首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The crude porcine pancreas lipase (PPL) extract is a mixture of several proteins (mainly lipases and esterases). In order to develop enzymatic catalysts with good catalytic properties for hydrolytic enantioselective reactions in aqueous homogeneous medium, we studied the immobilization of the different enzymes contained in the crude PPL extracts by selective sequential adsorption on hydrophobic supports bearing octyl, octadecyl and phenyl groups. Some minor proteins were selectively adsorbed on octyl and octadecyl supports while the most abundant lipase was adsorbed on the support bearing phenyl groups. The enantioselectivity of the different lipase derivatives were tested considering the hydrolysis of esters of 1,2-epoxi-1-propanol (glycidol). The most abundant lipase contained in the commercial crude PPL extract resulted almost inactive while some lipases contained in low concentrations displayed high activities and enantioselectivities. The most interesting results were obtained with a 28-kDa protein selectively adsorbed on octyl-agarose. With this enzyme derivative, the residual butyric ester of glycidol was recovered with 96% enantiomeric excess at 55% conversion.  相似文献   

2.
The lipase from Bacillus subtillus (BSL2), a highly active lipase expressed from newly constructed strain of Bacillus subtilis BSL2, is used in the kinetic resolution of glycidyl butyrate. A high enantiomeric ratio (E = 108) was obtained by using 1,4-dioxane as co-solvent (18%, v/v) and decreasing the reaction temperature to 5 °C. The ratio is about 16-fold more than that (E = 6.52) obtained in pure buffer solutions (25 °C, pH 7.8). Under the optimum conditions, the remained (R)-glycidyl butyrate with high enantiopure (ee > 98%) was obtained when the conversion was above 52%.  相似文献   

3.
Candida rugosa lipase was covalently immobilized onto silica gel in two different ways: via glutaraldehyde (LGAL) and via hydrophobic spacer arm (1,6 diamino hexane) (LSA). Free lipase, LGAL and LSA were used to investigate the hydrolysis of two different substrates, namely p-nitrophenyl palmytate (pNPP) and p-nitrophenyl acetate (pNPA), both in aqueous medium. In addition, these lipase samples were used to synthesize the pNPP from p-nitrophenol (pNP) and palmytic acid (PA) and pNPA from pNP and acetic acid (AA), both in hexane medium. Hydrolytic and synthetic activities of LSA were higher than those of free lipase and LGAL. Synthetic activities of free lipase, LGAL and LSA for pNPA in the presence of pNP and AA within hexane medium were higher than those of hydrolytic activities for pNPA in aqueous medium. The same tendency was also observed with pNPP. The effects of pH and temperature on hydrolytic and synthetic activities were investigated for all lipase preparations. Operational stability was the highest for LGAL and LSA when these enzymes were used for pNPP synthesis and in hexane medium, after 100 repeated uses, 68% and 51% of initial activities remained, respectively, at the end of 100 repeated cycles. Free lipase lost all of its activity within 15 and 20 days when stored at 25 °C and 5 °C, respectively. However, LGAL showed 54% and 70% of initial activity at the end of 60 storage days at 25 °C and 5 °C, respectively, while these values were observed as 36% and 60% for LSA.  相似文献   

4.
A Bacillus strain was screened for asymmetric resolution of (R)-Naproxen. The optical purity (ee (%)) of (R)-Naproxen was found to be 86.47% and conversion rate was 40–50% in bacterial cells PBS reaction system. The dissolved lipase was clarified from the Bacillus bacterial cells by centrifugation and loaded on a phenyl-Sepharose CL-4B column. After purification by a single hydrophobic chromatography, the activity of lipase was approximately 43 times higher than the crude one. The hydrolytic activity of lipase using Naproxen ethyl ester and p-nitrophenyl acetate (p-NPA) as substrate remained essentially constant during the purification procedure. A Bacillus strain with stereochemical selectivity was obtained.  相似文献   

5.
Racemic secondary alcohols were resolved via enantioselective acylation using succinic anhydride as acyl donor catalysed by lipase from Pseudomonas cepacia supported on celite (PS-C) in ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate [bmim]PF6. Organic base, namely triethylamine as an additive in ionic liquid has been found to enhance the rate of the reaction.  相似文献   

6.
The kinetic resolution of racemates constitutes one major route to manufacture optically pure compounds. The enzymatic kinetic resolution of (R,S)-1-phenylethanol over Candida antarctica lipase B (CALB) by using vinyl acetate as the acyl donor in the acylation reaction was chosen as model reaction. A systematic screening and optimization of the reaction parameters, such as enzyme, ionic liquid and substrates concentrations with respect to the final product concentration, were performed. The enantioselectivity of immobilized CALB commercial preparation, Novozym 435, was assayed in several ionic liquids as reaction media. In particular, three different ionic liquids: (i) 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6], (ii) 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] and (iii) 1-ethyl-3-methylimidazolium triflimide [emim][NTf2] were tested. At 6.6% (w/w) of Novozym 435, dispersed in 9.520 M of [bmim][PF6] at 313.15 K, using an equimolar ratio of vinyl acetate/(R,S)-1-phenylethanol after 3 h of bioconversion, the highest possible conversion (50%) was reached with enantiomeric excess for substrate higher than 99%.  相似文献   

