首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Althouse GC  Pierdon MS  Lu KG 《Theriogenology》2008,70(8):1317-1323
Bacterial contamination of extended porcine semen has been associated with deleterious effects on both semen quality and sow fertility. Retrospective, prospective and in vitro studies were performed to delineate the prevalence and behavior of certain bacterial contaminants in extended semen, and antimicrobial pharmacodynamics in various semen diluents. Retrospective review of extended semen samples submitted from North American boar studs for microbiological screening at the University of Pennsylvania Reference Andrology Laboratory in 2005 and 2006 yielded bacteriospermia prevalence rates of 17% (144/832) and 26% (256/984), respectively. In a prospective study of regional boar studs, of 91 extended semen samples tested over 1-y, 29% were positive for bacteriospermia. Retrospective and prospective studies both showed that the preponderance of contaminant positive samples occurred during the fall months (P<0.05). To better understand behavior of select contaminant bacteria, generation intervals were determined for Serratia marcescens (SM) and Achromobacter xylosoxidans (AX) at 16, 22 and 37 degrees C. Generation times were temperature-dependent, with intervals decreasing two- to four-fold as incubation temperature increased. Growth patterns for SM, AX and Burkholderia cepacia were evaluated in various semen diluents. The different diluents exhibited constant or episodic patterns of growth within and among bacteria throughout the 5-d test period. Kill-time kinetics at 37 degrees C of several genera of bacteria in four semen diluents containing amoxicillin, gentamicin, tylosin, and lincomycin/spectinomycin (single drug or combination) ranged from 75 to over 360min, and was highly dependent (P<0.05) upon both type of bacteria and semen diluent.  相似文献   

2.
Irreversible damage caused by cold shock has been assumed to occur when boar semen is exposed to temperatures below 15 degrees C. Identification of the lower critical temperature at which extended boar semen undergoes cold shock, however, has yet to be defined. The aims of this study were to 1) identify the cold-shock critical temperature and time on extended boar semen as assessed by sperm motility and morphology, and 2) determine the effects on fertility of using extended porcine semen exposed to this critical temperature and time. For Objective 1, ejaculates from 18 boars were collected, analyzed and extended in Androhep to 50 x 10(6) sperm/mL. Doses (4 x 10(9) sperm) from each ejaculate were exposed to 5 storage temperatures (8, 10, 12, 14 and 17 degrees C). Sperm motility and morphology (including acrosomes) were assessed following collection and at 12-h intervals for 48-h. Decreases in sperm motility occurred within the first 12-h at all temperatures. Sample motility dropped below 70% within 12-h in the 8 degrees C group and by 48-h in the 10 degrees C group. Sample motility was > 75% in the 12, 14 and 17 degrees C (control) groups throughout the trial. The percentage of morphologically abnormal sperm cells, including acrosomes, did not change within or between treatment groups over the 48-h storage period. In Objective 2, boar ejaculates (n = 9) were handled as in the first objective and were equally divided into treated (12 degrees C for < or = 60-h) and control (17 degrees C for < or = 60-h) groups. Using a timed, double insemination technique, 135 sows were bred by AI using either 12 degrees C (n = 74) or 17 degrees C (n = 61) extended, stored semen. No differences were observed in the farrowing rate (93 vs 95%), total offspring born (11.58 vs 11.61) or number live born (10.68 vs 10.63) between 12 and 17 degrees C groups, respectively. The results demonstrate that acceptable fertility can be obtained with Androhep extended boar semen exposed to temperatures as low as 12 degrees C for up to 60-h, and that cold shock appears to occur in vitro when extended boar semen is exposed to storage temperatures below 12 degrees C.  相似文献   

