首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sucrose uptake by sugar beet tap root tissue   总被引:2,自引:9,他引:2       下载免费PDF全文
Wyse R 《Plant physiology》1979,64(5):837-841
Sucrose uptake by discs of mature sugar beet root tissue incubated in [14C]-sucrose exhibited nonsaturating kinetics over the concentration range of 1 to 500 millimolar. Uptake was inhibited by dinitrophenol, sodium cyanide, low O2, and penetrating sulfhydryl inhibitors. ATPase inhibitors, sodium fluoride, and oligomycin reduced uptake by 20 and 40%, respectively. Uptake as asymmetrically labeled sucrose ([14C]glucose) occurred with approximately 80% retention of asymmetry, indicating a nonhydrolytic pathway. Uptake was against a concentration gradient and required metabolic energy.  相似文献   

2.
Electrical and tracer techniques were used to investigate the movement of Na+, K+ and Cl? through discs of a range of thicknesses cut from the root tissue of sugar beet, Beta vulgaris L. cv. Amono. At low external concentration the electrical resistance across a discs is less than that of an equivalent volume of solution. This does not appear to be due to a low resistance symplastic pathway but rather, to an enhanced concentration of cation in the apoplast. The resistance is proportional to the thickness of tissue. Although measurement of diffusion potential gives about 25 mV difference across the disc for a ten-fold change in cation concentration, there is little discrimination between K+ and Na+. The observed tracer kinetics of 86Rb through the disc are consistent with those of diffusion, with a coefficient of diffusion, D, of 0.19 × 10?9 m2 s?1 and a tissue partition coefficient, k, of 0.27 (or of 2.7 if referred to the cell wall phase only). 36Cl gives a similar value for D, but has a k reduced by a factor of 3.3, a result that is consistent with the diffusion potential observation. However, a much larger discrimination would have been expected from the chemically measured cation exchange capacity.  相似文献   

3.
Effect of irrigation frequency on root water uptake in sugar beet   总被引:1,自引:0,他引:1  
A 2-year trial was performed on autumn-sown sugar beet grown in pots in order to study the influence of irrigation frequency on the water used by plants along the soil profile. The outdoor pots, containing one plant each, were 1.3 m high and had circular openings, through which Time Domain Reflectometry (TDR) apparatus wave guides could be inserted. Three irrigation intervals were compared and plants were watered whenever the soil layer explored by roots had lost 30% (SWD1), 50% (SWD2) and 70% (SWD3) of the total available water (TAW). During the irrigation season, the water extracted by the plants from each layer along the soil profile (RWU) was determined by monitoring volumetric soil moisture content (), by TDR. At harvest time, root length density (RLD) along the soil profile was assessed using the Tennant method. The applied irrigation frequencies significantly affected the RWU. With the SWD3 protocol, irrigation was at longer irrigation intervals (9 days) and watering volumes were as high as 84 mm. In this treatment, the plants lost almost 60% of total water from the lower soil layer (0.6–1.0 m). In treatment SWD1, the irrigation interval was very short (3 days), and water extraction from 0.0–0.6 m soil depth was 92.0%. In the intermediate treatment, the irrigation interval was 5.5 days and a more uniform water depletion was observed along the root zone, approximately equal between the 0–0.6 and 0.6–1.0 m soil layer. Water extraction of sugar beet plants at the deeper soil layers in response to long irrigation intervals was related to an increase in water uptake efficiency of the deeper younger roots and not to an increase in root length density, which, on the contrary, decreased. This morpho-physiological acclimatization to progressive soil water deficit was coupled with an increase of the root/shoot ratio.  相似文献   

4.
Given the lack of data on the absorption of amino acids in the tap root of Beta vulgaris, we studied the uptake of valine and compared it with that of sucrose at the same concentration (1 mM). The uptake of both substrates shared some similar characteristics. In particular, the absorption in both cases was controlled by an active process as evidenced by the inhibitory effect of CCCP and inhibitors of ATPases (DES, DCCD, orthovanadate). Both absorptions also involved the thiol and histidyl groups of protein carriers included in the plasmalemma as shown by treatment with specific compounds (PCMBS, mersalyl, NEM) inhibiting the transport of the nutrients in tissues and in purified PMV. However, it was shown that these uptakes present major differences. Firstly, unlike sucrose uptake, valine uptake was very sensitive to transmembrane electrical potential. Indeed, hyperpolarizing treatment with FC increased valine uptake but did not modify sucrose uptake. By contrast, treatment with high concentrations of KCl, which should result in depolarization of the cells, considerably decreased valine uptake and activated sucrose uptake. Secondly, ion mobilizations were different in the two types of transport. Unlike sucrose, application of valine to tissues strongly modified the time course of H+ influx. By contrast, sucrose uptake was controlled by K+ involvement as shown by effects either of modulators of K+ mobilization (LiCl, TEA) or of treatments inducing K+ starvation from the external medium.  相似文献   

