首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To evaluate three previously unreported substrates for the detection of beta-glucosidase activity in clinically relevant bacteria and to compare their performance with a range of known substrates in an agar medium. METHODS AND RESULTS: The performance of 11 chromogenic beta-glucosidase substrates was compared using 109 Enterobacteriaceae strains, 40 enterococci and 20 strains of Listeria spp. Three previously unreported beta-glucosides were tested including derivatives of alizarin, 3',4'-dihydroxyflavone and 3-hydroxyflavone. These were compared with esculin and beta-glucoside derivatives of 3,4-cyclohexenoesculetin, 8-hydroxyquinoline and five indoxylics. All substrates yielded coloured precipitates upon hydrolysis in agar. Alizarin-beta-D-glucoside was the most sensitive substrate tested and detected beta-glucosidase activity in 72% of Enterobacteriaceae strains and all enterococci and Listeria spp. The two flavone derivatives showed poor sensitivity with Gram-negative bacteria but excellent sensitivity with enterococci and Listeria spp. CONCLUSIONS: Alizarin-beta-d-glucoside is a highly sensitive substrate for detection of bacterial beta-glucosidase and compares favourably with existing substrates. beta-glucosides of 3',4'-dihydroxyflavone and 3-hydroxyflavone are effective substrates for the detection of beta-glucosidase in enterococci and Listeria spp. SIGNIFICANCE AND IMPACT OF THE STUDY: The data presented allow for informed decisions to be made regarding the optimal choice of beta-glucosidase substrate for detection of pathogenic and/or indicator bacteria.  相似文献   

2.
Human intestinal microbial flora were screened for their abilities to reduce nitroaromatic compounds by growing them on brain heart infusion agar plates containing 1-nitropyrene. Bacteria metabolizing 1-nitropyrene, detected by the appearance of clear zones around the colonies, were identified as Clostridium leptum, Clostridium paraputrificum, Clostridium clostridiiforme, another Clostridium sp., and a Eubacterium sp. These bacteria produced aromatic amines from nitroaromatic compounds, as shown by thin-layer chromatography, high-pressure liquid chromatography, and biochemical tests. Incubation of three of these bacteria with 1-nitropyrene, 1,3-dinitropyrene, and 1,6-dinitropyrene inactivated the direct-acting mutagenicity associated with these compounds. Menadione and o-iodosobenzoic acid inhibited nitroreductase activity in all of the isolates, indicating the involvement of sulfhydryl groups in the active site of the enzyme. The optimum pH for nitroreductase activity was 8.0. Only the Clostridium sp. required added flavin adenine dinucleotide for nitroreductase activity. The nitroreductases were constitutive and extracellular. An activity stain for the detection of nitroreductase on anaerobic native polyacrylamide gels was developed. This activity stain revealed only one isozyme in each bacterium but showed that the nitroreductases from different bacteria had distinct electrophoretic mobilities.  相似文献   

3.
Human intestinal microbial flora were screened for their abilities to reduce nitroaromatic compounds by growing them on brain heart infusion agar plates containing 1-nitropyrene. Bacteria metabolizing 1-nitropyrene, detected by the appearance of clear zones around the colonies, were identified as Clostridium leptum, Clostridium paraputrificum, Clostridium clostridiiforme, another Clostridium sp., and a Eubacterium sp. These bacteria produced aromatic amines from nitroaromatic compounds, as shown by thin-layer chromatography, high-pressure liquid chromatography, and biochemical tests. Incubation of three of these bacteria with 1-nitropyrene, 1,3-dinitropyrene, and 1,6-dinitropyrene inactivated the direct-acting mutagenicity associated with these compounds. Menadione and o-iodosobenzoic acid inhibited nitroreductase activity in all of the isolates, indicating the involvement of sulfhydryl groups in the active site of the enzyme. The optimum pH for nitroreductase activity was 8.0. Only the Clostridium sp. required added flavin adenine dinucleotide for nitroreductase activity. The nitroreductases were constitutive and extracellular. An activity stain for the detection of nitroreductase on anaerobic native polyacrylamide gels was developed. This activity stain revealed only one isozyme in each bacterium but showed that the nitroreductases from different bacteria had distinct electrophoretic mobilities.  相似文献   

