, and base-pair sequence is analyzed.  相似文献   

2.
The Crick wobble hypothesis attributes the phenomenon of codon degeneracy to a certain impreciseness of pairing between the third base of the codon and the first base of the anticodon. This theoretical study investigates the pairing properties of some wobble bases, including both, observed and unobserved pairs. Some wobble base-pairs are predicted to follow the Watson-Crick pairs in configuration and pairing facility, while others deviate from this norm. The observed U:V pair is unique in that a pairing configuration may be suggested for it wherein the hydrogen-bonding involves the exocyclic 5-carboxymethoxy group of V. By comparing the theoretical data on the configurations of these pairs with the evidence for their existence/non-existence in nature, some guidelines emerge for differentiating between observed and unobserved base pairs on the basis of the pairing configuration.  相似文献   

3.
Many recent reviews discuss the adequacy of definitions and metrics for the strength of population interactions. However, the discussion on the beneficial or detrimental nature of interactions is clearly absent, or at the most, inadvertently merged into the strength debate. This deficiency is emerging with the increasing interest in theoretical studies of interactions that shift in their nature; e.g. associations that present a mixture of mutualistic and antagonistic aspects, such as pollination; or species with changes in role, such as mutualistic ants that predate on aphid partners. By exploring these models, major controversies are revealed underlying some traditional perspectives: the original Levins’ community matrix reformulated into interaction and jacobian matrices, that is, interaction coefficients reinterpreted as partial derivatives, fail to recognize the ecological context of interactions. The ‘effect of one species on the other’ is not necessarily quantified by ‘the effect of varying species densities’; and shifts in the signs of jacobian elements do not correspond to shifts in types of interaction but to stability properties. Thus, the generalised use of these approaches must be revised. On the other hand, the comparison of ultimate performances of populations when growing alone or in association, here referred to as the relative performance approach, conceptually represents the original meaning of the community matrix. This conception, although measured at population levels, is a reflection of properties at the individual level. This article inspects and discusses the formalities and ecological contexts of these approaches to characterization by means of known population interaction models: linear and non-linear, variable and non-variable; aiming to disentangle crucial conceptions that are usually mingled in the literature: the strength (magnitude) and the nature (detrimental or beneficial) of the interaction, which are sometimes used interchangeably, and the stability properties of the system, which have been misleadingly associated with the latter.  相似文献   

4.
Small molecule allostery modifies protein function but is not easily discovered. We introduce mass spectrometry integrated with equilibrium dialysis for the discovery of allostery systematically (MIDAS), a method for identifying physiologically relevant, low-affinity metabolite-protein interactions using unmodified proteins and complex mixtures of unmodified metabolites. In a pilot experiment using five proteins, we identified 16 known and 13 novel interactions. The known interactions included substrates, products, intermediates, and allosteric regulators of their protein partners. MIDAS does not depend upon enzymatic measurements, but most of the new interactions affect the enzymatic activity of the protein partner. We found that the fatty acid palmitate interacts with both glucokinase and glycogen phosphorylase. Further characterization revealed that palmitate inhibited both enzymes, possibly providing a mechanism for sparing carbohydrate catabolism when fatty acids are abundant.  相似文献   

5.
This study of lipid-mediated interactions between proteins is based on a theory recently developed by the authors for describing the structure of the hydrocarbon chains in the neighborhood of a protein inclusion embedded in a lipid membrane [Lagüe et al., Farad. Discuss. 111:165-172, 1998]. The theory involves the hypernetted chain integral equation formalism for liquids. The exact lateral density-density response function of the hydrocarbon core, extracted from molecular dynamics simulations of a pure dipalmitoylphosphatidylcholine bilayer based on an atomic model, is used as input. For the sake of simplicity, protein inclusions are modeled as hard repulsive cylinders. Numerical calculations were performed with three cylinder sizes: a small cylinder of 2.5-A radius, corresponding roughly to an aliphatic chain; a medium cylinder of 5-A radius, corresponding to a alpha-helical polyalanine protein; and a large cylinder of 9-A radius, representing a small protein, such as the gramicidin channel. The calculations show that the average hydrocarbon density is perturbed over a distance of 20-25 A from the edge of the cylinder for every cylinder size. The lipid-mediated protein-protein effective interaction is calculated and is shown to be nonmonotonic. In the case of the small and the medium cylinders, the lipid-mediated effective interaction of two identical cylinders is repulsive at an intermediate range but attractive at short range. At contact, there is a free energy of -2k(B)T for the 2.5-A-radius cylinder and -9k(B)T for the 5-A-radius cylinder, indicating that the association of two alpha-helices of both sizes is favored by the lipid matrix. In contrast, the effective interaction is repulsive at all distances in the case of the large cylinder. Results were obtained with two integral equations theories: hypernetted chain and Percus-Yevick. For the two theories, all results are qualitatively identical.  相似文献   