3.
Althouse GC  Lu KG 《Theriogenology》2005,63(2):573-584
Bacteriospermia is a frequent finding in freshly extended porcine semen and can result in detrimental effects on semen quality and longevity if left uncontrolled. The primary source of bacterial contamination is the boar. Other sources that have been identified include environment, personnel, and the water used for extender preparation. A 1-year retrospective study was performed on submissions of extended porcine semen for routine quality control bacteriological screening at the University of Pennsylvania. Out of 250 sample submissions, 78 (31.2%) tested positive for bacterial contamination. The most popular contaminants included Enterococcus spp. (20.5%), Stenotrophomonas maltophilia (15.4%), Alcaligenes xylosoxidans (10.3%), Serratia marcescens (10.3%), Acinetobacter lwoffi (7.7%), Escherichia coli (6.4%), Pseudomonas spp. (6.4%), and others (23.0%). Prudent individual hygiene, good overall sanitation, and regular monitoring can contribute greatly in controlling bacterial load. Strategies that incorporate temperature-dependent bacterial growth and hyperthermic augmentation of antimicrobial activity are valuable for effective control of susceptible bacterial loads. Aminoglycosides remain the most popular antimicrobial class used in porcine semen extenders, with beta-lactam and lincosamide use increasing. With the advent of more novel antimicrobial selection and semen extender compositions in swine, prudent application and understanding of in vitro pharmacodynamics are becoming paramount to industry success in the use of this breeding modality.  相似文献   

4.
Reicks DL  Levis DG 《Theriogenology》2008,70(8):1377-1379
The objective was to monitor sperm counts and bacterial presence on randomly pooled semen doses over 3y and to determine effects on the farrowing rate and total born in two large farm systems, each serviced by their own boar stud. Sperm counts were divided into increments of 0.5x10(9) for data analysis. There was no effect of sperm count or the presence of bacteria on farrowing rate (n=9502 observations). Furthermore, based on 7311 observations, there was no effect of the mere presence of bacteria on total born, but sperm count had a significant effect on total born; in particular, total born decreased with pooled semen doses <2.5x10(9) sperm.  相似文献   

5.
Semen samples collected in 2012 from 1785 boars belonging to five different breeds were recruited from the quality control laboratory of Magapor SL, Spain. These samples came from 43 boar studs and resulted from diluting the ejaculates in commercial semen extenders. Evaluation of the semen sample characteristics (color, smell, pH, osmolality, concentration, motility of sperm cells, agglutination, acrosome integrity, short hypoosmotic swelling test, and abnormal forms) revealed that they met the international standards. The samples were also tested for the presence of aerobic bacterial contamination. In the present study, 14.73% (n = 263) of the semen samples were contaminated above 3 × 102 colony-forming units/mL with at least one type of bacteria. The Enterobacteriaceae family was by far the major contaminant, being present in 40.68% of the contaminated samples (n = 107). Bacterial strains of the Enterobacteriaceae family isolated from boar semen samples were in order of incidence (percentage of the contaminated samples): Serratia marcescens (12.55%), Klebsiella oxytoca (11.79%), Providencia stuartii (9.12%), Morganella morganii (3.80%), Proteus mirabilis (1.90%), and Escherichia coli (1.52%). We have seen that the presence in semen samples of S. marcescens, K. oxytoca, M. morganii, or P. mirabilis, but not P. stuartii or E. coli, was negatively associated with sperm motility (P < 0.05). The mean sperm concentration (P < 0.05), the mean percentage of spermatozoa with curled tails after the short hypoosmotic swelling test (P < 0.01), and the incidence of morphologically normal acrosomes (P < 0.05) were also lower in semen samples infected with M. morganii compared with uninfected ones. Moreover, P. mirabilis was negatively associated with the presence of abnormal forms. Thus, on the basis of the pathological effects that some of these strains may have on boar sperm quality, bacterial contamination should always be examined in semen samples prepared for artificial insemination.  相似文献   

6.
Increasing storage time of extended boar semen reduces sperm DNA integrity   总被引:1,自引:0,他引:1  
There is an extensive use of artificial insemination (AI) in the pig industry. Extended liquid boar semen may be used for insemination for up to 5 days after collection. The objective of this study was to determine the changes in sperm quality, when boar semen was extended and stored at 18 degrees C for up to 72 h post-collection. The study included three ejaculates from five boars, for each of the four breeds: Duroc, Hampshire, Landrace and Danish Large White (n=60 ejaculates). The sperm chromatin structure assay (SCSA) showed an increase in DNA fragmentation index (DFI) after 72 h of incubation (P<0.001), with no differences between breeds (P=0.07). For two Hampshire boars, all ejaculates had a large increase in DFI after 24 h of incubation. The standard deviation of DFI (SD-DFI) differed between breeds, with the SD-DFI for Hampshire being significantly greater than for the other breeds. The SD-DFI did not change during the 72 h of storage. Sperm viability was determined using SYBR-14 and propidium iodide in combination with flow cytometry. The sperm viability did not differ between breeds (P=0.21), but a difference in viability during storage (P<0.001) was detected. In conclusion, the SCSA cytogram patterns were consistent for different ejaculates within boars and storage of extended boar semen at 18 degrees C for 72 h significantly decreased the integrity of sperm DNA.  相似文献   

