首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Identification of the toxicity of compounds is more crucial before entering clinical trials. Awareness of physiochemical properties, possible targets and side effects has become a major public health issue to reduce risks. Experimental determination of analyzing the physiochemical properties of a drug, their interaction with specific receptors and identifying their side-effects remain challenging is time consuming and costly. We describe a manually compiled database named DaiCee database, which contains 2100 anticancer drugs with information on their physiochemical properties, targets of action and side effects. It includes both synthetic and herbal anti-cancer compounds. It allows the search for SMILES notation, Lipinski''s and ADME/T properties, targets and side effect profiles of the drugs. This helps to identify drugs with effective anticancer properties, their toxic nature, drug-likeness for in-vitro and in-vivo experiments. It also used for comparative analysis and screening of effective anticancer drugs using available data for compounds in the database. The database will be updated regularly to provide the users with latest information. The database is available at the URL http://www.hccbif.org/usersearch.php  相似文献   

2.
In mammals, the transport of essential elements from the gastrointestinal tract to organs is orchestrated by biochemical mechanisms which have evolved over millions of years. The subsequent organ-based assembly of sufficient amounts of metalloproteins is a prerequisite to maintain mammalian health and well-being. The chronic exposure of various human populations to environmentally abundant toxic metals/metalloid compounds and/or the deliberate administration of medicinal drugs, however, can adversely affect these processes which may eventually result in disease. A better understanding of the perturbation of these processes has the potential to advance human health, but their visualization poses a major problem. Nonetheless, liquid chromatography-inductively coupled plasma-based 'metallomics' methods, however, can provide much needed insight. Size-exclusion chromatography-inductively coupled plasma atomic emission spectrometry, for example, can be used to visualize changes that toxic metals/medicinal drugs exert at the metalloprotein level when they are added to plasma in vitro. In addition, size-exclusion chromatography-inductively coupled plasma mass spectrometry can be employed to analyze organs from toxic metal/medicinal drug-exposed organisms for metalloproteins to gain insight into the biochemical changes that are associated with their acute or chronic toxicity. The execution of such studies-from the selection of an appropriate model organism to the generation of accurate analytical data-is littered with potential pitfalls that may result in artifacts. Drawing on recent lessons that were learned by two research groups, this tutorial review is intended to provide relevant information with regard to the experimental design and the practical application of these aforementioned metallomics tools in applied health research.  相似文献   

3.
Increase in success of cancer treatment with advancement in the screening, prognosis and diagnosis protocols have significantly improved the rate of cancer survivorship. With the declining cancer mortality, however, the cancer survivors are also subjected to the adverse consequences of chemotherapy, particularly in the female reproductive system. Recent studies have shown the sensitivity of the ovarian tissue to the chemotherapeutic drugs-induced toxicity. Several in vitro and in vivo studies have assessed the toxic effects of chemotherapeutic drugs. The most frequently used chemotherapeutic drugs such as doxorubicin, cyclophosphamide, cisplatin and paclitaxel have been reported to cause ovarian damage, diminution of follicular pool reserve, premature ovarian failure and early menopause, resulting into declining fertility potential among females. The chemotherapy often employs combination of drug regimen to increase the efficacy of the treatment. However, the literature mostly consists of clinical data regarding the gonadotoxicity caused by anticancer drugs but there lacks the understanding of toxicity mechanism. Therefore, understanding of the different toxicity mechanisms will be helpful in development of possible therapeutic interventions for preservation of declining female fertility among cancer survivors. The current review comprehends the underlying mechanisms of female reproductive toxicity induced by the most commonly used chemotherapeutic drugs. In addition, the review also summarizes the recent findings related to the use of various protectants to diminish or at least in managing the toxicity induced by different chemotherapeutic drugs in females.  相似文献   