6.
Advances in sequencing technology and genome-wide association studies are now revealing the complex interactions between hosts and pathogen through genomic variation signatures, which arise from evolutionary co-existence.  相似文献   

7.
In a modeling study we show that desynchronization stimulation may have powerful anti-kindling effects. For this, we incorporate spike-timing-dependent plasticity into a generic network of coupled phase oscillators, which serves as a model network of synaptically interacting neurons. Two states may coexist under spontaneous conditions: a state of uncorrelated firing and a state of pathological synchrony. Appropriate stimulation protocols make the network learn or unlearn the pathological synaptic interactions, respectively. Low-frequency periodic pulse train stimulation causes a kindling. Permanent high-frequency stimulation, used as golden standard for deep brain stimulation in medically refractory movement disorders, basically freezes the synaptic weights. In contrast, desynchronization stimulation, e.g., by means of a multi-site coordinated reset, has powerful long-term anti-kindling effects and enables the network to unlearn pathologically strong synaptic interactions. We propose desynchronization stimulation for the therapy of movement disorders and epilepsies.  相似文献   

8.
A hypothesis based on solubility, structural and electronic factors is used to predict the potential carcinogenic nature of 26 aromatic amines. The predictions are compared with the experimental data available on animals and humans and the agreement obtained is good. The results are useful in systematizing data available and in studying in detail aromatic amines whose carcinogenic activity is not definite.  相似文献   

9.
A theoretical investigation is completed on the mechanism of electrical breakdown strength increment of polyethylene. It is shown that it is one of the most important factors for increasing electrical breakdown strength of polyethylene through keto-enol isomerization of acetophenone and its analogues at the ground state S0 and the lowest triplet state T1. The minimum structures and transition states of the keto- and the enol-tautomer of acetophenone and its analogues at the S0 and T1 states are obtained at the B3LYP/6-311+G(d,p) level, as well as the harmonic vibration frequencies of the equilibrium geometries and the minimum energy path (MEP) by the intrinsic reaction coordinate (IRC) theory at the same level. The two C–C bond cleavage reaction channels have been identified in acetophenone. The calculated results show that the energy barriers of keto-enol isomerization of acetophenone and its analogues at S0 and T1 states are much smaller than the average C-C bond energy of polyethylene, and the acetophenone doping or bond linked into polyethylene can increase the electrical breakdown strength and inhibit polyethylene electrical tree initiation and aging.
Figure
Potential energy surface of keto-enol isomerization reaction of acetophenone has been investigated. The mechanism of electrical breakdown strength increment of cross-linking polyethylene has been explained. It is expected to provide reliable reference information for preparating the insulation material of high-voltage cable exceed 500 kV.  相似文献   

10.
A model constructed to describe carbon dynamics of phytoplanktongrowth during 14C-tracer incubations gives the range of errorin estimating specific growth rates and productivity rates causedby zooplankton grazing during the incubation. Error increaseswith increasing incubation times and higher specific growthrates. The range of these errors can be given as a functionof the specific growth rate calculated from measurements. Atthe low calculated specific growth rates of the oligotrophicPacific Ocean, 0.2 d–1, errors are 16%. Similar argumentssuggest that bacterial uptake of excreted organics would notcause large errors at low oligotrophic ocean growth rates. Thereare, however, other possible ways that 14C-based productivityestimates could be wrong.  相似文献   

11.
Accurate quantum-chemical calculations based on the second-order M?ller-Plesset perturbation method (MP2) and density functional theory (DFT) were performed for the first time to investigate the electronic structures of trans-resveratrol and trans-piceatannol, as well as to study the stacking interaction between trans-resveratrol molecules. Ab initio MP2 calculations performed with using standard split-valence Pople basis sets led us to conclude that these compounds have structures that deviate strongly from planarity, whereas the DFT computations for the same basis sets revealed that the equilibrium geometries of these bioactive polyphenols are planar. Furthermore, the results obtained at the MP2(full)/aug-cc-pVTZ and B3LYP/aug-cc-pVTZ levels indicated that the geometries of trans-resveratrol and trans-piceatannol are practically planar at their absolute energy minima. The relative energies of the equilibrium geometries of trans-resveratrol on its potential energy surface were computed at the MP2(full)/aug-cc-pVTZ level. According to the results obtained, a T-shaped (edge-to-phase) conformer of trans-resveratrol dimer is the most stable in vacuum. This T-shaped conformer is mainly stabilized by strong hydrogen bonding and weak C-H...π interactions. Stacked structures with parallel-displaced trans-stilbene skeletons were also found to be energetically stable. The vertical separation and twist angle dependencies of the stacking energy were investigated at the MP2(full)/aug-cc-pVTZ, B3LYP/aug-cc-pVTZ, and HF/aug-cc-pVTZ levels. The standard B3LYP functional and the Hartree-Fock method neglect long-range attractive dispersion interactions. The MP2 computations revealed that the London dispersion energy cannot be neglected at long or short distances. The stacked model considered here may be useful for predicting the quantum nature of the interactions in π-stacked systems of other naturally occurring stilbenoids, and can help to enhance our understanding of the antioxidant and anticancer activities of trans-resveratrol.  相似文献   