7.
To evaluate the influence of dietary supplementation of omega-3 polyunsaturated fatty acids (n-3 PUFA) on storage of boar semen, three experiments were conducted: two involved long-term, fresh semen storage (Exp. 1 and Exp. 2), whereas the other involved cryopreservation (Exp. 3). Boars were allocated randomly to three dietary treatments (for 6-7 mo). In addition to a daily allowance of 2.5 kg of a basal diet, they received: 1) 62 g of hydrogenated animal fat (AF); 2) 60 g of menhaden oil (MO), containing 18% docosahexanoic acid (DHA) and 15% eicosapentanoic acid (EPA); or 3) 60 g of tuna oil (TO), containing 33% DHA and 6.5% EPA. In Experiment 1 (n = 26) and Experiment 2 (n = 18), semen was cooled and stored in vitro for several days at 17 °C before assessment, whereas in Experiment 3 (n = 18), viability, motility, acrosomal integrity, susceptibility to peroxidation (LPO), and DNA fragmentation were determined in fresh and frozen-thawed sperm. In Experiment 1, sperm from boars fed TO had better resistance to fresh storage; even after 7 or 9 d of storage at 17 °C, there were more (P = 0.03) motile sperm in boars fed TO (>60%) than in those fed AF or MO. In Experiment 2, fish oil supplementation did not influence any aspect of sperm quality during semen storage (P > 0.10). In Experiment 3, cryopreservation decreased the proportion of motile and viable frozen-thawed sperm as well as acrosomal integrity and increased DNA fragmentation and LPO (P < 0.01) relative to fresh semen, although sperm quality was unaffected by treatments (P > 0.09). In conclusion, although adding fish oil to the diet failed to significantly improve the quality of cryopreserved boar sperm, inconsistent responses of long-term storage of cooled sperm to dietary n-3 PUFA supplementation warrant further investigation.  相似文献   

8.
Huo LJ  Ma XH  Yang ZM 《Theriogenology》2002,58(7):1349-1360
The purpose of this study was to assess sperm quality in extended boar semen during in vitro storage in order to determine which extender should be used and how long boar semen can be stored. Freshly ejaculated boar semen was diluted with equal volumes of Beltsville thaw solution (BTS), Androhep, KIEV or Zorlesco extenders and stored at 17 degrees C for up to 15 days. Sperm quality was evaluated by examining viability using SYBR-14/PI and Hoechst 33258 staining, mitochondrial activity using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) staining, acrosome intactness by Coomassie blue staining, and capacitation status by chlortetracycline (CTC) staining. There were over 50% viable spermatozoa in boar semen extended with Zorlesco and Androhep extenders on Day 13 of storage. The percentage of JC-1-stained spermatozoa was 53.8 +/- 2.1% for Zorlesco and 57.7 +/- 1.60% for Androhep extenders on Day 13 of storage. The percentage of acrosome-intact spermatozoa detected by Coomassie blue staining was higher than that in the SYBR-14PI-, Hoechst 33258-, and JC-1-stained samples in our study. The results from SYBR-14/PI, Hoechst 33258, JC-1, and Coomassie blue staining were highly correlated (r > or = 0.9461). There were less than 15% capacitated spermatozoa in the semen extended with BTS, Androhep and Zorlesco extenders during 9 days of storage. However, most viable boar spermatozoa became capacitated by Day 13 of storage. The rank order of four extenders for maintaining sperm viability and mitochondrial activity was as follows: Androhep, Zorlesco, BTS, KIEV.  相似文献   

