首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some peptides have previously been reported to bind low molecular weight chemicals. One such peptide with the amino acid sequence His-Ala-Ser-Tyr-Ser was selectively screened from a phage library and bound to a cationic porphyrin, 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphine (TMpyP), with a binding constant of 10(5) M(-1) (J. Kawakami, T. Kitano, and N. Sugimoto, Chemical Communications, 1999, pp. 1765-1766). The proposed binding was due to pi-electron stacking from two aromatic amino acids of histidine and tyrosine. In this study, the weak interactions between TMpyP and the peptide were further investigated by force curve analysis using atomic force microscopy (AFM). The mechanical force required to unbind the peptide-porphyrin complex was measured by vertical movement of the AFM tip. Peptide self-assembled monolayers were formed on both a gold-coated mica substrate and a gold-coated AFM tip. The TMpyPs could bind between the two peptide layers when the peptide-immobilized AFM tip contacted the peptide-immobilized substrate in solution containing TMpyP. In the retracting process a force that ruptured the interaction between TMpyPs and peptides was observed. The unbinding force values correlated to the concentration of TMpyP. A detection limit of 100 ng/mL porphyrin was obtained for the force measurement, and was similar to surface plasmon resonance sensor detection limits. Furthermore, we calculated the product of the observed force and the length of the molecular elongation to determine the work required to unbind the complexes. The obtained values of unbinding work were in a reasonable range compared to the binding energy of porphyrin-peptide.  相似文献   

2.
Protein–DNA interactions are involved in many biochemical pathways and determine the fate of the corresponding cell. Qualitative and quantitative investigations on these recognition and binding processes are of key importance for an improved understanding of biochemical processes and also for systems biology. This review article focusses on atomic force microscopy (AFM)-based single-molecule force spectroscopy and its application to the quantification of forces and binding mechanisms that lead to the formation of protein–DNA complexes. AFM and dynamic force spectroscopy are exciting tools that allow for quantitative analysis of biomolecular interactions. Besides an overview on the method and the most important immobilization approaches, the physical basics of the data evaluation is described. Recent applications of AFM-based force spectroscopy to investigate DNA intercalation, complexes involving DNA aptamers and peptide– and protein–DNA interactions are given.  相似文献   

3.
Structural data of protein-DNA complex show redundancy and flexibility in base-amino acid interactions. To understand the origin of the specificity in protein-DNA recognition, we calculated the interaction free energy, enthalpy, entropy, and minimum energy maps for AT-Asn, GC-Asn, AT-Ser, and GC-Ser by means of a set of ab initio force field with extensive conformational sampling. We found that the most preferable interactions in these pairs are stabilized by hydrogen bonding, and are mainly enthalpy driven. However, minima in the free energy maps are not necessarily the same as those in the minimum energy map or enthalpy maps, due to the entropic effect. The effect of entropy is particularly important in the case of GC-Asn. Experimentally observed structures of base-amino acid interactions are within preferable regions in the calculated free energy maps, where there are many different interaction configurations with similar energy. The full geometry optimization procedure using ab initio molecular orbital method was applied to get the optimal interaction geometries for AT-Asn, GC-Asn, AT-Ser, and GC-Ser. We found that there are various base-amino acid combinations with similar interaction energies. These results suggest that the redundancy and conformational flexibility in the base-amino acid interactions play an important role in the protein-DNA recognition.  相似文献   

4.
5.
In this study, the recently developed gradient-based optimisation workflow for the automated development of molecular models is for the first time applied to the parameterisation of force fields for molecular dynamics simulations. As a proof-of-concept, two small molecules (benzene and phosgene) are considered. In order to optimise the underlying intermolecular force field (described by the (12,6)-Lennard-Jones and the Coulomb potential), the energetic and diameter parameters ε and σ are fitted to experimental physical properties by gradient-based numerical optimisation techniques. Thereby, a quadratic loss function between experimental and simulated target properties is minimised with respect to the force field parameters. In this proof-of-concept, the considered physical target properties are chosen to be diverse: density, enthalpy of vapourisation and self-diffusion coefficient are optimised simultaneously at different temperatures. We found that in both cases, the optimisation could be successfully concluded by fulfillment of a pre-defined stopping criterion. Since a fairly small number of iterations were needed to do so, this study will serve as a good starting point for more complex systems and further improvements of the parametrisation task.  相似文献   

6.
The selective interactions between DNA and miniature (39 residues) engineered peptide were directly measured at the single‐molecule level by using atomic force microscopy. This peptide (p007) contains an α‐helical recognition site similar to leucine zipper GCN4 and specifically recognizes the ATGAC sequence in the DNA with nanomolar affinity. The average rupture force was 42.1 pN, which is similar to the unbinding forces of the digoxigenin–antidigoxigenin complex, one of the strongest interactions in biological systems. The single linear fit of the rupture forces versus the logarithm of pulling rates showed a single energy barrier with a transition state located at 0.74 nm from the bound state. The smaller koff compared with that of other similar systems was presumably due to the increased stability of the helical structure by putative folding residues in p007. This strong sequence‐specific DNA–peptide interaction has a potential to be utilized to prepare well‐defined mechanically stable DNA–protein hybrid nanostructures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The ReaxFF interatomic potential, used for organic materials, involves more than 600 adjustable parameters, the best-fit values of which must be determined for different materials. A new method of determining the set of best-fit parameters for specific molecules containing carbon, hydrogen, nitrogen and oxygen is presented, based on a parameter reduction technique followed by genetic algorithm (GA) minimization. This work has two novel features. The first is the use of a parameter reduction technique to determine which subset of parameters plays a significant role for the species of interest; this is necessary to reduce the optimization space to manageable levels. The second is the application of the GA technique to a complex potential (ReaxFF) with a very large number of adjustable parameters, which implies a large parameter space for optimization. In this work, GA has been used to optimize the parameter set to determine best-fit parameters that can reproduce molecular properties to within a given accuracy. As a test problem, the use of the algorithm has been demonstrated for nitromethane and its decomposition products.  相似文献   