5.
6.
Turgor regulation of sucrose transport in sugar beet taproot tissue   总被引:5,自引:11,他引:5       下载免费PDF全文
Sink tissues that store osmotically active compounds must osmoregulate to prevent excessively high turgor. The ability to regulate turgor may be related to membrane transport of solutes and thus sink strength. To study this possibility, the kinetics of sugar uptake were determined in sugar beet (Beta vulgaris L.) taproot tissue discs over a range of cell turgors. Sucrose uptake followed biphasic kinetics with a high affinity saturating component below 20 millimolar and a low affinity linear component at higher concentrations. Glucose uptake exhibited only simple saturation type kinetics. The high affinity saturating component of sucrose and glucose uptake was inhibited by increasing cell turgor (decreasing external mannitol concentrations). The inhibition was evident as a decrease in Vmax but no effect on Km. Sucrose uptake by tissue equilibrated in dilute buffer exhibited no saturating component. Ethylene glycol, a permeant osmoticum, had no effect on uptake kinetics, suggesting that the effect was due to changes in cell turgor and not due to decreased water potential per se. p-(Chloromercuri)benzene sulfonic acid (PCMBS) inhibited sucrose uptake at low but not high cell turgor. High cell turgor caused the tissue to become generally leaky to potassium, sucrose, amino acids, and reducing sugars. PCMBS had no effect on sucrose leakage, an indication that the turgor-induced leakage of sucrose was not via back flow through the carrier. The ability of the tissue to acidify the external media was turgor dependent with an optimum at 300 kilopascals. Acidification was sharply reduced at cell turgors above or below the optimum. The results suggest that the secondary transport of sucrose is reduced at high turgor as a result of inhibition of the plasma membrane ATPase. This inhibition of ATPase activity would explain the reduced Vmax and leakiness to low molecular weight solutes. Cell turgor is an important regulator of sucrose uptake in this tissue and thus may be an important determinant of sink strength in tissues that store sucrose.  相似文献   

7.
When turgor was increased, by decreasing the concentration of mannitol bathing discs of sugar beet storage root tissue, the rates of sucrose and potassium uptake into the vacuole were decreased. At all external mannitol concentrations the rate of sucrose and potassium uptake across the plasma membrane was an order of magnitude greater than the rate of quasi-steady uptake into the vacuole, implying a very large efflux. Efflux of both sucrose and potassium was increased at high turgor. However, while increasing turgor decreased the rate of K+ uptake, the rate of sucrose uptake at the plasma membrane increased with time. Compartmental analysis of tracer exchange kinetics was used to determine unidirectional K+ fluxes. From these results, it was estimated that the increase in K+ efflux accompanying a 1.5 MPa increase in turgor could lead to a net increase of 140mol?3h?1 in the external potassium concentration. It is suggested that the turgor-imposed increase in solute efflux is a means of regulating intracellular osmotic pressure and/or turgor in sugar beet storage roots, but that sucrose is preferentially retrieved from the apoplast, even under conditions of excessively high turgor. However, much of this sucrose is probably lost from the cell, implying a ‘futile’ sucrose transport cycle at the plasma membrane. The turgor-stimulated leak of potassium could play a major role in the regulation of turgor pressure in sugar beet storage root tissue.  相似文献   

8.
Summary Sugar-beet plants, germinated in growth cabinets at 20°C and transplanted into the field after 3 weeks, developed much larger roots than plants grown from seed drilled directly into the soil. At the end of the season, the roots of transplants were 39% greater than from drilled seed—an increase of 14 m tons per hectare. The increased yield was mainly due to a sustained increase in photosynthesis because of the larger sink for carbohydrates provided by plants from the growth cabinets.  相似文献   