9.
PGF2alpha in semen has been shown to induce uterine contractions, thereby, facilitating sperm transport during fertilization. Previously, we demonstrated that extended boar semen used in artificial insemination does not increase myometrial contractility, but PGF2alpha supplementation did. In this study, we determined the concentrations of endogenous PGF2alpha in pre-sperm and sperm-rich fractions of the boar ejaculate and examined whether changes in the concentration of exogenous PGF2alpha occurred when added to extended boar semen after 72-h incubation at a 17 degrees C storage temperature. Concentrations of endogenous PGF2alpha (n = 10 boars) in pre-sperm and sperm-rich fractions were 69.6 +/- 7.6 and 58.9 +/- 4.4 pg/ml, respectively. No differences were observed in the concentrations of exogenous PGF2alpha in the extended boar semen at 0 h (59.3 +/- 3.3 microg/ml) and after a 72-h incubation period (52.0 +/- 2.1 microg/ml). These results suggest that the concentration of endogenous PGF2alpha in boar semen used for artificial insemination is < 100 pg/ml. The concentration of exogenous PGF2alpha in the extended boar semen did not differ after 72 h, which indicates that it is not metabolized during this period of time.  相似文献   

10.
Various semen extender formulas are in use to maintain sperm longevity and quality whilst acting against bacterial contamination in liquid sperm preservation. Aminoglycosides are commonly supplemented to aid in the control of bacteria. As bacterial resistance is increasing worldwide, antimicrobial peptides (AMPs) received lively interest as alternatives to overcome multi-drug resistant bacteria. We investigated, whether synthetic cationic AMPs might be a suitable alternative for conventional antibiotics in liquid boar sperm preservation. The antibacterial activity of two cyclic AMPs (c-WWW, c-WFW) and a helical magainin II amide analog (MK5E) was studied in vitro against two Gram-positive and eleven Gram-negative bacteria. Isolates included ATCC reference strains, multi-resistant E. coli and bacteria cultured from boar semen. Using broth microdilution, minimum inhibitory concentrations were determined for all AMPs. All AMPs revealed activity towards the majority of bacteria but not against Proteus spp. (all AMPs) and Staphylococcus aureus ATCC 29213 (MK5E). We could also demonstrate that c-WWW and c-WFW were effective against bacterial growth in liquid preserved boar semen in situ, especially when combined with a small amount of gentamicin. Our results suggest that albeit not offering a complete alternative to traditional antibiotics, the use of AMPs offers a promising solution to decrease the use of conventional antibiotics and thereby limit the selection of multi-resistant strains.  相似文献   

11.
Ticarcillin and piperacillin were compared to determine their effect on sperm motility and bacterial growth of equine semen samples diluted in Kenney's glucose skim milk semen extender. Each ejaculate (n=11) was divided into three portions and glucose skim milk semen extender solution was added. The control semen extender solution contained extended semen and no antibiotic, whereas ticarcillin and piperacillin solutions contained extended semen plus 1.0mg/mL of ticarcillin or piperacillin, respectively. An aliquot was removed (1h after collection) to evaluate sperm motility and microbial concentration. All three solutions were stored at 4 degrees C and aliquots were obtained at 24 and 48 h to determine sperm motility and microbial concentration. Mean percentages of motile and progressively motile sperm did not differ significantly among control and antibiotic-containing solutions after storage. Control-extended semen samples from ejaculates of stallions (n=11) were contaminated with aerobic gram-positive and gram-negative bacteria. In solutions that contained either antibiotic, growth of these microbes was inhibited after 1, 24, and 48 h at 4 degrees C. Semen samples from stallions (n=5) were extended with Kenney's glucose skim milk extender containing no antibiotic, ticarcillin or piperacillin and then inoculated with approximately 5 x 10(2)CFU/mL Klebsiella pneumoniae or Pseudomonas aeruginosa; there was no significant difference between antibiotics in the inhibition of microbial growth. In conclusion, piperacillin was an appropriate alternative to ticarcillin in extenders for equine semen.  相似文献   

