首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of camel lens zeta-crystallin, an NADPH:quinone oxidoreductase, with several quinone derivatives was examined by fluorescence spectroscopy and activity measurements. Fluorescence of zeta-crystallin was quenched to different levels by the different quinones:juglone (5-OH, 1,4 naphthoquinone), 1,4 naphthoquinone (1,4-NQ), and 1,2 naphthoquinone (1,2-NQ) considerably quenched the fluorescence of zeta-crystallin, where as the commonly used substrate, 9,10-phenanthrenequinone (PQ) did not induce significant quenching. Activity measurements showed only PQ served as a substrate for camel lens zeta-crystallin, while juglone, 1,4-NQ, and 1,2-NQ were inhibitors. Thus quinones that interacted with zeta-crystallin directly inhibited the enzyme, whereas the substrate had very low affinity for the enzyme in the absence of NADPH. Another substrate, dichlorophenol indophenol (DCIP), conformed to the same pattern; DCIP did not quench the fluorescence of the enzyme significantly, but served as a substrate. This pattern is consistent with an ordered mechanism of catalysis with quinone being the second substrate. All three naphthoquinones were uncompetitive inhibitors with respect to NADPH and noncompetitive with respect to PQ. These kinetics are similar to those exhibited by cysteine- and/or lysine-modifying agents. Juglone, 1,4-NQ, and 1,2-NQ interacted with and quenched the fluorescence of camel lens alpha-crystallin, but to lesser extent than that of zeta-crystallin.  相似文献   

2.
The response of the hexose monophosphate shunt (HMS) in organ-cultured guinea pig lens to 1,2-naphthoquinone and 5-hydroxy-1,4-naphthoquinone (juglone) has been investigated. Both these compounds, which are substrates of guinea pig lens zeta-crystallin (NADPH:quinone oxidoreductase), were found to cause increases in the rate of 14CO2 production from 1-14C-labelled glucose. Exposure of lenses to 15 microM 1,2-naphthoquinone or 20 microM juglone yielded 5.9- and 7-fold stimulation of HMS activity, respectively. Unlike hydrogen peroxide-induced stimulation of HMS activity, these effects were not abolished by preincubation with the glutathione reductase inhibitor, 1,3-bis(2-chloroethyl)-1 nitrosourea (BCNU). While hydrogen peroxide produced substantial decrements in lens glutathione (GSH) levels, incubation with quinones was not associated with a similar reduction in GSH concentration. Protein-bound NADPH content in quinone-exposed guinea pig lenses was decreased, with a concomitant increase in the amounts of free NADP+. This finding supported the involvement of zeta-crystallin bound NADPH in the in vivo enzymic reduction of quinones. Hydrogen peroxide, on the other hand, caused decreases in the level of free NADPH alone, serving to confirm our earlier inference that quinone stimulated increases in the guinea pig lens HMS could be mediated through zeta-crystallin NADPH:quinone oxidoreductase activity.  相似文献   

3.
Interaction of camel lens zeta-crystallin with the hydrophobic probe 1-anilinonaphthalene-8-sulfonic acid (ANS) enhanced the ANS fluorescence and quenched the protein fluorescence. Both of these events were concentration-dependent and showed typical saturation curves suggesting specific ANS-zeta-crystallin binding. Quantitative analysis indicated that 1 mole zeta-crystallin bound at most 1 mole ANS. NADPH but not 9,10-phenanthrenequinone (PQ) was able to displace zeta-crystallin-bound ANS. These results suggested the presence of a hydrophobic domain in zeta-crystallin, possibly at the NADPH binding site. alpha-Crystallin as well as NADPH protected zeta-crystallin against thermal inactivation suggesting the importance of this site for enzyme stability. The NADPH:quinone oxidoreductase activity of zeta-crystallin was inhibited by ANS with NADPH as electron donor and PQ as electron acceptor. Lineweaver-Burk plots indicated mixed-type inhibition with respect to NADPH, with a K(i) of 2.3 microM. Secondary plots of inhibition with respect to NADPH indicated a dissociation constant (K'I) of 12 microM for the zeta-crystallin-NADPH-ANS complex. The K(i) being smaller than K'I suggested that competitive inhibition at the NADPH binding site was predominant over non-competitive inhibition. Like ANS-zeta-crystallin binding, inhibition was dependent on ANS concentration but independent of incubation time.  相似文献   