4.
Carboplatin, an analogue of "classical" cis-diamminedichloridoplatinum(II) (cisplatin), is a widely used second-generation platinum anticancer drug. Cytotoxicity of cisplatin and carboplatin is mediated by platinum-DNA adducts. Markedly higher concentrations of carboplatin are required, and the rate of adduct formation is considerably slower. The reduced toxic effects in tumor cells and a more acceptable side-effect profile are attributable to the lower reactivity of carboplatin with nucleophiles, since the cyclobutanedicarboxylate ligand is a poorer leaving group than the chlorides in cisplatin. Recently, platinum complexes were shown to be particularly attractive as potential photochemotherapeutic anticancer agents. Selective photoactivation of platinum complexes by irradiation of cancer cells may avoid enhancement of toxic side-effects, but may increase toxicity selectively in cancer cells and extend the application of photoactivatable platinum complexes to resistant cells and to a wider range of cancer types. Therefore, it was of interest to examine whether carboplatin can be affected by irradiation with light to the extent that its DNA binding and cytotoxic properties are altered. We have found that carboplatin is converted to species capable of enhanced DNA binding by UVA irradiation and consequently its toxicity in cancer cells is markedly enhanced. Recent advances in laser and fiber-optic technologies make it possible to irradiate also internal organs with light of highly defined intensity and wavelength. Thus, carboplatin is a candidate for use in photoactivated cancer chemotherapy.  相似文献   

5.
In vitro assays involving primary cells are used routinely to evaluate organ-specific toxic effects, for instance, the use of primary hepatocytes to evaluate hepatotoxicity. A major drawback of an in vitro system is the lack of multiple organ interactions as observed in a whole organism. A novel cell culture system, the integrated discrete multiorgan cell culture system (IdMOC), is described here. The IdMOC is based on the "wells within a well" concept, consisting of a cell culture plate with larger, containing wells, within each of which are multiple smaller wells. Cells from multiple organs can be cultured initially in the small wells (one organ per well, each in its specialized medium). On the day of toxicity testing, a volume of drug-containing medium is added to the containing well to flood all inner wells, thereby interconnecting all the small wells. After testing, the overlying medium is removed and each cell type is evaluated for toxicity using appropriate endpoints. We report here the application of IdMOC in the evaluation of the cytotoxicity of tamoxifen, an anticancer agent with known human toxicity, on primary cells from multiple human organs: liver (hepatocytes), kidney (kidney cortical cells), lung (small airway epithelial cells), central nervous system (astrocytes), blood vessels (aortic endothelial cells) as well as the MCF-7 human breast adenocarcinoma cells. IdMOC produced results that can be used for the quantitative evaluation of its anticancer effects (i.e., cytotoxicity towards MCF-7 cells) versus its toxicity toward normal organs (i.e., liver, kidney, lung, CNS, blood vessels).  相似文献   

6.
Tumors evolve together with the tumor microenvironment (TME) and reshape it towards immunosuppression. Immunostimulating cytokines can be used to revert this state leading to effective antitumor immune responses, but their exploitation as anticancer drugs has been hampered by severe toxicity associated with systemic administration. Local, TME-targeted delivery of immune activating cytokines can deploy their antitumoral function more effectively than systemic administration while, at the same time, avoiding exposure of healthy organs and limiting toxicity. Here, we review different gene and cell therapy platforms developed for tumor-directed cytokine delivery highlighting their potential for clinical translation.  相似文献   