9.
J. Willenbrink  Sabine Doll 《Planta》1979,147(2):159-162
The uptake of sucrose against a concentration gradient into the dextran-impermeable [3H]H2O space of red beet (Beta vulgaris L.) vacuoles has been studied using silicone-layer-filtering centrifugation on both fluorometric and 14C-measurement of sucrose. Sucrose transport into vacuoles proceeds partly by an active transport system and partly by passive permeation. The K M(20°C) for active sucrose uptake was found to be about 22 mM and the V Max(20°C) was about 174 nmol sucrose x (unit betacyanin)-1 x h-1. The temperature dependency of sucrose transport appears to have an activation energy of 35,0 KJ×mol-1. Among various mono-, di-, and trisaccharides tested, raffinose acts as a competitive inhibitor of sucrose uptake.Abbreviations EDTA ethylenediamine tetraacetic acid - fr. wt. fresh weight - Tris tris-(hydroxymethyl)-aminomethan  相似文献   

10.
Ammonium sulfate, ammonium carbonate or ammonia gas inhibited water uptake in sugar beet roots whenever the pH was sufficiently high to cause the production of ammonia. When ammonia was removed by aeration, inhibition of the water uptake by roots was rapidly reversed. ATP at 0.2 mm appeared to either wholly or partially prevent the ammonia-induced inhibition of water uptake by roots. ATP may be involved in maintaining the structure of water pathways through the root. In roots lacking epidermis, ammonia did not inhibit water uptake by the roots. This may indicate that the site of the inhibition lies within the root epidermis.  相似文献   

11.
Apoplastic mobility of sucrose in storage parenchyma of sugar beet   总被引:2,自引:0,他引:2  
The apoplastic movement of sucrose through storage parenchyma discs (2.4 mm thick) from roots of sugar beet ( Beta vulgaris var. altissima ) was investigated in order to evaluate the suitability of the apoplast for transcellular sugar transport. The sucrose permeability of the discs (P = 5.7 × 10−8 cm s−1 at 25°C) was more than two orders of magnitude lower than that of an equally thick layer of unstirred water. This is due to the small volume fraction of free space (3.1%) and the decreased diffusion coefficient D of sucrose in the cell walls. The effective diffusion coefficient of the apoplast (6 to 9 × 10−7 cm2 s−1 at 25°C) was determined independently of the cross sectional area of free space by treating the time course of fluxes according to Fick's second law. The high diffusion resistance of the apoplast has to be considered in models of native parenchyma transport.  相似文献   

12.
A search for source leaf sucrose pools that differed in their relation to export was carried out in photosynthesizing leaves of Beta vulgaris L. The time course of depletion of [14C]sucrose in a leaf in unlabeled CO2 following steady state labeling provided evidence for two distinct sucrose pools. After the start of the light period, leaf blade sucrose remained constant although it exchanged between the two pools. Newly synthesized sucrose destined for export passed through one pool more rapidly than through the other. All of the leaf blade sucrose appeared to exchange with export sucrose. Modeling and regression analysis of [14C]sucrose data provided a means for estimating the size of the two pools. From 20 to 40% of the sucrose was calculated to be present in the pool that provided the less direct path to export; this was likely vacuolar sucrose. The remainder of the sucrose in the blade was probably in the cytoplasm and veins. Added amounts of leaf blade sucrose, produced in response to elevated CO2, appeared to be stored mainly in the vacuolar compartment.  相似文献   

13.
The storage root (taproot) of sugar beet (Beta vulgaris L.) originates from hypocotyl and primary root and contains many different tissues such as central xylem, primary and secondary cambium, secondary xylem and phloem, and parenchyma. It was the aim of this work to characterize the promoters of three taproot-expressed genes with respect to their tissue specificity. To investigate this, promoters for the genes Tlp, His1-r, and Mll were cloned from sugar beet, linked to reporter genes and transformed into sugar beet and tobacco. Reporter gene expression analysis in transgenic sugar beet plants revealed that all three promoters are active in the storage root. Expression in storage root tissues is either restricted to the vascular zone (Tlp, His1-r) or is observed in the whole organ (Mll). The Mll gene is highly organ specific throughout different developmental stages of the sugar beet. In tobacco, the Tlp and Mll promoters drive reporter gene expression preferentially in hypocotyl and roots. The properties of the Mll promoter may be advantageous for the modification of sucrose metabolism in storage roots.  相似文献   