4.
AIMS: To synthesize novel substrates for the detection of beta-ribosidase and assess their potential for the differentiation of Gram-negative bacteria. METHODS AND RESULTS: Two novel chromogenic substrates, 3',4'-dihydroxyflavone-4'-beta-D-ribofuranoside (DHF-riboside) and 5-bromo-4-chloro-3-indolyl-beta-D-ribofuranoside (X-riboside) were evaluated along with a known fluorogenic substrate, 4-methylumbelliferyl-beta-D-ribofuranoside (4MU-riboside). A total of 543 Gram-negative bacilli were cultured on media containing either DHF-riboside or X-riboside. Hydrolysis of DHF-riboside or X-riboside resulted in the formation of clearly distinguishable black or blue-green colonies, respectively. Hydrolysis of 4MU-riboside was evaluated in a liquid medium in microtiter trays and yielded blue fluorescence on hydrolysis which was measured using fluorimetry. beta-Ribosidase activity was widespread with 75% of strains, including 85.6% of Enterobacteriaceae, showing activity with at least one substrate. Genera that demonstrated beta-ribosidase activity included Aeromonas, Citrobacter, Enterobacter, Escherichia, Hafnia, Klebsiella, Morganella, Providencia, Pseudomonas, Salmonella and Shigella. In contrast, strains of Proteus spp., Acinetobacter spp., Yersinia enterocolitica, Vibrio cholerae and Vibrio parahaemolyticus generally failed to demonstrate beta-ribosidase activity. CONCLUSIONS: The novel substrates DHF-riboside and X-riboside are effective for the detection of beta-ribosidase in agar-based media and may be useful for the differentiation and identification of Gram-negative bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report describing the application and utility of chromogenic substrates for beta-ribosidase. These substrates could be applied in chromogenic media for differentiation of Gram-negative bacteria.  相似文献   

5.
AIMS: Enzyme substrates based on 4-methylumbelliferone are widely used for the detection of Escherichia coli and enterococci in water, by detection of beta-glucuronidase and beta-glucosidase activity respectively. This study aimed to synthesize and evaluate novel umbelliferone-based substrates with improved sensitivity for these two enzymes. METHODS AND RESULTS: A novel beta-glucuronide derivative based on 6-chloro-4-methylumbelliferone (CMUG) was synthesized and compared with 4-methylumbelliferyl-beta-D-glucuronide (MUG) using 42 strains of E. coli in a modified membrane lauryl sulfate broth. Over 7 h of incubation, the fluorescence generated from the hydrolysis of CMUG by E. coli was over twice that from MUG, and all of the 38 glucuronidase-positive strains generated a higher fluorescence with CMUG compared with MUG. Neither substrate caused inhibition of bacterial growth in any of the tested strains. Four beta-glucosidase substrates were also synthesized and evaluated in comparison with 4-methylumbelliferyl-beta-D-glucoside (MU-GLU) using 42 strains of enterococci in glucose azide broth. The four substrates comprised beta-glucoside derivatives of umbelliferone-3-carboxylic acid and its methyl, ethyl and benzyl esters. Glucosides of the methyl, ethyl and benzyl esters of umbelliferone-3-carboxylic acid, were found to be superior to MU-GLU for the detection of enterococci, especially after 18 h of incubation, while umbelliferone-3-carboxylic acid-beta-D-glucoside was inferior. However, the variability in detectable beta-glucosidase activity among the different strains of enterococci in short-term assays using the three carboxylate esters (7 h incubation) may compromise their use for rapid detection and enumeration of these faecal indicator bacteria. CONCLUSIONS: The beta-glucuronidase substrate CMUG appears to be a more promising detection system than the various beta-glucosidase substrates tested. SIGNIFICANCE AND IMPACT OF THE STUDY: The novel substrate CMUG showed enhanced sensitivity for the detection of beta-glucuronidase-producing bacteria such as E. coli, with a clear potential for application in rapid assays for the detection of this indicator organism in natural water and other environmental samples.  相似文献   