12.
A theoretical investigation is accomplished on the mechanisms of electrical breakdown strength increment of polyethylene at the atomic and molecular levels. It is found that the addition of aromatic carbonyl compounds as voltage stabilizers is one of the important factors for increasing electrical breakdown strength of polyethylene, as the additives can trap hot electrons, obtain energy of hot electrons, and transform the aliphatic cation to relatively stable aromatic cation to prevent the degradation of the polyethylene matrix. The HOMO-LUMO energy gaps (E g), the ionization potentials (IPs), and electron affinities (EAs) at the ground states of a series of aromatic carbonyl compounds are obtained at the B3LYP/6-311+G(d,p) level. The theoretical results are in good agreement with the available experimental findings, show that 2,4-dioctyloxybenzophenone (Bzo) and 4,4'-didodecyloxybenzil (Bd) molecules can effectively increase the electrical breakdown strength when they are doped into polyethylene because of their much smaller E g values than all the other studied aromatic carbonyl molecules and excellent compatibility with polymers matrix.  相似文献   

13.
Ethanol and water are the solvents most commonly used to extract flavonoids from propolis. Do hydrogen-bonding interactions exist between flavonoids and ethanol/water? In this work, this question was addressed by using density functional theory (DFT) to provide information on the hydrogen-bonding interactions between flavonoids and ethanol/water. Chrysin and Galangin were chosen as the representative flavonoids. The investigated complexes included chrysin–H2O, chrysin–CH3CH2OH, galangin–H2O and galangin–CH3CH2OH dyads. Molecular geometries, hydrogen-bond binding energies, charges of monomers and dyads, and topological analysis were studied at the B3LYP/M062X level of theory with the 6?31++G(d,p) basis set. The main conclusions were: (1) nine and ten optimized hydrogen-bond geometries were obtained for chrysin–H2O/CH3CH2OH and galangin–H2O/CH3CH2OH complexes, respectively. (2) The hydrogen atoms except aromatic H1 and H5 and all of the oxygen atoms can form hydrogen-bonds with H2O and CH3CH2OH. Ethanol and water form strong hydrogen-bonds with the hydroxyl, carbonyl and ether groups in chrysin/galangin and form weak hydrogen-bonds with aromatic hydrogen atoms. Except in structures labeled A and B, chrysin and galangin interact more strongly with H2O than CH3CH2OH. (3) When chrysin and galangin form hydrogen-bonds with H2O and CH3CH2OH, charge transfers from the hydrogen-bond acceptor (H2O and CH3CH2OH in structures A, B, G, H, I, J) to the hydrogen-bond donor (chrysin and galangin in structure A, B, G, H, I, J). The stronger hydrogen-bond makes the hydrogen-bond donor lose more charge (A> B> G> H> I> J). (4) Most of the hydrogen-bonds in chrysin/galangin?H2O/CH3CH2OH complexes may be considered as electrostatic dominant, while C?O2···H in structures labeled E and C?O5···H in structures labeled J are hydrogen-bonds combined of electrostatic and covalent characters. H9, H7, and O4 are the preferred hydrogen-bonding sites.  相似文献   

14.
C Sun  T Tang  H Uludağ 《Biomacromolecules》2012,13(9):2982-2988
Understanding the molecular mechanism of DNA aggregation and condensation is of importance to DNA packaging in cells, and applications of gene delivery therapy. Modifying polycations such as polyethylenimine with lipid substitution was found to improve the performance of polycationic gene carriers. However, the role of the lipid substitution in DNA binding and aggregation is not clear and remains to be probed at the molecular level. In this work, we elucidated the role of lipid substitution through a series of all-atom molecular dynamics simulations on DNA aggregation mediated by lipid modified polyethylenimine (lmPEI). We found that the lipids associate significantly with one another, which links the lmPEIs and serves as a mechanism of aggregating the DNAs and stabilizing the formed polyplex. In addition, some lipid tails on the lmPEIs stay at the periphery of the lmPEI/DNA polyplex and may provide a mechanism for hydrophobic interactions. The enhanced stability and hydrophobicity might contribute to better cellular uptake of the polyplexes.  相似文献   