12.
Didion BA 《Theriogenology》2008,70(8):1374-1376
Achieving and maintaining a successful swine AI program depends on a number of factors, including accurate semen evaluation, typically sperm motility, morphology and concentration. Computer-Assisted Semen Analysis or CASA (i.e., image analysis with a phase-contrast microscope and computer measurements of motion parameters) objectively evaluates sperm motion characteristics, morphology and concentration. A total of 3077 semen collections were evaluated with CASA (on the day of collection), and a semen dose subset was used for single-sire AI of 6266 females over 6 months. Fertility data from these inseminations were fitted with models including farm/stud, line, boar, parity, mating week, semen age at mating and boar age at mating. The residuals from these models showed no correlation for any CASA semen unique motion parameter, which could be due to the level of sperm concentration, the number of inseminations per estrus, and the low number of females mated per boar. Future studies to expand CASA/fertility analysis need to address these constraints and may include analysis of extended boar semen after storage for 1 week.  相似文献   

13.
Boar semen is typically collected, diluted and cooled for AI use over numerous days, or frozen immediately after shipping to capable laboratories. The storage temperature and pH of the diluted, cooled boar semen could influence the fertility of boar sperm. Therefore, the purpose of this study was to determine the effects of pH and storage temperature on fresh and frozen-thawed boar sperm motility end points. Semen samples (n = 199) were collected, diluted, cooled and shipped overnight to the National Animal Germplasm Program laboratory for freezing and analysis from four boar stud facilities. The temperature, pH and motility characteristics, determined using computer automated semen analysis, were measured at arrival. Samples were then cryopreserved and post-thaw motility determined. The commercial stud was a significant source of variation for mean semen temperature and pH, as well as total and progressive motility, and numerous other sperm motility characteristics. Based on multiple regression analysis, pH was not a significant source of variation for fresh or frozen-thawed boar sperm motility end points. However, significant models were derived which demonstrated that storage temperature, boar, and the commercial stud influenced sperm motility end points and the potential success for surviving cryopreservation. We inferred that maintaining cooled boar semen at approximately 16 °C during storage will result in higher fresh and frozen-thawed boar sperm quality, which should result in greater fertility.  相似文献   

14.
We report on microbial contamination of embryos and semen cryopreserved in sealed plastic straws and stored for 6-35 years in liquid nitrogen. There were 32 bacterial and 1 fungal species identified from randomly drawn liquid nitrogen, frozen semen, and embryos samples stored in 8 commercial and 8 research facility liquid nitrogen (LN) tanks. The identified bacteria represented commensal or environmental microorganisms and some, such as Escherichia coli, were potential or opportunistic pathogens for humans and animals. Stenotrophomonas maltophilia was the most common contaminant identified from the samples and was further shown to significantly suppress fertilization and embryonic development in vitro. Analysis of the strains by pulsed field gel electrophoresis revealed restriction patterns with no relatedness indicating that there was no apparent cross-contamination of S. maltophilia strains between the germplasm and liquid nitrogen samples. In addition, no transmission of bovine viral diarrhea virus (BVDV) and bovine herpesvirus-1 (BHV-1) from infected semen and embryos straws to clean germplasm stored in the same LN tanks or LN was detected.  相似文献   

15.
This study was conducted to evaluate the relationship between boar and semen related parameters and the variation in field fertility results. In 8 years time semen insemination doses from 110 186 ejaculates of 7429 boars were merged to fertility parameters of inseminations of 165 000 sows and these records were used for analysis. From all ejaculates boar and semen related data were recorded at the artificial insemination (AI) centers. Fertility parameters, such as farrowing rate (FR), ranging between 80.0% and 84.0%, and the total number of piglets born (TNB), ranging between 12.7 and 13.1, were recorded and from these the least square means per ejaculate were calculated. Only 5.9% of the total variation in FR was due to boar and semen variability of which 21% (P = 0.0001) was explained by genetic line of the boar, 11% (P = 0.047) was explained by laboratory technician, and 7% (P = 0.037) was explained by the AI center. For TNB the total variation was 6.6% boar and semen related of which 28% (P < 0.0001) was explained by genetic line of the boar and 7% (P = 0.011) was explained by the AI center. Only 4% of the boar and semen related variation was caused by sperm motility (microscopically assessed at collection, ranging from 60% to 90%). Other variation in FR and TNB was explained by management and semen related parameters (age of boar, 3%; P = 0.009; and 8%; P = 0.031, respectively), days between ejaculations (1%; P < 0.0001 of FR), number of cells in ejaculate (1%; P = 0.042 of TNB), year (9%; P = 0.032), and 13%; P = 0.0001, respectively), and month (11%; P = 0.0001; and 5%; P = 0.0001, respectively). Although semen motility is considered an important parameter to validate the quality of the ejaculate processed, it only minimally relates to fertility results under the current Dutch AI practice. Other boar and semen related parameters, like genetic line of the boar, are more relevant factors to select boars for AI purposes.  相似文献   