6.
The microbial model of mammalian drug metabolism, Cunninghamella elegans, has three cytochrome P450 reductase genes in its genome: g1631 (CPR_A), g4301 (CPR_B), and g7609 (CPR_C). The nitroreductase activity of the encoded enzymes was investigated via expression of the genes in the yeast Pichia pastoris X33. Whole cell assays with the recombinant yeast demonstrated that the reductases converted the anticancer drug flutamide to the nitroreduced metabolite that was also produced from the same substrate when incubated with human NADPH: cytochrome P450 reductase. The nitroreductase activity extended to other substrates such as the related drug nilutamide and the environmental contaminants 1-nitronaphthalene and 1,3-dinitronaphthalene. Comparative experiments with cell lysates of recombinant yeast were conducted under aerobic and reduced oxygen conditions and demonstrated that the reductases are oxygen sensitive.  相似文献   

7.
Many enteric bacteria express a type I oxygen-insensitive nitroreductase, which reduces nitro groups on many different nitroaromatic compounds under aerobic conditions. Enzymatic reduction of nitramines was also documented in enteric bacteria under anaerobic conditions. This study indicates that nitramine reduction in enteric bacteria is carried out by the type I, or oxygen-insensitive nitroreductase, rather than a type II enzyme. The enteric bacterium Morganella morganii strain B2 with documented hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) nitroreductase activity, and Enterobacter cloacae strain 96-3 with documented 2,4,6-trinitrotoluene (TNT) nitroreductase activity, were used here to show that the explosives TNT and RDX were both reduced by a type I nitroreductase. Morganella morganii and E. cloacae exhibited RDX and TNT nitroreductase activities in whole cell assays. Type I nitroreductase, purified from E. cloacae, oxidized NADPH with TNT or RDX as substrate. When expression of the E. cloacae type I nitroreductase gene was induced in an Escherichia coli strain carrying a plasmid, a simultaneous increase in TNT and RDX nitroreductase activities was observed. In addition, neither TNT nor RDX nitroreductase activity was detected in nitrofurazone-resistant mutants of M. morganii. We conclude that a type I nitroreductase present in these two enteric bacteria was responsible for the nitroreduction of both types of explosive.  相似文献   

8.
The biological activity of many nitrosubstituted compounds, many of which are produced commercially or have been identified as environmental contaminants, is dependent on metabolic activation catalyzed by nitroreductases. In the current study, we have cloned a nitroreductase gene, Salmonella typhimurium nitroreductase A (snrA), from S. enterica serovar Typhimurium strain TA1535, and characterized the purified gene product. SnrA is 240 amino acids in length and shares 87% sequence identity to the Escherichia coli homolog, E. coli nitroreductase A (NfsA). SnrA is the major nitroreductase in S. enterica serovar Typhimurium strain TA1535 and catalyzes nitroreduction through a ping-pong bi-bi mechanism in a NADPH and flavine mononucleotide (FMN) dependent manner. SnrA exhibits extremely low levels of FMN reductase activity but the nitroreductase activity of SnrA is competitively inhibited by exogenously added FMN. Treatment of TA1535 with paraquat resulted in induction of nitroreductase activity, suggesting that SnrA is a member of the S. enterica serovar Typhimurium SoxRS regulon associated with cellular defense against oxidative damage. Examination of the microbial genomes databases shows that SnrA homologs are widely distributed in the microbial world, being present in isolates of both Archea and Eubacteria. Southern hybridization and PCR failed to detect the snrA gene in the closely related S. enterica serovar Typhimurium strain TA1538. S. enterica serovar Typhimurium strains TA1535 and TA1538 and their derivatives are commonly used in mutagenicity testing. Differences in metabolic capacity between these two strains may have implications for the interpretation of mutagenicity data.  相似文献   

9.
Enterococcus casseliflavus and Enterococcus gallinarum strains resistant to metronidazole, nitrofurantoin and nitrofurazone were isolated from fecal samples of a patient with recurrent ulcerative colitis treated with metronidazole. Unlike other metronidazole-resistant bacteria, these strains produced nitroreductase but metabolized metronidazole to compounds that could not be detected by liquid chromatography with UV or mass spectral analysis. Metronidazole-susceptible Clostridium perfringens grew equally well in spent cultures of Enterococcus spp. incubated with or without metronidazole. These data indicate that the nitroreductases produced by these Enterococcus strains did not activate metronidazole to bactericidal metabolites and these bacteria may reduce the effectiveness of metronidazole. We have indirect evidence for an alternative pathway that results in metronidazole resistance. These strains of enterococcus had nitroreductase so resistance should not have occurred.  相似文献   