7.
Experimental chemotherapy and concepts related to the cell cycle   总被引:2,自引:0,他引:2  
Scheduling of chemotherapy is limited by damage to normal tissues, and tolerated schedules are dependent on normal tissue recovery. Most anticancer drugs are more toxic to proliferating cells and the fall and recovery of granulocyte counts after chemotherapy may be explained by the effect of drugs on rapidly proliferating precursor cells in the bone marrow. It is argued that serious toxicity due to myelosuppression most often occurs because of damage to proliferating precursors that may be recognized in bone marrow rather than to stem cells. In contrast, therapy that is aimed at producing cure or long-term remission of tumours must be directed at killing tumour stem cells. The evidence that tumours contain a limited population of cells which can repopulate the tumour after treatment (and are therefore tumour stem cells) is reviewed critically. While there is quite strong evidence for a limited population of target cells, evidence from studies on metastases suggests that the tumour cells which may express this stem cell property may change with time. The stem cell concept has major implications for predictive assays. Although colony-forming assays appear to have a sound biological background for predicting tumour response, technical problems prevent them from being used routinely in patient management. Cells in tumours are known to be heterogeneous and at least three types of heterogeneity may influence tumour response to drug treatment: the development of subclones with differing properties including drug resistance; variation in cellular properties due to differentiation during clonal expansion; and variation in properties due to nutritional status and micro-anatomy. Heterogeneity in drug distribution within solid tumours may occur because of limited drug penetration from blood vessels, and nutrient-deprived cells in solid tumours may be expected to escape the toxicity of some anticancer drugs as well as being resistant to radiation because of hypoxia. This may occur both because nutrient-deprived cells have a low rate of cell proliferation, and also because of poor drug penetration to them. There is a need for improved understanding of the mechanisms that lead to cell death in tumours. If these mechanisms were understood, it might be possible to simulate them by therapeutic manoeuvres. Recent research from our laboratory suggests that the combination of low extracellular pH and hypoxia may be very toxic to cells in nutrient-deprived regions. Drugs which limit the cell's ability to survive in regions of acid pH may provide strategy for therapy of nutrient-deprived cells.  相似文献   

8.
Diabetes mellitus (DM) and cancer are global problems carrying huge human, social, and economic impact. Type 2 diabetes (T2DM) is associated with an increased risk for a number of cancers, including breast, pancreatic, and liver cancer. Moreover, adverse drug reactions are higher in paitents with cancer with T2DM compared to cancer patients without T2DM. Cellular mechanisms of hyperglycemia and chemotherapy efficacy may be different depending upon the particular cancer type and the condition of the patient. This review evaluates the effect of DM on the pharmacokinetic, pharmacodynamic, and adverse drug reactions of commonly used anticancer drugs such as cisplatin, methotrexate, paclitaxel, doxorubicin, and adriamycin in both clinical and animal models. A literature search was conducted in scientific databases including Web of Science, PubMed, Scopus, and Google Scholar including the relevant keywords. The results of the effectiveness of anticancer therapies in patients with DM are, however, inconsistent because DM can negatively impact multiple diverse entities including nerves and vascular structures, insulin-like growth factor 1, the function of the innate immune system, drug pharmacokinetics, the expression levels of hepatic CYP450, Mdr 1b and enzymes that then lead to drug toxicity. However, in a few circumstances, DM led to attenuation of the toxicity of anticancer drugs secondary to attenuation of the energy-dependent renal uptake process. Overall, the impact of DM on patients with cancer is variable because of the diverse types of cancers and the spectrum of anticancer drugs. With respect to the evidence for cancer involvement in DM pathophysiology and the response to anticancer treatment in patients with DM, many questions still remain and further clinical trials are needed.  相似文献   

9.
The effect of anticancer drugs and toxic compounds on cultures of human leukemic cells was evaluated by an enzyme-linked immunosorbent assay (Apoptosis ELISA) that uses a monoclonal antibody against single-stranded DNA to quantitate the apoptotic cells. The concentrations of 13 anticancer drugs, which increased Apoptosis ELISA absorbance, were close to the cytotoxic concentrations determined by the long-term cell survival assay. Short-term tetrazolium-based microculture tetrazolium (MTT) assay was significantly less sensitive than the Apoptosis ELISA and the cell survival assay for all anticancer drugs. For 6 drugs, cytotoxic concentrations measured by the MTT assay were at least 1 log higher than the concentrations inducing apoptosis. Importantly, in contrast to the anticancer drugs, 14 toxic chemicals did not increase the Apoptosis ELISA absorbance at cytotoxic concentrations. The difference in apoptosis induction by the anticancer drugs and the toxic chemicals was especially large in cultures treated with drug concentrations 2-fold higher than the IC(50) dose. Although all of the anticancer drugs tested induced intense ELISA reaction (mean absorbance 2.0), all toxic chemicals tested did not induce apoptosis. The Apoptosis ELISA assay could have useful applications in drug development as it can distinguish between clinically useful anticancer drugs and toxic compounds, has sensitivity similar to that of the long-term cell survival assay, and provides insight into the mechanism of drug cytotoxicity by differentiating between compounds killing cells by apoptosis and necrosis.  相似文献   