16.
An update on North American boar stud practices   总被引:1,自引:0,他引:1  
This survey included 44 boar studs from Canada and the USA with a total of approximately 10,000 boars. Studs with 51-500 boars accounted for 84% of respondents. More than 90% of boars were housed in stalls. Evaporative and mechanical cooling systems predominated and boars were typically fed based on body condition. The predominant age of boars was 1-2 years with annual culling rates between 20 and 70%. The primary reasons for culling included genetic improvement, semen quality and feet and leg issues. Collection occurred commonly on Mondays and Thursdays and boars were rested 3-7 days between collections. The average sperm produced per boar per week was 51-150 billions and resulted in 21-40 doses per boar per week. Most studs collected boars using double gloves and disposable cups or liners and used pre-warmed containers. Ejaculate pooling was practiced by >60% of studs. Evaluation of semen for motility was performed with 0-5min of warming in extender with viewing at 100-400x magnification. Concentration estimation occurred by photometer and CASA for 88% of studs. Ejaculate discard occurred for reasons of poor motility, abnormal sperm and bacteria. Most studs retained extended samples for 3-7 days for quality control. Discard rates were most common between 1 and 10% and were related to individual boar and season. Doses of semen contained 2-4 billion sperms, with final sperm numbers adjusted for fertile sperm and packaged as doses in tubes and bags with 60-100mL.  相似文献   

17.
Field fertility with exported boar semen frozen in the new flatpack container   总被引:10,自引:0,他引:10  
The present study tested the field fertility of frozen-thawed (FT) Swedish boar semen packaged in flat plastic containers (FlatPacks) and exported for artificial insemination (AI) to overseas nucleus herds. Semen from 47 Swedish boars of Landrace (L), Yorkshire (Y), and Hampshire (H) breeds was frozen using a lactose-egg yolk-based extender with 3% glycerol and 10(9) spermatozoa/ml in 5 ml FlatPacks. For all breeds, FT sperm membrane intactness averaged 60%, while mean FT sperm motility ranged from 49 to 53%. A total of 308 litters resulted from 421 overseas inseminations with FT semen, with a mean farrowing rate (FR) of 73% and 10.7 mean number total piglets born. In a within-sow analysis for the purebred L and Y breedings, the FR and litter size of FT semen were compared with natural matings (NM) and on-farm AI with liquid semen (NW/AI breedings) at the same farms. Farrowing rate was 72.3 and 78.8% (P = 0.23), total piglets 11.3 and 11.6 (P = 0.44), and live piglets 10.1 and 10.2 (P = 0.77), for the FT semen and NM/AI breedings, respectively. The present results suggest that this freezing protocol and FlatPack container maintains high sperm viability post-thaw. Further the fertility levels when inseminated at overseas nucleus herds seem to be similar to those achieved with (NM/AI breedings) at the same farms. This freezing method may be a reliable alternative for the freezing/thawing of boar semen under commercial AI conditions.  相似文献   