7.
Lipase QL from Alcaligenes sp. is a quite thermostable enzyme. For example, it retains 75% of catalytic activity after incubation for 100 h at 55 °C and pH 7.0. Nevertheless, an improvement of the enzyme properties was intended via immobilization by covalent attachment to different activated supports and by adsorption on hydrophobic supports (octadecyl-sepabeads). This latter immobilization technique promotes the most interesting improvement of enzyme properties: (a) the enzyme is hyperactivated after immobilization: the immobilized preparation exhibits a 135% of catalytic activity for the hydrolysis of p-nitrophenyl propionate as compared to the soluble enzyme; (b) the thermal stability of the immobilized enzyme is highly improved: the immobilized preparation exhibits a half-life time of 12 h when incubated at 80 °C, pH 8.5 (a 25-fold stabilizing factor regarding to the soluble enzyme); (c) the optimal temperature was increased from 50 °C (soluble enzyme) up to 70 °C (hydrophobic support enzyme immobilized preparations); (d) the enantioselectivity of the enzyme for the hydrolysis of glycidyl butyrate and its dependence on the experimental conditions was significantly altered. Moreover, because the enzyme becomes reversibly but very strongly adsorbed on these highly hydrophobic supports, the lipase may be desorbed after its inactivation and the support may be reused. Very likely, adsorption occurs via interfacial activation of the lipase on the hydrophobic supports at very low ionic strength. On the other hand, all the covalent immobilization protocols used to immobilize the enzyme hardly improved the properties of the lipase.  相似文献   

8.
A bacterial strain (ECU1001) capable of utilizing phenyl glycidyl ether as sole carbon source and energy source was isolated from soil samples through two steps of screening and was identified as a Bacillus megaterium. The epoxide hydrolase from Bacillus megaterium ECU1001 was biosynthesized in parallel with cell growth and a maximum activity of 31.0 U/l was reached after 30 h of culture when the biomass (DCW) was 9.1 g/l. A temperature of 35°C and pH 8.0 were optimal for the bioconversion. The lyophilized whole cells of Bacillus megaterium ECU1001 could preferentially hydrolyze the (R)-enantiomer of phenyl glycidyl ether, yeilding (S)-epoxide and (R)-diol with high enantioselectivity (E=47.8). The (S)-enantiomer of the epoxide remained in the reaction mixture with >99.5% ee (enantiomeric excess) at a conversion of 55.9%. The substrate concentration could be increased up to 60 mM without affecting the ee and (S)-phenyl glycidyl ether could be obtained with an optical purity of 100% ee and 25.6% yield. Therefore, the method is potentially useful for the preparative resolution of epoxides.  相似文献   

9.
A crude lipase prepared from Carica pentagona Heilborn latex was explored as an effective enantioselective biocatalyst for the hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl ester in water-saturated organic solvents. Comparisons of the enzyme performance with that from Carica papaya lipase indicated that both lipases showed low tolerance to the hydrophilic solvent and were inhibited by (S)-naproxen and 2,2,2-trifluoroethanol. Improvements on the enzyme activity and enantioselectivty were demonstrated when both lipases in partially purified forms were employed. By using the thermodynamic analysis, the enantiomeric discrimination was mainly driven by the difference of activation enthalpy for all reaction systems except for employing Carica papaya lipase as the biocatalyst for (R,S)-fenoprofen 2,2,2-trifluoroethyl thioester.  相似文献   

10.
Lipase from Pseudomonas sp. (PSL) was immobilized on SBA-15 (a highly ordered hexagonal array mesoporous silica molecular sieve) through physical adsorption and the immobilized PSL was used in resolution of (R,S)-2-octanol with vinyl acetate as acyl donor. Enhanced activity and enantioselectivity were observed for the immobilized PSL compared with those of the free one. The effects of reaction conditions, such as solvents, temperature, water activity and substrate ratio were investigated. Under the optimum conditions, the residual (S)-2-octanol was recovered with 99% enantiomeric excess at 52% conversion. The results also indicated that the immobilized PSL maintained 90% of its initial activity even after reusing it five times.  相似文献   