10.
The enzyme activity of the rat hindgut microflora maintained in an anaerobic two-stage continuous culture was compared with that of rat cecal contents. A qualitative comparison (API ZYM) showed a high degree of similarity between the two populations. Quantitative determinations showed that azoreductase, beta-glucosidase, nitrate reductase, and nitroreductase activities were comparable, and that beta-glucuronidase activity was very low in the culture. beta-Glucuronidase, beta-glucosidase, and nitrate reductase activities were induced within the culture by their respective substrates. Bile acids influenced microbial activity in vitro, with cholic acid inducing beta-glucosidase, azoreductase, and beta-glucuronidase activities and decreasing nitrate reductase activity. Chenodeoxycholic acid increased beta-glucosidase and beta-glucuronidase activities and decreased azoreductase, nitrate reductase, and nitroreductase activities in vitro. These studies demonstrate that the rat hindgut microflora may be successfully cultured in vitro and suggest control mechanisms that regulate the metabolic activity of these organisms in vivo.  相似文献   

11.
Nifurtimox and nitrofurantoin are reduced by intact rat liver mitochondria to nitro anion radicals whose autoxidation generates superoxide anion as detected by direct electron spin resonance spectroscopy and by spin-trapping experiments, respectively. Although nitroreduction occurred in the presence of respiratory substrates such as beta-hydroxybutyrate, malate-glutamate, succinate, or endogenous substrates, nitro anion radical formation activity was much greater on addition of exogenous reduced pyridine nucleotides. NAD(P)H generated from endogenous mitochondrial NAD(P)+ by intramitochondrial reactions could not be used for the NAD(P)H nitroreductase reactions unless the mitochondria were solubilized by detergent. In addition, NAD(P)H nitroreductase activity was detected in the crude mitochondrial outer membrane fraction, with a higher activity than in mitoplasts and intact mitochondria. These results provide direct evidence of a nitrofuran reductase activity associated with the mitochondrial outer membrane that is far more important than that of respiratory chain enzymes.  相似文献   

12.
The enzyme activity of the rat hindgut microflora maintained in an anaerobic two-stage continuous culture was compared with that of rat cecal contents. A qualitative comparison (API ZYM) showed a high degree of similarity between the two populations. Quantitative determinations showed that azoreductase, beta-glucosidase, nitrate reductase, and nitroreductase activities were comparable, and that beta-glucuronidase activity was very low in the culture. beta-Glucuronidase, beta-glucosidase, and nitrate reductase activities were induced within the culture by their respective substrates. Bile acids influenced microbial activity in vitro, with cholic acid inducing beta-glucosidase, azoreductase, and beta-glucuronidase activities and decreasing nitrate reductase activity. Chenodeoxycholic acid increased beta-glucosidase and beta-glucuronidase activities and decreased azoreductase, nitrate reductase, and nitroreductase activities in vitro. These studies demonstrate that the rat hindgut microflora may be successfully cultured in vitro and suggest control mechanisms that regulate the metabolic activity of these organisms in vivo.  相似文献   

13.
A series of 2-(2-nitrophenyl)benzothiazole 7, 2-(2-nitrophenyl)benzoxazole 10 and 2-(2-nitrophenyl)benzimidazole 13 derivatives have been synthesised and assessed as indicators of nitroreductase activity across a range of clinically important Gram negative and Gram positive bacteria. The majority of Gram negative bacteria produced strongly fluorescent colonies with substrates 7 and 10 whereas fluorescence production in Gram positive bacteria was less widespread. The l-alanine 16 and 19 and β-alanine 21 and 23 derivatives have been prepared from 2-(2-aminophenyl)benzothiazole 14 and 2-(2-aminophenyl)benzoxazole 17. These four compounds have been evaluated as indicators of aminopeptidase activity. The growth of Gram positive bacteria was generally inhibited by these substrates but fluorescent colonies were produced with the majority of Gram negative bacteria tested.  相似文献   