14.
15.
Sugar beet ( Beta vulgaris L) is generally cultivated using two different planting and harvest patterns. In northern zones, spring sugar beet is sown in spring and harvested in autumn, whereas in subtropical latitudes, autumn sugar beet is sown in autumn and harvested in summer. The industrial quality of the root is frequently higher in spring-sown sugar beet crops. In order to explore physiological changes associated with this fact, this study has been focused on the seasonal changes of adenosine 5'-triphosphate and adenosine 5'-diphosphate levels in the storage roots of sugar beet plants, as an index of its metabolic status. The results obtained correspond to a different metabolic status of spring and autumn sugar beet at the moment of harvest. The adenylate patterns of autumn beets suggested a functional and active respiratory system. On the contrary, the patterns shown by spring beets corresponded to those we would expect to see in plants becoming dormant. The proline and glucose contents, which decrease the industrial quality of the root, and the respiratory rate measured in autumn-sown sugar beets, were nearly twice those of spring-sown sugar beets. The combination of an active respiratory system, which allows the carbohydrate catabolism and the synthesis of stress molecules, with the environmental factors at the time of the harvest, could be the underlying physiological mechanism causing some of the differences between spring- and autumn-sown sugar beet crops.  相似文献   

16.
The percentage of sucrose in sugar beet storage root fresh and dry matter is closely related to root structure. It has been suggested that the sucrose content might be increased by using plant growth regulators to modify storage root structure through control of cambial development, cell division and cell expansion. During storage root development correlations were found between the changing phytohormone profiles and the formation of secondary cambia and their subsequent cell division and expansion. Sugar beet root derived cell suspension cultures were used for detailed studies of the roles of endogenous phytohormones. The gibberellin synthesis inhibitor paclobutrazol was tested in cell cultures and whole plants. The observations provide a basis for development of plant growth regulator regimes to optimise sucrose yield from sugar beet.  相似文献   

17.
Rossard S  Bonmort J  Guinet F  Ponchet M  Roblin G 《Planta》2003,218(2):288-299
The uptake of cholesterol has been characterized in leaf discs from mature leaves of sugar beet (Beta vulgaris L.). This transport system exhibited a simple saturable phase with an apparent Michaelis constant ranging from 30 to 190 M depending on the sample. When present at 10 M excess, other sterols were able to inhibit cholesterol uptake. Moreover, binding assays demonstrated the presence of high-affinity binding sites for cholesterol in purified plasma membrane vesicles. In the range 1–60 M, cholesterol uptake showed an active component evidenced by action of the protonophore carbonyl cyanide m-chlorophenylhydrazone. Energy was required as shown by the inhibition of uptake induced by respiration inhibitors (NaN3), darkness and photosynthesis inhibitors [3-(3,4-dichlorophenyl)-1,1-dimethylurea, methyl viologen]. Moreover, the process was strongly dependent on the experimental temperature. Uptake was optimal at acidic pH (4.0), sensitive to ATPase modulators, inhibited by thiol reagents (N-ethylmaleimide, p-chloromercuribenzenesulfonic acid, Mersalyl) and by the histidyl-group reagent diethyl pyrocarbonate. The addition of cholesterol did not modify H+ flux from tissues, indicating that H+-co-transport was unlikely to be involved. MgATP did not increase the uptake, arguing against involvement of an ABC cassette-type transporter. By contrast, cryptogein, a sterol carrier protein from the Oomycete Phytophtora cryptogea, greatly increased absorption. Taken together, the results reported in this work suggest that plant cells contain a specific plasma membrane transport system for sterols.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - PCMBS p-chloromercuribenzenesulfonic acid - PMV plasma membrane vesicle - TLC thin-layer chromatography  相似文献   

18.
19.
通过对旱地甜菜叶片生长特性及摘除不同叶组对块根产量,含糖量,显微结构的影响研究,结果表明:甜菜第10-20片叶的叶龄最长,积温最高,是甜菜的主要功能叶;甜菜从第20片叶期起进入块根,糖份增长期,从第55叶期起进入糖份积累期;摘除不同叶组的叶片对甜菜块根产量,含糖量及显微结构均有不同程度降低作用,摘除前期叶组对甜菜块根产量,产糖量,根径减幅较大,摘除后期叶组对块根含糖量,维管束环数,维管束环密度减幅较大;摘除第1-30片叶对甜菜影响最大。  相似文献   

20.
Actinomycetes belonging to Streptomyces were isolated from the rhizosphere of sugar beet grown on an infected area after cultivation for many years. 44.1 per cent of them proved to be antagonists of phytopathogenic test fungi. The majority of the antagonists were detected among the Cinereus. The lowest number of the antagonists was detected among the Azureus, the maximum number of the antagonists was observed in the middle and at the end of the sugar beet vegetation period. During various periods of the plant development, the number of the antagonists belonging to different sections changed. The majority of the actinomycetes belonging to Streptomyces were active against Fusarium solani and Botrytis cinerea. The antagonists of the fungi were mainly detected among the representatives of the Cinereus and Helvolo-Flavus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号