10.
Andrographolide, the major diterpenoid lactone from Andrographis paniculata, is toxic against cancer cells. In the present study, we investigated the structure-activity relationships (SARs) of 19 andrographolide analogues which were synthesized by modification at the three hydroxyl groups. A number of the andrographolide analogues showed much higher cytotoxic activities than that of the parent compound on cancer cells including P-388, KB, COL-2, MCF-7, LU-1 and ASK cells. SAR studies of the synthetic analogues indicated that the introduction of silyl ether or triphenylmethyl ether group into C-19 of the parent compound led to increase in toxicity against the cancer cells. The 19-O-triphenylmethyl ether analogue 18 showed higher cytotoxic activity than the potent anticancer drug ellipticine, and this analogue may serve as a potential structure lead for the development of new anticancer drugs.  相似文献   

11.
Central nervous system toxicity of interferons and other cytokines   总被引:5,自引:0,他引:5  
Prolonged administration of interferons, interleukins and tumor necrosis factor are accompanied by a range of toxic effects of which central nervous system toxicity may be an important dose-limiting factor. While symptoms are widely reported, practically nothing is known about mechanisms of action. This review attempts to distinguish between a direct effect of cytokines upon circumventricular organs and an indirect effect mediated by factors released by endothelial-glial cells of the blood-brain barrier normally impermeable to cytokines. In order to reduce the toxicity of biological response modifiers the definition of the minimum effective dose, the use of the lymphatic route and the observance of the chronobiological rules may help to improve the therapeutic index of these hormone-like compounds. It appears however, that the relationship between cytokine: dose: route: schedule: timing on one side and efficacy: toxicity on the other is complex, and so far no general rule has clearly emerged so that at the moment it appears necessary to find out the optimal therapeutic index for each particular disease.  相似文献   

12.
Since the discovery of D20 (heavy water) and its use as a moderator in nuclear reactors, its biological effects have been extensively, although seldom deeply, studied. This article reviews these effects on whole animals, animal cells, and microorganisms. Both "solvent isotope effects," those due to the special properties of D20 as a solvent, and "deuterium isotope effects" (DIE), which result when D replaces H in many biological molecules, are considered. The low toxicity of D20 toward mammals is reflected in its widespread use for measuring water spaces in humans and other animals. Higher concentrations (usually >20% of body weight) can be toxic to animals and animal cells. Effects on the nervous system and the liver and on formation of different blood cells have been noted. At the cellular level, D20 may affect mitosis and membrane function. Protozoa are able to withstand up to 70% D20. Algae and bacteria can adapt to grow in 100% D2O and can serve as sources of a large number of deuterated molecules. D2O increases heat stability of macromolecules but may decrease cellular heat stability, possibly as a result of inhibition of chaperonin formation. High D2O concentrations can reduce salt- and ethanol-induced hypertension in rats and protect mice from gamma irradation. Such concentrations are also used in boron neutron capture therapy to increase neutron penetration to boron compounds bound to malignant cells. D2O is more toxic to malignant than normal animal cells, but at concentrations too high for regular therapeutic use. D2O and deuterated drugs are widely used in studies of metabolism of drugs and toxic substances in humans and other animals. The deuterated forms of drugs often have different actions than the protonated forms. Some deuterated drugs show different transport processes. Most are more resistant to metabolic changes, especially those changes mediated by cytochrome P450 systems. Deuteration may also change the pathway of drug metabolism (metabolic switching). Changed metabolism may lead to increased duration of action and lower toxicity. It may also lead to lower activity, if the drug is normally changed to the active form in vivo. Deuteration can also lower the genotoxicity of the anticancer drug tamoxifen and other compounds. Deuteration increases effectiveness of long-chain fatty acids and fluoro-D-phenylalanine by preventing their breakdown by target microorganisms. A few deuterated antibiotics have been prepared, and their antimicrobial activity was found to be little changed. Their action on resistant bacteria has not been studied, but there is no reason to believe that they would be more effective against such bacteria. Insect resistance to insecticides is very often due to insecticide destruction through the cytochrome P450 system. Deuterated insecticides might well be more effective against resistant insects, but this potentially valuable possibility has not yet been studied.  相似文献   