11.
Oleoyl ester of -ascorbic acid was synthesized by using immobilized lipases from Candida sp. A series of solvents, such as ethanol, tetrahydrofuran, pyridine, butanol, tertiary amyl alcohol (t-amyl alcohol), hexanol, octanol and hexane (log P from −0.24 to 3.5) were investigated for the reaction, and t-amyl alcohol was found to be the most suitable from the standpoint of the substrate concentration and the enzyme activity. And the equilibrium of the reaction was affected by the addition of the molecular sieves and the temperature. Reaction carried out at 55 °C and with 50 g/l of 4 Å molecular sieves is good for the enzyme to keep its activity and for making the equilibrium go to the product. The kinetic model was studied and the result showed that the reaction can be described by Ping-Pong mechanism. Parameters value of Vm and Km′ were obtained. Last, the pure products of the reaction were attained and determined by IR spectra, mass spectrometry and 1H NMR spectra.  相似文献   

12.
【背景】开发、筛选优良益生菌菌种是当下畜牧业的研究热点,益生菌的潜在功能也被广为挖掘。【目的】分离、筛选具有良好耐受性且高产胞外蛋白酶的菌株,研究其生物学特性和酶学性质,为后续微生物蛋白酶的制备和微生态制剂的开发提供菌种资源。【方法】采集健康水貂新鲜粪便,配制酪蛋白培养基初筛和优化Folin-酚法复筛,对筛选菌进行生物学特性研究,获得产蛋白酶能力较强、耐受性较优的菌株,并进行常规鉴定和分子生物学鉴定,最后对蛋白酶酶学性质进行研究。【结果】筛选得到一株高产蛋白酶、耐受性较优的芽孢杆菌,经鉴定为枯草芽孢杆菌(Bacillussubtilis),编号为3。在初始发酵培养基条件下,酶学性质研究结果表明,该蛋白酶的最适反应温度为70℃,最适反应pH值为9.0,最佳金属离子激活剂为K+,Cu2+和Fe2+对酶活力有明显的抑制作用,在20%浓度的有机溶剂作用时蛋白酶未变性失活。【结论】从水貂粪便中分离获得一株具有良好的生物学特性、酶学性质和碱性蛋白酶活性的枯草芽孢杆菌,为该菌株在实际生产应用中提供了基础保障。  相似文献   

13.
Lipase PS from Burkholderia cepacia (formerly Pseudomonas cepacia) was successfully immobilized in sol–gels under low methanol conditions using lyophilization in order to dry the gel. The enzyme was also cross-linked with glutaraldehyde to CLEAs without any additives. These immobilized enzyme preparations were employed for the highly enantioselective acylations of 1-phenylethanol (1), 1-(2-furyl)ethanol (2) and N-acylated 1-amino-2-phenylethanol (3) with vinyl acetate in organic solvents. Enzymatic hydrolysis of the obtained ester product was observed as a side reaction of the acylation of 3 in the presence of lipase PS powder. Hydrolysis was suppressed when the immobilized preparations of lipase PS were used.  相似文献   

14.
[背景]角蛋白酶KerZ1能在60℃的最适温度下高效降解角蛋白底物,然而其在低于最适温度条件下的酶活极低,难以适应工业生产和实际应用的要求.[目的]提升角蛋白酶KerZ1的低温催化活性.[方法]结合同源比对与折叠自由能分析向角蛋白酶KerZ1引入氨基酸突变,并对突变体的酶学性质进行研究.[结果]对KerZ1柔性环区域(...  相似文献   

15.
An extracellular lipase was purified to homogeneity with a purification factor of 5.5-fold from a bacterial strain Serratia marcescens ECU1010. The purified lipase is a dimer with two homologous subunits, of which the molecular mass is 65 kDa, and the pI is 4.2. The pH and temperature optima were shown to be pH 8.0 and 45 °C, respectively. Among p-nitrophenyl esters of fatty acids with varied chain length, the lipase showed the maximum activity on p-nitrophenyl myristate (C14). The lipase was activated by some surfactants such as Gum Arabic, polyvinyl alcohol (PVA) and Pg350me, but not by Ca2+. The enzyme displayed pretty high stability in many water miscible and immiscible solvents. This is a unique property of the enzyme which makes it extremely suitable for chemo-enzymatic applications in non-aqueous phase organic synthesis including enantiomeric resolution. Several typical chiral compounds were tested for kinetic resolution with this lipase, consequently giving excellent enantioselectivities (E = 83 >100) for glycidyl butyrate (GB), 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopenten-1-one acetate (HMPCA), naproxen methyl ester (NME) and trans-3-(4′-methoxyphenyl) glycidic acid methyl ester (MPGM).  相似文献   