4.
zeta-Crystallin, a major lens protein of certain mammalian species, has recently been characterized as a novel and active NADPH:quinone oxidoreductase. Here we report the purification of this protein from guinea pig liver by utilizing sequentially: ammonium sulphate precipitation, Blue Sepharose affinity, cation exchange and hydrophobic chromatography steps. This four-step isolation procedure yielded 118-fold purification and a specific activity of 6 U/mg protein when assayed in the presence of 9,10-phenanthrenequinone. Kinetic, immunological and physical properties of this protein have been found to be identical with those of guinea pig lens zeta-crystallin. Western blot analysis using antibodies raised against zeta-crystallin peptides demonstrated the presence of substantial amounts of this protein in human liver homogenates.  相似文献   

5.
The reactions of NADPH oxidation by quinones and inorganic complexes catalyzed by NADPH: adrenodoxin reductase were studied. The catalytic constant for the enzyme at pH 7.0 is 20-25 s-1; the oxidative constants for the quinones vary from 5 X 10(5) to 1.1 X 10(3) M-1 s-1 and show an increase with a rise in the one-electron acceptor reduction potential. The mode of adrenodoxin reductase interaction with oxyquinones differs from that of the enzyme interaction with alkyl-substituted quinones and inorganic complexes. NADPH competitively inhibits electron acceptors, whereas NADP+ is a competitive inhibitor of NADPH and a uncompetitive inhibitor of electron acceptors. (Ki = 25 microM). The depth of FAD incorporation into the enzyme molecule as calculated according to the outer sphere electron transfer theory is 6.1 A.  相似文献   

6.
Camel lens zeta-crystallin was reversibly inhibited to various degrees by aspirin (acetyl salicylic acid) and the aspirin-like analgesics: paracetamol (acetaminophen) and ibuprofen (2-(4-isobutyl phenyl)-propionic acid). Among these, aspirin was the most potent inhibitor, causing nearly complete inhibition in a dose-dependent, but time-independent manner. Analysis of inhibition kinetics revealed that aspirin was uncompetitive inhibitor (K(i) 0.64 mM) with respect to NADPH and non-competitive inhibitor (K(i) 1.6 mM) with respect to the substrate, 9,10-phenanthrenequinone (PQ). Multiple-inhibition analysis showed that aspirin and pyridoxal 5' phosphate (PAL-P), a lysine specific reagent, simultaneously bound to a critical lysine residue located towards the NADPH binding region. Consistent with this, NADPH was able to substantially protect zeta-crystallin against aspirin, whereas PQ did not provide any protection. The results suggested that an essential lysine residue was the locus of aspirin binding. The inhibition of zeta-crystallin by aspirin and aspirin-like analgesics was reversible thus eliminating acetylation as a mechanism for inhibition. Reversible binding of aspirin to this lysine may cause steric hindrance resulting in uncompetitive inhibition with respect to NADPH.  相似文献   