13.
Cancer is a leading cause of death worldwide. Even after the availability of numerous drugs and treatments in the market, scientists and researchers are focusing on new therapies because of their resistance and toxicity issues. The newly synthesized drug candidates are able to demonstrate in vitro activity but are unable to reach clinical trials due to their rapid metabolism and low bioavailability. Therefore there is an imperative requisite to expand novel anticancer negotiators with tremendous activity as well as in vivo efficacy. Tetrazole is a promising pharmacophore which is metabolically more stable and acts as a bioisosteric analogue for many functional groups. Tetrazole fragment is often castoff with other pharmacophores in the expansion of novel anticancer drugs. This is the first systematic review that emphasizes on contemporary strategies used for the inclusion of tetrazole moiety, mechanistic targets along with comprehensive structural activity relationship studies to provide perspective into the rational design of high-efficiency tetrazole-based anticancer drug candidates.  相似文献   

14.
The effects of anticancer drugs and toxic compounds on leukemic cells in culture were evaluated by enzyme-linked-immunosorbent assay (ELISA) based on the detection of apoptotic cells by a monoclonal antibody against single-stranded DNA. The concentrations of 13 anticancer drugs, which increased apoptosis ELISA absorbance, were similar to the concentrations decreasing long-term cell survival. Short-term metabolic tetrazolium-based 3-(4,5-dimethylthiazol-yl)-2,5-diphenyformazan bromide (MTT) assay was significantly less sensitive than apoptosis ELISA and the cell survival assay. In contrast to anticancer drugs, 12 toxic chemicals did not increase apoptosis ELISA absorbance at cytotoxic concentrations. The difference between two groups of compounds by apoptosis ELISA was especially large in cultures treated with twofold of concentrations producing 50% inhibition of cell growth: all anticancer drugs induced intense reaction (mean absorbance 2.0), while none of the toxic chemicals induced apoptosis. The application of apoptosis ELISA to chemosensitivity testing was evaluated by its ability to detect synergism of anticancer drug combinations. Among 66 drug combinations tested, only combination of nitrogen mustard with mithramycin was highly synergistic by the apoptosis ELISA, as defined by apoptosis induction with the combination containing each drug at 50% of effective concentration. This combination was also synergistic in the cell survival assay, producing significant cell kill while each drug alone had no effect on cell survival. This synergism was not detected by MTT assay. We conclude that apoptosis ELISA could be useful for drug development and chemosensitivity assessment as it can distinguish clinically useful anticancer drugs from toxic compounds, is as sensitive as the long-term cell survival assay and can detect anticancer drug synergism by rapid evaluation of apoptosis induction.  相似文献   

15.
Cancer has become the primary cause of death worldwide, and anticancer drugs are used to combat this disease. Synthesis of anticancer drugs has limited success due to adverse side effects has made compounds from natural products with minimal toxicity gain much popularity. Piper species are known to have a biological effect on human health. The biological activity is due to Piper species rich with active secondary metabolites that can combat most diseases, including cancer. This review will discuss the phytochemistry of Piper species and their anticancer activity. The identification and characterization of ten active metabolites isolated from Piper species were discussed in detail and their anticancer mechanism. These metabolites were mainly found could inhibit anticancer through caspase and P38/JNK pathways. The findings discussed in this review support the therapeutic potential of Piper species against cancer due to their rich source of active metabolites with demonstrated anticancer activity.  相似文献   

