首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper nanoclusters embedded in soda lime glass are prepared by ion exchanged method. The ion exchanged glasses are annealed in air for 1 h at different temperature. These samples exhibit surface plasmon and surface enhancement effect. UV-visible optical absorption spectroscopic analysis shows the signature of the copper nanocluster in the ion exchanged glasses. Surface-enhanced Raman spectroscopy (SERS) technique is used to characterize the copper ion exchanged and annealed glasses. Additional results are obtained by SERS for optimizing the SERS substrate. The highest Raman enhancement is obtained for substrates with high cluster size. The micro-Raman scattering spectroscopic images of ion exchanged and different temperature annealed glasses support the optical absorption spectroscopy results.  相似文献   

2.
The photo-sensitization synthetic technique of making silver nanoparticles using benzophenone is studied using both a laser and a mercury lamp as light sources. The power and irradiation time dependence of the synthesized nanoparticle absorption spectra and their size distribution [as determined by transmission electron microscopy (TEM)] are studied in each method and compared. In the laser synthesis, as either the laser power or the irradiation time increases, the intensity of the surface plasmon resonance absorption at 400 nm is found to increase linearly first, followed by a reduction of the red edge of the plasmon resonance absorption band. The TEM results showed that in the laser synthesis low powers and short irradiation times produce nanoparticles around 20 nm in diameter. Increasing the power or irradiation time produces a second population of nanoparticles with average size of 5 nm in diameter. These small particles are believed to be formed from the surface ablation of the large particles. The surface plasmon absorption band is found to be narrower when the nanoparticles are produced with laser irradiation. Throughout the exposure time with the CW lamp, the plasmon resonance absorption band of the particles formed first grows in intensity, then blue shifts and narrows, and finally red shifts while decreasing in intensity. The TEM results for lamp samples showed particle formation and growth, followed by small nanoparticle formation. The above results are discussed in terms of a mechanism in which, the excited benzophenone forms the ketal radical, which reduces Ag+ in solution and on the Ag nanoparticle surface. As the time of irradiation or the light energy increases the benzophenone is consumed, which is found to be the limiting reagent. This stops the formation of the normal large nanoparticles while their photo-ablation continues to make the small particles.  相似文献   

3.
There is increasing interest in tuning the physical properties of semiconductor nanostructures using metal nanoparticles. In this work, ZnO nanosphere covered with Ag nanoparticles were synthesized using gamma–radiation-assisted method. The amount of deposited Ag nanoparticles is controlled by changing irradiation dose in the range of 30–100 kGy in order to tune the semiconductor–metal interaction. The successful deposition of Ag on the ZnO nanoparticles is examined by analyzing the morphology, microstructure, optical, and magnetic properties of ZnO/Ag nanoparticles through field emission scanning electron (FESEM), microscopy X-ray diffraction spectra, UV-visible absorption, photoluminescence measurement, and vibrating sample magnetometer. FESEM and elemental mapping results confirmed that Ag nanoparticles have been concentrated at the surface of spherical ZnO particles. Moreover, formation of pure metallic Ag nanoparticles has been confirmed by XRD analysis. UV-visible absorption spectra of obtained ZnO/Ag showed two combined peaks, a weak peak at the shoulder around 360 nm corresponds to ZnO and a sharp absorption at 420 nm refers to spherical Ag nanoparticles. Obtained results from photoluminescence revealed that the near-band-edge emission and defect-related visible emission bands of ZnO could be enhanced dramatically at the same time by deposition of Ag nanoparticles, which was ascribed to localized surface plasmon–exciton coupling and surface plasmon scattering. Controlling the semiconductor and metal coupling effect is interesting because of its application in highly efficient optoelectronic devices and biosensor.  相似文献   