15.
Deferasirox (DFX), as an oral chelator, is used for treatment of transfusional iron overload. In this study, we have investigated the effects of DFX as an iron chelator, on the function and structure of bovine liver catalase (BLC) by different spectroscopic methods of UV–visible, fluorescence, and circular dichroism (CD) at two temperatures of 25 and 37 °C. In vitro kinetic studies showed that DFX can inhibit the enzymatic activity in a competitive manner. K I value was calculated 39 nM according to the Lineweaver–Burk plot indicating a high rate of inhibition of the enzyme. Intrinsic fluorescence data showed that increasing the drug concentrations leads to a significant decrease in the intrinsic emission of the enzyme indicating a significant change in the three-dimensional environment around the chromophores of the enzyme structure. By analyzing the fluorescence quenching data, it was found that the BLC has two binding sites for DFX and the values of binding constant at 25 and 37 °C were calculated 1.7 × 107 and 3 × 107 M?1, respectively. The static type of quenching mechanism is involved in the quenching of intrinsic emission of enzyme. The thermodynamic data suggest that hydrophobic interactions play a major role in the binding reaction. UV–vis spectroscopy results represented the changes in tryptophan (Trp) absorption and Soret band spectra, which indicated changes in Trp and heme group position caused by the drug binding. Also, CD data represented that high concentrations of DFX lead to a significant decreasing in the content of β-sheet and random coil accompanied an increasing in α-helical content of the protein. The molecular docking results indicate that docking may be an appropriate method for prediction and confirmation of experimental results and also useful for determining the binding mechanism of proteins and drugs. According to above results, it can be concluded that the DFX can chelate the Fe(III) on the enzyme active site leading to changes in the function and structure of catalase which can be considered as a side effect of this drug and consequently has an important role in hepatic complications and fibrosis.  相似文献   

16.
Three cytisine derivatives, (-)-(7R,9S)-1-phenyl-3-(cytisin-12-yl)propan-1-one (1), (-)-(7R,9S)-1-phenyl-2-(cytisin-12-yl)ethane (2), and (-)-(7R,9S)-1,2-bis(cytisin-12-yl)ethane (3), with different electronic and steric features have been characterized by X-ray analysis and theoretical calculations in order to evaluate how structural modulations affect the intrinsic binding affinity at the neuronal nicotinic receptors (nAChRs). The crystal structures of 1 and 2, which display comparable affinities, are characterized by the same conformation of the cytisine moiety with different orientations of the substituent at N2. In 3, two independent molecules have the pyridinone rings diversely oriented. This compound has a lower affinity with respect to 1 and 2, but it increases the expression of neuronal nAChRs. Compounds 1, 2, and 3 retain the key prerequisite of the classical pharmacophoric models, with sp(3)-N-atom--HBA distances close to the expected value, both in solid state and in solution (theoretical calculations), where, in contrast with the extended in the crystal state, a curled-up conformation has been found, though maintaining the N-substituent in equatorial position.  相似文献   

17.
Whitten ST  Kurtz AJ  Pometun MS  Wand AJ  Hilser VJ 《Biochemistry》2006,45(34):10163-10174
Recent advances in NMR methodology have enabled the structural analysis of proteins at temperatures far below the freezing point of water, thus opening a window to the cold denaturation process. Although the phenomenon of cold denaturation has been known since the mid-1970s, the freezing point of water has prevented detailed and structurally resolved studies without application of additional significant perturbations of the protein ensemble. As a result, the cold-denatured state and the process of cold denaturation have gone largely unstudied. Here, the structural and thermodynamic basis of cold denaturation is explored with emphasis placed on the insights that are uniquely ascertained from low-temperature studies. It is shown that the noncooperative cold-induced unfolding of protein results in the population of partially folded states that cannot be accessed by other techniques. The structurally resolved view of the cold denaturation process therefore can provide direct access to the cooperative substructures within the protein molecule and provide an unprecedented structurally resolved picture of the states that comprise the native state ensemble.  相似文献   