7.
The present study demonstrated that the 38-kDa protein, instead of rho-crystallin (36 kDa), is expressed taxon specifically in the lens of Japanese tree frog (Hyla japonica). The 38-kDa protein was distinguished from rho-crystallin expressed in the lenses of bullfrog (Rana catesbeiana) and European common frog (Rana temporaria) immunochemically. Although the N terminus of the 38-kDa protein was blocked, the analyses of partial amino acid sequences showed that the protein was zeta-crystallin. Analysis of cDNA sequence encoding zeta-crystallin of the tree frog lens demonstrated that the deduced protein consisted of 329 amino acids including initial methionine and having 62.2 and 62.9% identity with zeta-crystallin of camel and guinea pig lenses, respectively. The molecular mass of the deduced structure was calculated to be 35,564 Da. zeta-Crystallin of the tree frog lens exhibited the intrinsic enzymatic activity of quinone reductase (EC, NADPH:quinone oxidoreductase). The crystallin specifically catalyzed the reduction of 9,10-phenanthrenequinone (Km, 42 microm) using NADPH (Km, 60 microm) as a cofactor. The enzymatic activity was inhibited by dicumarol, anti-coagulant drug, with IC50 of 4 microm. On gel filtration chromatography, the crystallin was recovered as 150-kDa molecular mass complex, indicating that the crystallin was homotetramer consisting of 38-kDa subunits. The crystallin gene was expressed specifically in the lens. These results show that taxon-specific crystallins such as zeta- and rho-crystallins may be available for the biochemical discrimination of Hyla- and Rana groups among frogs.  相似文献   

8.
Mammalian thioredoxin reductases (TrxR) are important selenium-dependent antioxidant enzymes. Quinones, a wide group of natural substances, human drugs, and environmental pollutants may act either as TrxR substrates or inhibitors. Here we systematically analyzed the interactions of TrxR with different classes of quinone compounds. We found that TrxR catalyzed mixed single- and two-electron reduction of quinones, involving both the selenium-containing motif and a second redox center, presumably FAD. Compared with other related pyridine nucleotide-disulfide oxidoreductases such as glutathione reductase or trypanothione reductase, the k(ca)(t)/K(m) value for quinone reduction by TrxR was about 1 order of magnitude higher, and it was not directly related to the one-electron reduction potential of the quinones. A number of quinones were reduced about as efficiently as the natural substrate thioredoxin. We show that TrxR mainly cycles between the four-electron reduced (EH(4)) and two-electron reduced (EH(2)) states in quinone reduction. The redox potential of the EH(2)/EH(4) couple of TrxR calculated according to the Haldane relationship with NADPH/NADP(+) was -0.294 V at pH 7.0. Antitumor aziridinylbenzoquinones and daunorubicin were poor substrates and almost inactive as reversible TrxR inhibitors. However, phenanthrene quinone was a potent inhibitor (approximate K(i) = 6.3 +/- 1 microm). As with other flavoenzymes, quinones could confer superoxide-producing NADPH oxidase activity to mammalian TrxR. A unique feature of this enzyme was, however, the fact that upon selenocysteine-targeted covalent modification, which inactivates its normal activity, reduction of some quinones was not affected, whereas that of others was severely impaired. We conclude that interactions with TrxR may play a considerable role in the complex mechanisms underlying the diverse biological effects of quinones.  相似文献   

9.
zeta-Crystallin is a taxon-specific crystallin found in the eye lens of guinea pig and other hystricomorph rodents and camelids. It is an NADPH:quinone oxidoreductase and is also present in low amounts in other tissues where it might act as a detoxifying enzyme. A lens-specific promoter confers lens-specific expression of the gene in high amounts where it is speculated to play a structural role in maintaining the transparency of the lens ensemble. A deletion mutation leads to autosomal dominant congenital cataract and also results in the loss of NADPH binding. In order to perform structural studies with the protein with an aim to delineate the cause of cataract in these mutant guinea pigs, recombinant zeta-crystallin was cloned and expressed in Escherichia coli. The overexpression of the protein in E. coli resulted in a major fraction of it partitioning into inclusion bodies. The co-overexpression of the bacterial chaperone system GroEL/ES along with zeta-crystallin could significantly enhance the yield of soluble protein. Active zeta-crystallin could then be purified from the E. coli using Mono Q anion exchange FPLC and was found to be identical to the native zeta-crystallin isolated from the guinea pig lens with respect to size, spectral properties, and activity.  相似文献   