4.
Gold@silica core–shell nanoparticles were prepared with various gold core diameters (ranging from 20 to 150 nm) and silica thicknesses (ranging from 10 to 30 nm). When the gold diameter is increased, the size dispersion became larger, leading to a broader plasmon band. Then, silicon carbide (SiC) nanoparticles were covalently immobilized onto silica to obtain hybrid (Au@SiO2) SiC nanoparticles. The absorption properties of these hybrid nanoparticles showed that an excess of SiC nanoparticles in the dispersion can be identified by a strong absorption in the UV region. Compared to SiC reference samples, a blue shift of the fluorescence emission, from 582 to 523 nm, was observed, which was previously attributed to the strong surface modification of SiC when immobilized onto silica. Finally, the influence of several elaboration parameters (gold diameter, silica thickness, SiC concentration) on fluorescence enhancement was investigated. It showed that the highest enhancements were obtained with 10 nm silica thickness, low concentration of SiC nanoparticles, and surprisingly, with a 20-nm gold core diameter. This last result could be attributed to the broad plasmon band of big gold colloids. In this case, SiC emission strongly overlapped gold absorption, leading to possible quenching of SiC fluorescence by energy transfer.  相似文献   

5.
The effects of small size (~2 nm) gold nanoparticles on the properties of particles of cholesteric liquid-crystalline dispersions formed by double-stranded DNA molecules were analyzed. It has been shown that gold nanoparticles induce two different processes. First, they facilitate reorganization of the spatial cholesteric structure of dispersion particles to nematic one. This process is accompanied by the fast decrease in the amplitude of abnormal band in the CD spectrum. Second, they can form ensembles consisting of gold nanoparticles. This process is accompanied by the development and displacement of surface plasmon resonance band in the visible region of the absorption spectrum. The appearance of this band is analyzed by considering two different models of the formation of ensembles consisting of gold nanoparticles. By small-angle X-ray scattering we performed structural analysis of phases formed by DNA cholesteric liquid-crystalline dispersion particles treated with gold nanoparticles. As a result of this study it was possible to prove the formation of linear clusters of gold nanoparticles in the “free space” between the adjacent DNA molecules fixed in the quasinematic layers of liquid-crystalline particles. It has been hypothesized that the formation of linear clusters of gold nanoparticles is most likely related to DNA molecules, ordered in the spatial structure of quasinematic layers, and the toxicity of these nanoparticles in biological systems hypothesized.  相似文献   

6.
Plasmonic Properties of Silver Nanoparticles on Two Substrates   总被引:1,自引:0,他引:1  
In this paper, we examine the plasmonic properties of silver nanoparticles, with an emphasis on the sensitivity of the extinction spectra on the supporting substrate: silica (SiO2) microsphere and indium tin oxide (ITO) coated glass slide, on which silver particles are deposited electroless and electrochemically, respectively. The microstructures and phases of these nanoparticles are characterized by transmission electron microscopy, field emission electron microscopy and X-ray diffraction analysis. The surface plasmon resonance (SPR) properties which are experimentally measured in the ultraviolet-visible-near infrared spectral region are compared to electrodynamics calculations based on the discrete dipole approximation. A wide SPR band ranging from 400 to 800 nm is observed for the silver nanoparticles on a silica microsphere, which is similar to the plasmon resonance characteristics of metal nanoshells. The SPR of a conducting substrate, however, has an effect on the plasmonic properties of silver nanoparticles at longer wavelength.   相似文献   

7.
Noble metal nanoparticles are well known for their strong interactions with light through the resonant excitations of the collective oscillations of the conduction electrons on the particles, the so-called surface plasmon resonances. The close proximity of two nanoparticles is known to result in a red-shifted resonance wavelength peak, due to near-field coupling. We have subsequently employed this phenomenon and developed a new approach to glucose sensing, which is based on the aggregation and disassociation of 20-nm gold particles and the changes in plasmon absorption induced by the presence of glucose. High-molecular-weight dextran-coated nanoparticles are aggregated with concanavalin A (Con A), which results in a significant shift and broadening of the gold plasmon absorption. The addition of glucose competitively binds to Con A, reducing gold nanoparticle aggregation and therefore the plasmon absorption when monitored at a near-red arbitrary wavelength. We have optimized our plasmonic-type glucose nanosensors with regard to particle stability, pH effects, the dynamic range for glucose sensing, and the observation wavelength to be compatible with clinical glucose requirements and measurements. In addition, by modifying the amount of dextran or Con A used in nanoparticle fabrication, we can to some extent tune the glucose response range, which means that a single sensing platform could potentially be used to monitor microM --> mM glucose levels in many physiological fluids, such as tears, blood, and urine, where the glucose concentrations are significantly different.  相似文献   