14.
AIMS: To assess glycosidase activities from a range of Lactobacillus and Pediococcus species and characterize these activities under conditions pertinent to the wine industry. METHODS AND RESULTS: Lactic acid bacteria were cultured in MRS broth supplemented with apple juice before being harvested, washed and assayed for glycosidase activity using p-nitrophenol-linked substrates. All strains exhibited a detectable capacity for the hydrolysis of the beta- and alpha-d-glucopyranosides. The magnitude of these activities and their response to the physico-chemical parameters investigated varied in a strain-dependent manner. The use of an assay buffer with a pH below 4 generally resulted in a reduced hydrolysis of both substrates while temperature optima ranged between 35 and 45 degrees C. The effect of the inclusion of ethanol in the assay buffer (up to 12%, v/v) ranged from near complete inhibition to increases in activity approaching 80%. With the clear exception of a single strain, glucose and fructose (0.1-20 g l(-1)) acted as inhibitors. An assessment of glycosidase activity during simultaneous exposure to glucose and ethanol at a pH of 3.5 suggested that ethanol decreased loss of activity under these wine-like conditions. CONCLUSIONS: Lactobacillus spp. and Pediococcus spp. possess varying degrees of beta- and alpha-d-glucopyranosidase activities, which in turn are influenced differently by exposure to ethanol and/or sugars, temperature and pH. Several strains appeared suited for further evaluation under winemaking conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: This work highlights the fact that strains of Lactobacillus and Pediococcus have the potential to influence the glycoside composition of wine. Tailoring of wine may therefore be possible through selective application of strains or enzymatic extracts thereof.  相似文献   

15.
AIMS: To isolate the micro-organisms from three soil samples obtained from a subtropical forest of Puerto Iguazu (Argentina), to analyse them for detection of the biotechnologically interesting enzymatic activities lipase, esterase, cellulase, xylanase and pectinase, and to identify the most active strain. METHODS AND RESULTS: A total of 724 strains were isolated using different culture media and temperatures, and 449 of them showed at least one of the hydrolytic activities pursued. Lipolytic activity of the lipid-degrading strains was further determined using MUF-butyrate and MUF-oleate as substrates. The alkalophilic strain CR-179, one of the most active for all the enzymatic activities assayed, was characterized and preliminarily identified by morphological, physiological and 16S rDNA tests, as a Bacillus sp. closely related to Bacillus subtilis. CONCLUSIONS: Highly hydrolytic strains were isolated from all soil samples, suggesting the existence of a microbial community well-adapted to nutrient recycling. Strain CR-179, one of the most active, has been preliminarily identified as a Bacillus sp. SIGNIFICANCE AND IMPACT OF THE STUDY: A collection of hydrolytic strains with high biotechnological potential was obtained. Presence of sequences codifying for a lipolytic system related to the B. subtilis group lipases was revealed by PCR for the best lipolytic strain.  相似文献   

16.
AIMS: Bacteria are important residents of water systems, including those of space stations which feature specific environmental conditions, such as lowered effects of gravity. The purpose of this study was to compare responses with modelled reduced gravity of space station, water system bacterial isolates with other isolates of the same species. METHODS AND RESULTS: Bacterial isolates, Stenotrophomonas paucimobilis and Acinetobacter radioresistens, originally recovered from the water supply aboard the International Space Station (ISS) were grown in nutrient broth under modelled reduced gravity. Their growth was compared with type strains S. paucimobilis ATCC 10829 and A. radioresistens ATCC 49000. Acinetobacter radioresistens ATCC 49000 and the two ISS isolates showed similar growth profiles under modelled reduced gravity compared with normal gravity, whereas S. paucimobilis ATCC 10829 was negatively affected by modelled reduced gravity. CONCLUSIONS: These results suggest that microgravity might have selected for bacteria that were able to thrive under this unusual condition. These responses, coupled with impacts of other features (such as radiation resistance and ability to persist under very oligotrophic conditions), may contribute to the success of these water system bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: Water quality is a significant factor in many environments including the ISS. Efforts to remove microbial contaminants are likely to be complicated by the features of these bacteria which allow them to persist under the extreme conditions of the systems.  相似文献   