10.
Fluorescence spectrum of camel lens zeta-crystallin, a major protein in the lens of camelids and histicomorph rodents, showed maximum emission at 315 nm. This emission maximum is blue shifted compared to most proteins, including alpha-crystallin, and appeared to be due to tryptophan in highly hydrophobic environment. Interaction of NADPH with zeta-crystallin quenched the protein fluorescence and enhanced the fluorescence of bound NADPH. Analysis of fluorescence quenching suggested high-affinity interaction between NADPH and zeta-crystallin with an apparent Km<0.45 microM. This value is at least an order of magnitude lower than that suggested by activity measurements. Analysis of NADPH fluorescence showed a biphasic curve representing fluorescence of free- and bound-NADPH. The intersection between free- and bound-NADPH closely paralleled the enzyme concentration, suggesting one mole of NADPH was bound per subunit of the enzyme. Phenanthrenequinone (PQ), the substrate of zeta-crystallin, also was able to quench the fluorescence of zeta-crystallin, albeit weaker than NADPH. Quantitative analysis suggested that zeta-crystallin had low affinity for PQ in the absence of NADPH, and PQ binding induced significant conformational changes in zeta-crystallin.  相似文献   

11.
NAD(P)H:quinone acceptor oxidoreductases are flavoenzymes expressed in the cytoplasm of many tissues and afford protection against the cytotoxic effects of electrophilic quinones by catalyzing a strict two-electron reduction. Such enzymes have been reported from several mammalian sources, e.g. human, mouse and rat, and from plant species. Here, we report identification of Lot6p (YLR011wp), the first soluble quinone reductase from the unicellular model organism Saccharomyces cerevisiae. Localization studies using an antibody raised against Lot6p as well as microscopic inspection of Lot6p-GFP demonstrated accumulation of the enzyme in the cytosol of yeast cells. Despite sharing only 23% similarity to type 1 human quinone reductase, Lot6p possesses biochemical properties that are similar to its human counterpart. The enzyme catalyzes a two-electron reduction of a series of natural and artificial quinone substrates at the expense of either NADH or NADPH. The kinetic mechanism follows a ping-pong bi-bi reaction scheme, with K(M) values of 1.6-11 microm for various quinones. Dicoumarol and Cibacron Marine, two well-known inhibitors of the quinone reductase family, bind to Lot6p and inhibit its activity. In vivo experiments demonstrate that the enzymatic activity of Lot6p is consistent with the phenotype of both Deltalot6 and Lot6p overexpressing strains, suggesting that Lot6p may play a role in managing oxidative stress in yeast.  相似文献   

12.
The zeta-crystallin (ZCr) gene P1 of Arabidopsis thaliana, known to confer tolerance toward the oxidizing drug 1,1'-azobis(N, N-dimethylformamide) (diamide) to yeast [Babiychuk, E., Kushnir, S., Belles-Boix, E., Van Montagu, M. & Inzé, D. (1995) J. Biol. Chem. 270, 26224], was expressed in Escherichia coli to characterize biochemical properties of the P1-zeta-crystallin (P1-ZCr). Recombinant P1-ZCr, a noncovalent dimer, showed NADPH:quinone oxidoreductase activity with specificity to quinones similar to that of guinea-pig ZCr. P1-ZCr also catalyzed the divalent reduction of diamide to 1,2-bis(N,N-dimethylcarbamoyl)hydrazine, with a kcat comparable with that for quinones. Two other azodicarbonyl compounds also served as substrates of P1-ZCr. Guinea-pig ZCr, however, did not catalyze the azodicarbonyl reduction. Hence, plant ZCr is distinct from mammalian ZCr, and can be referred to as NADPH:azodicarbonyl/quinone reductase. The quinone-reducing reaction was accompanied by radical chain reactions to produce superoxide radicals, while the azodicarbonyl-reducing reaction was not. Specificity to NADPH, as judged by kcat/Km, was > 1000-fold higher than that to NADH both for quinones and diamide. N-Ethylmaleimide and p-chloromercuribenzoic acid inhibited both quinone-reducing and diamide-reducing activities. Both NADPH and NADP+ suppressed the inhibition, but NADH did not, suggesting that sulfhydryl groups reside in the binding site for the phosphate group on the adenosine moiety of NADPH. The diamide-reducing activity of P1-ZCr accounts for the tolerance of P1-overexpressing yeast to diamide. Other possible physiological functions of P1-ZCr in plants are discussed.  相似文献   