8.
Strong electromagnetic field enhancement that occurs under conditions of the surface plasmon excitation in metallic nanoparticles deposited on a semiconductor surface is a very efficient and promising tool for increasing the optical absorption within semiconductor solar cells and, hence, their photocurrent response. The enhancement of the optical absorption in thin-film silicon solar cells via the excitation of localized surface plasmons in spherical silver nanoparticles is investigated. Using the effective medium model, the effect of the nanoparticle size and the surface coverage on that enhancement is analyzed. The optimum configuration and the nanoparticle parameters leading to the maximum enhancement in the optical absorption and the photocurrent response in a single p-n junction silicon cell are obtained. The effect of coupling between the silicon layer and the surface plasmon fields on the efficiency of the above enhancement is quantified as well.  相似文献   

9.
Current work demonstrates enhanced efficiencies in organic light-emitting diodes by using the localized surface plasmons originated from Au nanoclusters deposited using thermal evaporation technique. The effect of localized surface plasmons on organic emitter was studied using UV–vis absorption spectra, steady state and time-resolved photoluminescence spectra. These studies have revealed that the optical properties like absorption, emission have been greatly modified by the localized surface plasmon. These effects were found to be dependent on the distance between the emitter and Au layer. Further, efficiencies of the OLEDs were also found to be dependent on this distance.  相似文献   

10.
We have prepared heavy metal oxide glasses containing metallic copper nanoparticles with promising nonlinear optical properties which were determined by Z-scan and pump-probe measurements using femtosecond laser pulses. For the wavelengths within the plasmon band, we have observed saturable absorption and response times of 2.3 ps. For the other regions of the spectrum, reverse saturable absorption and lifetimes shorter than 200 fs were verified. The nonlinear refractive index is about 2.0?×?10?19 m2/W from visible to telecom region, thus presenting an enhancement effect at wavelengths near the plasmon and Cu+2 d–d band.  相似文献   

11.
Absorption, fluorescence emission, and fluorescence excitation spectra of stilbazolium merocyanine (1-(n-butyl)-4[(3,5-dimethoxy-4-oxocyclohexa-2,5-dienylidene)ethylidene]-1,4-dihydropyridyne) dye in water solution without and with colloidal silver addition were measured. In the presence of the colloid, besides the absorption band assigned to the protonated species of the dye (at 391 nm), an absorption band related to the free-base species appears at 490 nm. From the absorption and emission spectra, measured at various dye concentrations, follows that the aggregates are not effectively formed. Therefore, the long-wavelength absorption and fluorescence bands have to be related to some dye forms created by the solvatochromic effects. The fluorescence bands of the protonated and the free-base species are located at 559 nm and at about 630 nm, respectively. The shape of the long-wavelength band suggests the occurrence of more than one free-base form of the dye. At some dye and colloid concentrations, the global emission of the sample is enhanced as a result of silver addition. The increase in the emission yield of the dye could be partially due to not only the change in the concentrations of dye forms exhibiting various emission yields but is also due to the resonance surface plasmon effect. Because of the superposition of several effects, before the practical application of merocyanine as an indicator of metal presence in biological samples, its spectral properties in the system investigated should be established.  相似文献   

12.
Carcinoembryonic antigen (CEA) was used as a separator to prevent the Rhodamine 6G (R6G)-induced aggregation of colloidal gold nanoparticles. The destroyed aggregation has been monitored by measuring the absorption and resonance light scattering peaks corresponding to the longitudinal surface plasmon resonance (SPR) of the chain-like aggregated gold nanoparticles (AuNPs). It was found that the pre-adding of CEA with different concentrations to the gold colloids before mixing them with R6G could lead to the longitudinal SPR peak decrease and blue shift. By analysing the intensity changing and wavelength shifting of the absorption spectra, CEA could be detected in a linear range from 0.2 to 4 ng/mL, and the limit of detection reaches to 0.1 ng/mL. The sensitivity of the CEA concentration dependent shifting and quenching of the plasmonic absorption and scattering corresponding to the AuNPs aggregation presents a well potential application of biologic spectral sensing.  相似文献   