17.
In bacteria, 4-nitroquinoline-1-oxide (NQO) causes primarily mutations of the base-substitution type although frameshift mutations are also induced. The adducts formed are presumably recognized by error-prone DNA repair enzymes as evidenced by the much greater activity in plasmid pKM101-bearing tester strains. Although reduction of the nitro group appears to be required for mutagenic activity, this reduction is not catalyzed by the nitroreductase required for the demonstration of the mutagenicity in bacteria of other nitro-containing mutagens (nitrofurans, 2-nitronaphthalene, nitrofluorenes). The reduction of the nitro group appears to be catalyzed by a different nitroreductase. The mutagenicity of the non-carcinogenic 3-methyl-4-nitroquinoline-1-oxide (meNQO) may be related to this newly recognized nitroreductase. It is proposed, further, that the ultimate mutagenic intermediates derived from NQO and MeNQO differ.  相似文献   

18.
A series of fluorogenic heterocyclic azides were prepared and assessed as reductase substrates across a selection of Gram-negative and Gram-positive microorganisms. The majority of these azides showed similar activity profiles to nitroreductase substrates. Microorganisms that do not produce hydrogen sulfide reduced the azides, indicating reductase activity was not linked to hydrogen sulfide production.  相似文献   

19.
N-Nitroso compounds, such as N-nitrosodiethylamine (NDEA), are a versatile group of chemical carcinogens, being suspected to be involved in gastrointestinal tumors in humans. The intestinal microflora can modify a wide range of environmental chemicals either directly or in the course of enterohepatic circulation. Nitroreductases from bacteria seem to have a wide spectrum of substrates, as observed by the reduction of several nitroaromatic compounds, but their capacity to metabolize N-nitroso compounds has not been described. To elucidate the participation of nitroreductase or acetyltransferase enzymes in the mutagenic activity of NDEA, the bacterial (reverse) mutation test was carried out with the strains YG1021 (nitroreductase overexpression), YG1024 (acetyltransferase overexpression), TA98NR (nitroreductase deficient), and TA98DNP6 (acetyltrasferase deficient), and YG1041, which overexpresses both enzymes. The presence of high levels of acetyltransferase may generate toxic compounds that must be eliminated by cellular processes or can lead to cell death, and consequently decrease the mutagenic effect, as can be observed by the comparison of strain TA98DNP6 with the strains TA98 and YG1024. The slope curves for TA98 strain were 0.66 rev/microM (R(2) = 0.51) and 52.8 rev/microM (R(2) = 0.88), in the absence and presence of S9 mix, respectively. For YG1024 strain, the slope curve, in the presence of S9 mix was 6897 rev/microM (R(2) = 0.78). Our data suggest that N-nitroso compounds need to be initially metabolized by enzymes such as cytochromes P450 to induce mutagenicity. Nitroreductase stimulates toxicity, while acetyltransferase stimulates mutagenicity, and nitroreductase can neutralize the mechanism of mutagenicity generating innoccuos compounds, probably by acting on the product generated after NDEA activation.  相似文献   

20.
AIMS: The purpose of this study was to investigate the influence of co-substrates, such as glucose and cysteine, on the structure of microbial aggregates in anaerobic digesters treating oleate, a long-chain fatty acid (LCFA). METHODS AND RESULTS: Transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) were used to examine the structure of microbial aggregates. Fluorescence in situ hybridization (FISH) techniques were also used to characterize and localize the different trophic groups present in the aggregates. Oleate was found to inhibit the methanogenic activity and formation of granular biomass in digesters. The addition of co-substrates, such as glucose and cysteine either singly or in combination, increased the methanogenic activity and formation of granular biomass. Glucose was more effective than cysteine in reducing the inhibition by oleate on the methanogenic bacteria and in enhancing the formation of granules. CONCLUSIONS: The addition of nutrient substrate, such as glucose and cysteine could decrease the toxicity of LCFA on anaerobic granulation. SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that the addition of other substrates might decrease the toxicity of LCFA on the granulation of biomass in anaerobic digesters and enhance methanogenic activity. A combination of TEM, CLSM and FISH techniques provides a better tool for visualizing microbial aggregates and for differentiating and localizing different microbial groups within these aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号