16.
The fungal Rhizopus chinensis could produce several types of lipase, which were mainly intracellular. During the whole-cell lipase production by this strain in submerged fermentation, it was observed that two catalytic characteristics (hydrolytic and synthetic activity) of lipases were different with addition of lipids. The hydrolytic activity of the lipase was not induced by lipids efficaciously and could be detected regardless of whether substrate-related compounds were present. However, it was found that the induction of lipids for the synthetic activity lipase was significant, and that nearly no synthetic activity was detected while the medium contained no lipids. When only a little lipid (1 g/L) was added to medium, the synthetic activity increased sharply in the initial process of fermentation. Analysis of crude membrane-bound lipase by SDS-PAGE confirmed this induction. De novo biosynthesis of lipases, especially the lipase with synthetic activity occurred only when lipids existed. Cell growth and maltose repress the lipase production with synthetic activity, but have little influence on the lipase production with hydrolytic activity. Since the production process of mycelium-bound lipase with hydrolytic activity was different, it was reasonable to consider hydrolytic activity and synthetic activity for different application purposes. Whole-cell lipase obtained from fermentation process with high synthetic activity showed excellent catalytic ability in solvent free system on synthesis of ethylcaprylate and ethyloleate, the conversion could reach more than 90% in 5 h.  相似文献   

17.
Magnetic Fe3O4 nanoparticles were prepared by chemical coprecipitation method and subsequently coated with 3-aminopropyltriethoxysilane (APTES) via silanization reaction. The synthesized materials were characterized by transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). With glutaraldehyde as the coupling agent, the lipase from Serratia marcescens ECU1010 (SmL) was successfully immobilized onto the amino-functionalized magnetic nanoparticles. The results showed that the immobilized protein load could reach as high as 35.2 mg protein g−1 support and the activity recovery was up to 62.0%. The immobilized lipase demonstrated a high enantioselectivity toward (+)-MPGM (with an E-value of 122) and it also displayed the improved thermal stability as compared to the free lipase. When the immobilized lipase was employed to enantioselectively hydrolyze (±)-trans-3-(4-methoxyphenyl)glycidic acid methyl ester [(±)-MPGM] in water/toluene biphasic reaction system for 11 consecutive cycles (totally 105 h), still 59.6% of its initial activity was retained, indicating a high stability in practical operation.  相似文献   

18.
CYP107H1, from Bacillus subtilis 168 known as fatty acid hydroxylase, showed the ortho-specific hydroxylation activity to daidzein, when coupled to the putidaredoxin reductase (camA) and putidaredoxin (camB) from Pseudomonas putida as the redox partners. The electron transfer system of the three proteins was constructed in Escherichia coli BL21 (DE3) system using the two plasmids containing different selection markers. The daidzein hydroxylation was demonstrated with recombinant whole cell and in vitro system using the artificial redox partner for electron transfer. The identification of the hydroxylation reaction yielding 7,3′,4′-trihydroxyisoflavone was elucidated using gas chromatography mass spectrometry (GC–MS). This oxidizing activity of CYP107H1 towards daidzein represents the new hydroxylation of aromatic compound as substrate.  相似文献   

19.
Purified and reconstituted quinohaemoprotein alcohol dehydrogenase (QH-EDH) from Comamonas testosteroni is shown to oxidize secondary alcohols enantioselectively. The products formed during the oxidation of secondary alcohols were positively identified as the corresponding ketones. In the oxidation of chiral secondary n-alkyl alcohols a preference of the enzyme for the S(+)alcohols was found. The apparent kinetic parameters (Km and Kmax) for a range of n-alkyl alcohols depend on the length of the alcohol chain and the location of the hydroxyl function in the chain. The enzyme is stable up to a temperature of 37 °C. Above this temperature the activity is irreversibly lost. The pH optimum of the enzyme in the conversion of secondary alcohols is 7.7.  相似文献   

20.
A Bacillus subtilis strain isolated from a hot-spring was shown to produce xylanolytic enzymes. Their associative/synergistic effect was studied using a culture medium with oat spelts xylan as xylanase inducer. Optimal xylanase production of about 12 U ml−1 was achieved at pH 6.0 and 50°C, within 18 h fermentation. At 50°C, xylanase productivity obtained after 11 h in shake-flasks, 96,000 U l−1 h−1, and in reactor, 104,000 U l−1 h−1 was similar. Increasing temperature to 55°C a higher productivity was obtained in the batch reactor 45,000 U l−1 h−1, compared to shake-flask fermentations, 12,000 U l−1 h−1. Optimal xylanolytic activity was reached at 60°C on phosphate buffer, at pH 6.0. The xylanase is thermostable, presenting full stability at 60°C during 3 h. Further increase in the temperature caused a correspondent decrease in the residual activity. At 90°C, 20% relative activity remains after 14 min. Under optimised fermentation conditions, no cellulolytic activity was detected on the extract. Protein disulphide reducing agents, such as DTT, enhanced xylanolytic activity about 2.5-fold. When is used xylan as substrate, xylanase production decreased as function of time in contrast, with trehalose as carbon source, xylanase production in maintained constant for at least 80 h fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号