13.
Interaction of camel lens zeta-crystallin with aspirin was investigated by activity and fluorescence measurements. Aspirin minimally inhibited the oxidoreductase activity of the enzyme and weakly quenched its fluorescence. However, significant fluorescence quenching of zeta-crystallin coincided with the appearance of a fluorescence signal characteristic of salicylic acid thereby raising the possibility that salicylic acid might have been the moiety responsible for inhibition and fluorescence quenching. Direct fluorescence measurements showed that zeta-crystallin had a much higher affinity for salicylic acid than aspirin (K(i) of about 24 microM for salicylic acid versus 630 microM for aspirin). Salicylic acid was also far more effective in inhibiting zeta-crystallin than aspirin (K(i) values were 23 microM versus 820 microM, respectively). Inhibition kinetics suggested that salicylic acid interacted with zeta-crystallin via a binding site that was distinct from that of NADPH. Salicylic acid also interacted with and quenched the fluorescence of camel lens alpha-crystallin suggesting a general mode of interaction with lens proteins. Within the normal therapeutic concentrations of salicylic acid or aspirin, only crystallin-salicylic acid interactions might be significant. These results showed that camel lens zeta- and alpha-crystallin exhibited remarkable selectivity for salicylic acid over aspirin, and thus, could be considered as salicylate-binding proteins.  相似文献   

14.
Abstract

An NAD(P)H:(quinone acceptor) oxidoreductase (EC 1.6.99.2) was purified from Glycine max seedlings by means of chromatographic procedures. After 1371-fold purification, the enzyme showed a single band in IEF corresponding to an isoelectric point of 6.1. A single band was also found in native-PAGE both by activity staining and Coomassie brilliant blue staining. The molecular mass determined in SDS-PAGE was 21900 Da, while in HPLC gel-filtration it was 61000 Da. The NAD(P)H:quinone oxidoreductase was able to use NADH or NADPH as the electron donor. Among the artificial quinones which are reduced by this enzyme, 6-hydroxydopa- and 6-hydroxydopamine-quinone are of particular interest because of their neurotoxic effects.  相似文献   

15.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the oxidative phosphorylation of glyceraldehyde 3-phosphate to 1,3-diphosphoglycerate, one of the precursors for glycolytic ATP biosynthesis. The enzyme contains an active site cysteine thiolate, which is critical for its catalytic function. As part of a continuing study of the interactions of quinones with biological systems, we have examined the susceptibility of GAPDH to inactivation by 9,10-phenanthrenequinone (9,10-PQ). In a previous study of quinone toxicity, this quinone, whose actions have been exclusively attributed to reactive oxygen species (ROS) generation, caused a reduction in the glycolytic activity of GAPDH under aerobic and anaerobic conditions, indicating indirect and possible direct actions on this enzyme. In this study, the effects of 9,10-PQ on GAPDH were examined in detail under aerobic and anaerobic conditions so that the role of oxygen could be distinguished from the direct effects of the quinone. The results indicate that, in the presence of the reducing agent DTT, GAPDH inhibition by 9,10-PQ under aerobic conditions was mostly indirect and comparable to the direct actions of exogenously-added H2O2 on this enzyme. GAPDH was also inhibited by 9,10-PQ anaerobically, but in a somewhat more complex manner. This quinone, which is not considered an electrophile, inhibited GAPDH in a time-dependent manner, consistent with irreversible modification and comparable to the electrophilic actions of 1,4-benzoquinone (1,4-BQ). Analysis of the anaerobic inactivation kinetics for the two quinones revealed comparable inactivation rate constants (k(inac)), but a much lower inhibitor binding constant (K(i)) for 1,4-BQ. Protection and thiol titration studies suggest that these quinones bind to the NAD+ binding site and modify the catalytic thiol from this site. Thus, 9,10-PQ inhibits GAPDH by two distinct mechanisms: through ROS generation that results in the oxidization of GAPDH thiols, and by an oxygen-independent mechanism that results in the modification of GAPDH catalytic thiols.  相似文献   