13.
Plasmonic nanoparticles are an attractive material for light harvesting applications due to their easily modified surface, high surface area and large extinction coefficients which can be tuned across the visible spectrum. Research into the plasmonic enhancement of optical transitions has become popular, due to the possibility of altering and in some cases improving photo-absorption or emission properties of nearby chromophores such as molecular dyes or quantum dots. The electric field of the plasmon can couple with the excitation dipole of a chromophore, perturbing the electronic states involved in the transition and leading to increased absorption and emission rates. These enhancements can also be negated at close distances by energy transfer mechanism, making the spatial arrangement of the two species critical. Ultimately, enhancement of light harvesting efficiency in plasmonic solar cells could lead to thinner and, therefore, lower cost devices. The development of hybrid core/shell particles could offer a solution to this issue. The addition of a dielectric spacer between a gold nanoparticles and a chromophore is the proposed method to control the exciton plasmon coupling strength and thereby balance losses with the plasmonic gains. A detailed procedure for the coating of gold nanoparticles with CdS and ZnS semiconductor shells is presented. The nanoparticles show high uniformity with size control in both the core gold particles and shell species allowing for a more accurate investigation into the plasmonic enhancement of external chromophores.  相似文献   

14.
Chemical approaches allow for the synthesis of highly defined metal heteronanostructures, such as core–shell nanospheres. Because the material in the metal nanoparticles determines the plasmon resonance-induced absorption band, control of particle composition results in control of the position of the absorption band. Metal deposition on gold or silver nanoparticles yielded core–shell particles with modified optical properties. UV–vis spectroscopy on solution-grown, as well as surface-grown, particles was conducted and provided ensemble measurements in solution. Increasing the layers of a second metal leads to a shift in the absorption band. A shell diameter comparable to the original particle diameter leads to a predominant influence by the shell material. Extent of shell growth could be controlled by reaction time or the concentration of metal salt or reducing agent. Besides optical characterization, the utilization of atomic force microscopy, scanning electron microscopy, and transmission electron microscopy yielded important information about the ultrastructure of nanoparticle complexes. Surface-grown core–shell particles were superior in terms of achievable shell thickness, because of difficulties encountered with solution-grown particles due to salt-induced aggregation.  相似文献   

15.
Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this review, we discuss the SPR-enhanced optical properties of noble metal nanoparticles, with an emphasis on the recent advances in the utility of these plasmonic properties in molecular-specific imaging and sensing, photo-diagnostics, and selective photothermal therapy. The strongly enhanced SPR scattering from Au nanoparticles makes them useful as bright optical tags for molecular-specific biological imaging and detection using simple dark-field optical microscopy. On the other hand, the SPR absorption of the nanoparticles has allowed their use in the selective laser photothermal therapy of cancer. We also discuss the sensitivity of the nanoparticle SPR frequency to the local medium dielectric constant, which has been successfully exploited for the optical sensing of chemical and biological analytes. Plasmon coupling between metal nanoparticle pairs is also discussed, which forms the basis for nanoparticle assembly-based biodiagnostics and the plasmon ruler for dynamic measurement of nanoscale distances in biological systems.  相似文献   

16.
Optical absorption and fluorescence emission techniques were employed to investigate the size effects of silver nanoparticles (Ag NPs) on 1,4-dihydroxy-3-methylanthracene-9,10-dione (DHMAD). Silver nanoparticles of different sizes were prepared by Creighton method under microwave irradiation. The prepared Ag NPs show the surface plasmon band around 400 nm. Fluorescence quenching of DHMAD by Ag NPs was found to increase with an increase in the size of Ag NPs. The fluorescence quenching is explained by resonant energy transfer mechanism between DHMAD and Ag NPs, orientation of DHMAD on silver nanoparticles through chemisorptions. The Stern–Volmer quenching constant and Benesi–Hildebrand association constant for the above system were calculated. DFT calculations were also performed to study the ground and excited state behavior of DHMAD and DHMAD + Ag system.  相似文献   