16.
The vast majority of anticancer drugs in clinical use are limited by systemic host toxicity due to their non-specific side effects. These shortcomings have led to the development of tumour specific drugs which target a single-deregulated pathway or over expressed receptor in cancer cells. Whilst this approach has achieved clinical success, we have also learnt that targeting a single entity in cancer is rarely curative due to the large number of deregulated pathways, receptors and kinases which are also present, in addition to the target. An attractive alternative to improve targeting would be to harness the already established activity of known anticancer drugs by attaching them to a molecule that is transported into cancer cells via a selective transport system. One possibility for this approach is the polyamine pathway. This review provides a brief overview of the polyamine pathway and how, over the years, it has proved an exciting target for the development of novel anticancer agents. However, the focus of this article will be on the properties of the polyamine transport system and how these features could potentially be exploited to develop a novel and selective anticancer drug delivery system.  相似文献   

17.
Spontaneous lesions in cynomolgus monkeys used in toxicity studies.   总被引:5,自引:0,他引:5  
Spontaneous lesions in wild-caught, laboratory-maintained cynomolgus monkeys used in drug-toxicity studies were examined histopathologically in an effort to better distinguish toxic changes from spontaneous lesions and assess the toxicity of drugs more exactly. In the liver and kidney, where toxic changes are observed frequently, many spontaneous lesions were observed. Infiltration of mononuclear cells, vacuolization of the hepatocytes, dilatation of the renal tubules, and vacuolization of the renal epithelia were observed at a relatively high frequency. It is considered important to examine these changes carefully, because they closely resemble the changes recognized as toxic. Deposition of brownish pigment was observed in various organs such as the liver, kidney, spleen, intestinal tract, lung and brain, however the type of pigment differed among the organs, and histochemical examination revealed anthracosis or accumulation of hemosiderin, or melanin. Since the monkeys were caught in the wild, many parasitic lesions were observed especially in the large intestine and liver. Helminthous worms were frequently observed in the granulomas in the large intestine, however, no parasites were observed in the granulomas in the liver. Such lesions in the liver may be misinterpreted as toxic changes, when only scars or inflammatory lesions are observed.  相似文献   

18.
19.
Injury to nontargeted tissues in chemotherapy often complicates cancer treatment by limiting therapeutic dosages of anticancer drugs and by impairing the quality of life of patients during and after treatment. Oxidative stress, directly or indirectly caused by chemotherapeutics as exemplified by doxorubicin, is one of the underlying mechanisms of the toxicity of anticancer drugs in noncancerous tissues, including the heart and brain. A comprehensive understanding of the mechanisms of oxidative injury to normal tissue will be essential for the improvement of strategies to prevent or attenuate the toxicity of chemotherapeutic agents without compromising their chemotherapeutic value.  相似文献   

20.
Over 60% of the current anticancer drugs have their origin in one way or another from natural sources. Nature continues to be the most prolific source of biologically active and diverse chemotypes, and it is becoming increasingly evident that associated microbes may often be the source of biologically active compounds originally isolated from host macro-organisms. While relatively few of the actual isolated compounds advance to become clinically effective drugs in their own right, these unique molecules may serve as models for the preparation of more efficacious analogs using chemical methodology such as total or combinatorial (parallel) synthesis, or manipulation of biosynthetic pathways. In addition, conjugation of toxic natural molecules to monoclonal antibodies or polymeric carriers specifically targeted to epitopes on tumors of interest can lead to the development of efficacious targeted therapies. The essential role played by natural products in the discovery and development of effective anticancer agents, and the importance of multidisciplinary collaboration in the generation and optimization of novel molecular leads from natural product sources is reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号