16.
NAD(P)H: quinone oxidoreductase (NQO1) is believed to be protective against cancer and toxicity caused by exposure to quinones and their metabolic precursors. This enzyme catalyzes the two-electron reduction of compounds, compared with one-electron reduction mediated by NADPH: cytochrome-P450 oxidoreductase which produces toxic and mutagenic free radicals. Recently we cloned and sequenced the cDNA encoding human 2.3,7,8-tetrachlorodibenzo-p-dioxin (dioxin)-inducible cytosolic NQO1 [Jaiswal et al. (1988) J. Biol. Chem. 263, 13572-13578] and provided preliminary evidence that this enzyme may correspond to diaphorase 4, an enzymatic activity present in various tissues that catalyzes the reduction of a variety of quinones by both NADH and NADPH [Edwards et al. (1980) Biochem. J. 187, 429-436]. In the present report we characterize the catalytic properties of the protein encoded by the NQO1 cDNA. The enzyme was synthesized in monkey kidney COS-1 cells transfected with a pMT2-based expression plasmid containing the NQO1 cDNA. Western blot analysis of the transfected cells using an antibody against rat liver cytosolic NQO1 revealed a 31-kDa band that was not detected in nontransfected cells. This band corresponded to a polypeptide with the same electrophoretic mobility as the endogenous NQO1 protein detected in the human hepatoblastoma (Hep-G2) cells with the same antibody. The immunoreactive protein detected in human Hep-G2 cells was induced approximately fourfold by exposure of the cultures to dioxin, an increase commensurate with the increased in quinone oxidoreductase activity. These studies suggest that the protein encoded by NQO1 cDNA is indeed similar, if not identical, to the dioxin-inducible protein band detected in human Hep-G2 cells. Further characterization of the product of NQO1 cDNA, which was present at approximately 20-30-fold higher levels in transfected COS cells than the endogenous product in uninduced human Hep-G2 cells indicated that it had very high capacity (greater than 1000-fold over background) to catalyze the reduction of 2.6-dichloroindophenol and menadione. Besides these two commonly used substrates for quinone reductase, the expressed NQO1 protein also effectively metabolized 2,6-dimethylbenzoquinone, methylene blue, p-benzoquinone, 1,4-naphthoquinone, 2-methyl-1,4-benzoquinone, with the latter being the most potent electron acceptor at 50 microM concentration of the substrate.  相似文献   

17.
Glucose dehydrogenase from rat liver microsomes was found to react not only with glucose as a substrate but also with glucose 6-phosphate, 2-deoxyglucose 6-phosphate and galactose 6-phosphate. The relative maximum activity of this enzyme was 29% for glucose 6-phosphate, 99% for 2-deoxyglucose 6-phosphate, and 25% for galactose 6-phosphate, compared with 100% for glucose with NADP. The enzyme could utilize either NAD or NADP as a coenzyme. Using polyacrylamide gradient gel electrophoresis, we were able to detect several enzymatically active bands by incubation of the gels in a tetrazolium assay mixture. Each band had different Km values for the substrates (3.0 x 10(-5)M glucose 6-phosphate with NADP to 2.4M glucose with NAD) and for coenzymes (1.3 x 10(-6)M NAD with galactose 6-phosphate to 5.9 x 10(-5)M NAD with glucose). Though glucose 6-phosphate and galactose 6-phosphate reacted with glucose dehydrogenase, they inhibited the reaction of this enzyme only when either glucose or 2-deoxyglucose 6-phosphate was used as a substrate. The Ki values for glucose 6-phosphate with glucose as substrate were 4.0 x 10(-6)M with NAD, and 8.4 x 10(-6)M with NADP; for galactose 6-phosphate they were 6.7 x10(-6)M with NAD and 6.0 x 10(-6)M with NADP. The Ki values for glucose 6-phosphate with 2-deoxyglucose 6-phosphate as substrate were 6.3 x 10(-6)M with NAD and 8.9 x 10(-6)M with NADP; and for galactose 6-phosphate, 8.0 x 10(-6)M with NAD and 3.5 x 10(-6)M with NADP. Both NADH and NADPH inhibited glucose dehydrogenase when the corresponding oxidized coenzymes were used (Ki values: 8.0 x 10(-5)M by NADH and 9.1 x 10(-5)M by NADPH), while only NADPH inhibited cytoplasmic glucose 6-phosphate dehydrogenase (Ki: 2.4 x 10(-5)M). The results indicate that glucose dehydrogenase cannot directly oxidize glucose in vivo, but it might play a similar role to glucose 6-phosphate dehydrogenase. The differences in the kinetics of glucose dehydrogenase and glucose 6-phosphate dehydrogenase show that glucose 6-phosphate and galactose 6-phosphate could be metabolized in quite different ways in the microsomes and cytoplasm of rat liver.  相似文献   