17.
Constructing 3D hierarchical architecture consisting of 2D hybrid nanosheets is very critical to achieve uppermost and stable electrochemical performance for both lithium‐ion batteries (LIBs) and hydrogen evolution reaction (HER). Herein, a simple synthesis of uniform 3D microspheres assembled from carbon nanosheets with the incorporated MoO2 nanoclusters is demonstrated. The MoO2 nanoclusters can be readily converted into the molybdenum carbide (Mo2C) nanocrystals by using high temperature treatment. Such assembling architecture is highly particular for preventing Mo‐based ultrasmall nanoparticles from coalescing or oxidizing and endowing them with rapid electron transfer. Consequently, the MoO2/C hybrids as LIB anode materials deliver a specific capacity of 625 mA h g?1 at 1600 mA g?1 even after 1000 cycles, which is among the best reported values for MoO2‐based electrode materials. Moreover, the Mo2C/C hybrids also exhibit excellent electrocatalytic activity for HER with small overpotential and robust durability in both acid and alkaline media. The present work highlights the importance of designing 3D structure and controlling ultrasmall Mo‐based nanoparticles for enhancing electrochemical energy conversion and storage applications.  相似文献   

18.
New method of experimental determination of local field enhancement at metal nanoparticles is suggested. It uses surface plasmon as a probe. Alternating-sign shift of surface plasmon resonance in copper nanoparticles incorporated in silica matrix has been observed under irradiation by intense femtosecond laser pulse. The red shift of plasmon observed during the action of pump pulse is interpreted as a result of change of dielectric constant of silica matrix due to optical Kerr effect in electric field of pump pulse enhanced in a vicinity of metal nanoparticles. The field enhancement factor is estimated from the value of the observed red shift of plasmon resonance.  相似文献   

19.
Silica particles of ~800 nm size were functionalized using 3-amino propyl triethoxysilane molecules on which gold particles (~20 nm size) were deposited. The resulting particles appeared to form speckled SiO2@Au core–shell particles. The surface roughness, along with hot spots, due to nanogaps between the gold nanoparticles was responsible for the enhancement of the Raman signal of crystal violet molecules by ~3.2?×?107 and by ~1.42?×?108 of single-wall carbon nanotubes. It has also been observed that the electromagnetic excitation near surface plasmon resonance (SPR) of core–shell particles is more effective than off resonance SPR excitation.  相似文献   

20.
Silver nanoparticles: partial oxidation and antibacterial activities   总被引:4,自引:0,他引:4  
The physical and chemical properties of silver nanoparticles that are responsible for their antimicrobial activities have been studied with spherical silver nanoparticles (average diameter approximately 9 nm) synthesized by the borohydride reduction of Ag+ ions, in relation to their sensitivity to oxidation, activities towards silver-resistant bacteria, size-dependent activities, and dispersal in electrolytic solutions. Partially (surface) oxidized silver nanoparticles have antibacterial activities, but zero-valent nanoparticles do not. The levels of chemisorbed Ag+ that form on the particle's surface, as revealed by changes in the surface plasmon resonance absorption during oxidation and reduction, correlate well with the observed antibacterial activities. Silver nanoparticles, like Ag+ in the form of AgNO3 solution, are tolerated by the bacteria strains resistant to Ag+. The antibacterial activities of silver nanoparticles are related to their size, with the smaller particles having higher activities on the basis of equivalent silver mass content. The silver nanoparticles aggregate in media with a high electrolyte content, resulting in a loss of antibacterial activities. However, complexation with albumin can stabilize the silver nanoparticles against aggregation, leading to a retention of the antibacterial activities. Taken together, the results show that the antibacterial activities of silver nanoparticles are dependent on chemisorbed Ag+, which is readily formed owing to extreme sensitivity to oxygen. The antibacterial activities of silver nanoparticles are dependent on optimally displayed oxidized surfaces, which are present in well-dispersed suspensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号