18.
We examined the linkage between climate and interspecific plant interactions in New England salt marshes. Because harsh edaphic conditions in marshes can be ameliorated by neighboring plants, plant neighbors can have net competitive or facilitative interactions, depending on ambient physical stresses. In particular, high soil salinities, which are largely controlled by solar radiation and the evaporation of marsh porewater, can be ameliorated by plant neighbors under stressful conditions leading to facilitative interactions. Under less stressful edaphic conditions, these same neighbors may be competitors. In this paper, we use this mechanistic understanding of marsh plant interactions to examine the hypothesis that latitudinal and inter-annual variation in climate can influence the nature and strength of marsh plant species interactions. We quantified the relationship between climate and species interactions by transplanting marsh plants into ambient vegetation and unvegetated bare patches at sites north and south of Cape Cod, a major biogeographic barrier on the east coast of North America. We hypothesized that the cooler climate north of Cape Cod would lead to fewer positive interactions among marsh plants. We found both latitudinal and inter-annual variation in the neighbor relations of marsh plants that paralleled latitudinal differences in temperature and salinity. South of Cape Cod, plant neighbor interactions tended to be more facilitative, whereas north of Cape Cod, plant neighbor interactions were more competitive. At all sites, soil salinity increased and plant neighbor interactions were more facilitative in warmer versus cooler years. Our results show that interspecific interactions can be strikingly linked to climate, but also reveal that because the sensitivity of specific species interactions to climatic variation is highly variable, predicting how entire communities will respond to climate change will be difficult, even in relatively simple, well-studied systems.  相似文献   

19.
Wu J  Xu D  Lu X  Wang C  Guo H  Dunaway-Mariano D 《Biochemistry》2006,45(1):102-112
It is well established that electrostatic interactions play a vital role in enzyme catalysis. In this work, we report theory-guided mutation experiments that identified strong electrostatic contributions of a remote residue, namely, Glu232 located on the adjacent subunit, to 4-chlorobenzoyl-CoA dehalogenase catalysis. The Glu232Asp mutant was found to bind the substrate analogue 4-methylbenzoyl-CoA more tightly than does the wild-type dehalogenase. In contrast, the kcat for 4-chlorobenzoyl-CoA conversion to product was reduced 10000-fold in the mutant. UV difference spectra measured for the respective enzyme-ligand complexes revealed an approximately 3-fold shift in the equilibrium of the two active site conformers away from that inducing strong pi-electron polarization in the ligand benzoyl ring. Increased substrate binding, decreased ring polarization, and decreased catalytic efficiency indicated that the repositioning of the point charge in the Glu232Asp mutant might affect the orientation of the Asp145 carboxylate with respect to the substrate aromatic ring. The time course for formation and reaction of the arylated enzyme intermediate during a single turnover was measured for wild-type and Glu232Asp mutant dehalogenases. The accumulation of arylated enzyme in the wild-type dehalogenase was not observed in the mutant. This indicates that the reduced turnover rate in the mutant is the result of a slow arylation of Asp145, owing to decreased efficiency in substrate nucleophilic attack by Asp145. To rationalize the experimental observations, a theoretical model is proposed, which computes the potential of mean force for the nucleophilic aromatic substitution step using a hybrid quantum mechanical/molecular mechanical method. To this end, the removal or reorientation of the side chain charge of residue 232, modeled respectively by the Glu232Gln and Glu232Asp mutants, is shown to increase the rate-limiting energy barrier. The calculated 23.1 kcal/mol free energy barrier for formation of the Meisenheimer intermediate in the Glu232Asp mutant represents an increase of 6 kcal/mol relative to that of the wild-type enzyme, consistent with the 5.6 kcal/mol increase calculated from the difference in experimentally determined rate constants. On the basis of the combination of the experimental and theoretical evidence, we hypothesize that the Glu232(B) residue contributes to catalysis by providing an electrostatic force that acts on the Asp145 nucleophile.  相似文献   

20.
During the 20th century there were clear indications that the socio-cultural suppression of women's sexuality had lessened, revealing a marked variability of women's sexual expression. In this article we review the recent literature to explore explanations for this variability. It is clear that we know little about the nature of sexual desire, and in particular, what it is that is desired. There is also now substantial evidence that vaginal response, as measured by vaginal pulse amplitude, is a relatively automatic response to perception of sexual stimuli, regardless of whether these stimuli are perceived positively or result in subjective arousal. This is considered as a possible mechanism that allows vaginal intercourse without pain, even when the woman is not sexually aroused. The roles of androgens and estrogen in women's sexuality remain uncertain. The evidence is, however, consistent with there being a testosterone-dependent component of women's sexuality that is more important for some women than others. Finally, a new theoretical model is presented that aims to resolve these uncertainties and that proposes different types of women's sexuality. Once we have a better understanding of “normal” female sexuality, in its various forms, our ability to develop effective treatments for women's sexual problems should improve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号