18.
zeta-Crystallin, a major taxon-specific protein of the guinea pig lens, has been shown to be distantly related to the alcohol/polyol dehydrogenase family and to specifically bind NADPH. The capacity of zeta-crystallin to function catalytically was investigated in the present study. zeta-Crystallin exhibited an NADPH-dependent oxidoreductase activity with 2,6-dichlorophenolindophenol (DCIP). The NADPH:DCIP oxidoreductase activity of zeta-crystallin exhibits a linear response with increasing protein concentration, and saturation kinetics with NADPH and DCIP. This activity was abolished by heat inactivation and immunoadsorption of the protein. Dicumarol, Cibacron blue, manganese, and sulfhydryl reagents were inhibitory.  相似文献   

19.
An intracellular, soluble 1,4-benzoquinone reductase was purified from agitated cultures of Phanerochaete chrysosporium and characterized. The quinone reductase was expressed in cultures grown under both nitrogen-sufficient and nitrogen-limiting (12 and 1.2 mM ammonium tartrate) conditions. The protein was purified to homogeneity by using ammonium sulfate fractionation, hydrophobic interaction, and ion-exchange and blue-agarose affinity chromatographies. The native flavin mononucleotide-containing protein, pI 4.3, has a molecular mass of 44 kDa as determined by gel filtration. The protein has a subunit molecular mass of ^sim22 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The quinone reductase exhibits a broad pH optimum between 5.0 and 6.5 and a temperature optimum of 30(deg)C. The enzyme catalyzes the two-electron reduction of several quinones and other electron acceptors utilizing either NADH or NADPH as an electron donor. The apparent K(infm) for 2-methoxy-1,4-benzoquinone is 2.4 (mu)M, and the apparent k(infcat) is 4.4 x 10(sup5) s(sup-1). Enzyme activity is strongly inhibited by Cibacron blue 3GA and by dicumarol.  相似文献   

20.
It was found that when Escherichia coli is grown in the presence of 0.2-0.3 mM menadione (2-methyl-1,4-naphthoquinone), an FMN-dependent NADH-quinone reductase increases more than 20-fold in the cytoplasmic fraction. The menadione-induced quinone reductase was isolated from the cytoplasmic fraction of induced cells. The purified enzyme had an Mr of 24 kDa on SDS-polyacrylamide gel electrophoresis. The enzyme required flavin as a cofactor and a half-maximum activity was obtained with 0.54 microM FMN or 16.5 microM FAD. The enzyme had a broad pH optimum at pH 7.0-8.0 and reacted with NADH, but not with NADPH. The reaction followed a ping-pong mechanism and the intrinsic Km values for NADH and menadione were estimated to be 132 microM and 2.0 microM, respectively. Dicoumarol was a simple competitive inhibitor with respect to NADH with a Ki value of 0.22 microM. The electron acceptor specificity of this enzyme was very similar to that of NAD(P)H: (quinone acceptor) oxidoreductase (EC 1.6.99.2, DT-diaphorase) from rat liver. Since menadione is reduced by the two-electron reduction pathway to menadiol, the induction of this enzyme is likely to be an adaptive response of E. coli to partially alleviate the toxicity of menadione.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号