18.
We evaluated the ability of immature pig oocytes (at germinal vesicle stage) to detect differences in the in vitro penetration rates of boar spermatozoa. In Experiment 1, immature and ovulated oocytes (n=303) were exposed to capacitated boar spermatozoa to determine if the penetrability of immature pig oocytes was comparable to that of ovulated oocytes. The percentages of penetrated oocytes and the mean number of spermatozoa per oocyte were similar for immature (88.82 and 7.42+/-0.41) and ovulated oocytes (90.97 and 7.95+/-0.34, respectively). In Experiment 2, immature oocytes (n=1230) were inseminated with semen from 2 boars (A and B) with satisfactory semen characteristics to establish the variability of in vitro penetrating capacity between the boars. Semen was examined for motility, movement quality, acrosome integrity and plasma membrane integrity at various stages of the in vitro procedure. Although the sperm evaluation results were similar between boars, Boar A exhibited a significantly higher (P<0.001) penetration rate (91.49%) and number of spermatozoa penetrated per oocyte (5.90+/-0.25) than Boar B (52.87% and 2.03+/-0.12, respectively). Increasing the sperm concentration at insemination from 1x10(6) to 10x10(6) cells/ml resulted in an increased penetrating capacity for both boars, and the differences in the number of spermatozoa per oocyte between boars also increased. These results indicate that immature pig oocytes can be used in a homologous in vitro fertilization assay, and that despite similarities in semen characteristics a significant boar effect is evident for parameters of in vitro penetration of oocytes.  相似文献   

19.
The aim of this experimental study was to evaluate the effectiveness of sperm selection using single-layer centrifugation (SLC) prior to freezing on the sperm cryosurvival of boar ejaculates. Twenty-four sperm rich ejaculate fractions (SREF), collected from 24 boars (one per boar), were divided into two groups according to their initial semen traits: standard (n = 15) and substandard (n = 9). Semen samples from each SREF were split in two aliquots, one remained untreated (control samples) and the other was single-layer centrifuged (500g for 20 min) using 15 mL of Androcoll-P Large (SLC samples). The yield of total, motile (assessed by CASA) and viable (cytometrically evaluated after staining with H-42, propidium iodide (PI) and FITC-PNA) sperm after SLC was higher (P < 0.05) in standard than substandard semen samples. The semen samples were cryopreserved using a standard 0.5-mL straw freezing protocol. Post-thaw sperm motility and viability (assessed at 30 and 150 min post-thawing) were higher (P < 0.05) in SLC than in control samples, regardless of the initial semen traits of the ejaculates. Additionally, thawed spermatozoa from SLC samples were more resistant (P < 0.05) to lipid peroxidation (BIOXYTECH MDA-586 Assay Kit) than those from control samples, regardless of the initial semen traits of the ejaculates. The SLC-treatment also influenced the functionality of thawed spermatozoa undergoing an in vitro capacitation process. The percentage of viable sperm showing high membrane fluidity (assessed with merocyanine 540) was lower (P < 0.05) in the SLC than in the control samples, regardless of the initial semen traits of the ejaculates. Thawed viable spermatozoa of SLC samples generated less (P < 0.05) reactive oxygen species (assessed with CM-H2DCFDA) than those of control samples in the substandard ejaculates. These findings indicate that the sperm selection before freezing using SLC improves the freezability of boar sperm.  相似文献   

20.
Differences in sperm fertilizing capacity of males often remain undetected by routine semen parameters. Heterospermic insemination with equal numbers of spermatozoa from 2 males is an accurate method for assessing differences in fertility. Use of heterospermic insemination depends on a reliable, efficient assay to identify paternity of conceptuses or offspring. In this study, polymorphic DNA markers amplified by PCR were tested to determine paternity of Day 5 to 6 embryos. The fertilizing capacity of 2 boars (A and B) with similar semen parameters was compared after homospermic (n=14 gilts) and heterospermic (n=11 gilts) insemination. Single AI's were performed under suboptimal conditions using 1 x 10(9) spermatozoa at 12 to 24 h before ovulation to prompt differences in fertilization and to stimulate sperm competition. The fertilization rate and the number of accessory spermatozoa were determined in Day 5 to 6 embryos. Using 5 different polymorphic DNA markers, paternity could be determined in 95.8% of the embryos. Boar B sired significantly (P<0.05) more offspring than Boar A after insemination with pooled semen, and this was reflected by a significantly (P<0.05) higher number of accessory spermatozoa following homospermic insemination with semen from Boar B, although fertilization rates did not differ between the 2 boars after homospermic insemination. The results suggest that the viability of spermatozoa in the female reproductive tract contributes to differences in fertility rates of males with similar in vitro sperm quality parameters. The number of accessory spermatozoa is a more sensitive measure of boar fertility than the fertilization rate. Polymorphic DNA markers are suitable for verification of parentage even at a very early stage of embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号