8.
Using atomic force microscopy (AFM) we performed dynamic force measurements of the adhesive forces in two model systems: avidin-biotin and streptavidin-biotin. In our experiments we used glutaraldehyde for immobilization of (strept)avidin on the tip and biotin on the sample surface. Such interface layers are more rigid than those usually reported in the literature for AFM studies, when (strept)avidin is coupled with biotinylated bovine albumin and biotin with agarose polymers. We determined the dependence of the rupture forces of avidin-biotin and streptavidin-biotin bonds in the range 300-9600 pN/s. The slope of a semilogarithmic plot of this relation changes at about 1700 pN/s. The existence of two different regimes indicates the presence of two activation barriers of these complexes during the dissociation process. The dissociation rates and activation energy barriers, calculated from the Bell model, for the avidin-biotin and streptavidin-biotin interactions are similar to each other for loading rates > 1700 pN/s but they are different from each other for loading rates < 1700 pN/s. In the latter case, the dissociation rates show a higher stability of the avidin-biotin complex than the streptavidin-biotin complex due to a larger outer activation barrier of 0.8 k(B)T. The bond-rupture force is about 20 pN higher for the avidin-biotin pair than for the streptavidin-biotin pair for loading rates < 1700 pN/s. These two experimental observations are in agreement with the known structural differences between the biotin binding pocket of avidin and of streptavidin.  相似文献   

9.
Parameterization of the phi and omega torsion angles in pyranosidic saccharides was performed based on density functional theory calculations. The modified CHARMM force field, which is referred to as PARM22/SU01, was tested on a glucosyl trisaccharide. A molecular dynamics simulation of the oligosaccharide with explicit water as solvent was performed to investigate the conformational flexibility. Protonz.sbnd;proton distances and heteronuclear spin-spin coupling constants were calculated from the trajectories and showed good agreement to those previously determined by NMR spectroscopy.  相似文献   

10.
To analyze the influence of parameters and functions on the energy and geometry obtained through different force field calculations, we have developed program MolStruc. This software allows the user to choose between two sets of functions and parameters, MM2 and AMBER.The MM2 option of the program was developed to compute the coulombic energy in a dipole or monopole approximation. To establish comparisons between the energy values, the coulombic contribution is computed in the same way in the Amber and MM2 options of the program.The force field parameters can be handled interactively (through addition or modification).The program was used to study molecules of a representative sample displaying most of the problems encountered in molecular mechanics (MM).  相似文献   

11.
The potential of mean force (PMF) approach for treating polyion-diffuse ionic cloud interactions [D. M. Soumpasis (1984) Proceedings of the National Academy of Sciences USA 81, 5116-5120] has been combined with the AMBER force field describing intramolecular interactions. The resultant generalized AMBER-PMF force field enables one to treat the conformational stabilities and structural transitions of charged biomolecules in aqueous electrolytes more realistically. For example, we have used it to calculate the relative stabilities of the B and Z conformations of d(C-G)6, and the B and heteronomous (H) conformations of dA12.dT12, as a function of salt concentration. In the case of d(C-G)6, the predicted B-ZI transition occurs at 2.4M and is essentially driven by the phosphate-diffuse ionic cloud interactions alone as suggested by the results of earlier PMF calculations. The ZII conformer is less stable than the B form under all conditions. It is found that the helical parameters of the refined B and Z structures change with salt concentration. For example, the helical rise of B-DNA increases about 10% and the twist angle decreases by the same amount above 1M NaCl. In the range of 0.01-0.3M NaCl, the H form of dA12.dT12 is found to be more stable than the B form and its stability increases with increasing salt concentration. The computed greater relative stability of the H conformation is likely due to noninclusion of the free energy contribution from the spine of hydration, a feature presumed to stabilize the B form of this sequence.  相似文献   

12.
Atomic force microscopy (AFM) has been applied in many biological investigations in the past 15 years. This review focuses on the application of AFM for quantitatively characterizing the structural and thermodynamic properties of protein-protein and protein-nucleic acid complexes. AFM can be used to determine the stoichiometries and association constants of multiprotein assemblies and to quantify changes in conformations of proteins and protein-nucleic acid complexes. In addition, AFM in solution permits the observation of the dynamic properties of biomolecular complexes and the measurement of intermolecular forces between biomolecules. Recent advances in cryogenic AFM, AFM on two-dimensional crystals, carbon nanotube probes, solution imaging, high-speed AFM, and manipulation capabilities enhance these applications by improving AFM resolution and the dynamic and operative capabilities of the AFM. These developments make AFM a powerful tool for investigating the biomolecular assemblies and interactions that govern gene regulation.  相似文献   

13.
The unbinding force of Zif268-DNA complex has been studied by atomic force microscopy (AFM). DNA and Zif268 were covalently immobilized on the surfaces of an AFM tip and glass substrate, respectively. Confocal microscopy was used to confirm the successful immobilization of DNA. Because of the complexity of the protein-DNA interaction, parallel experiments were designed to discriminate specific interactions. For such experiments, a typical unbinding force of a single Zif268-DNA complex (approx 550 pN at 40 nN/s force loading rate) was evaluated.  相似文献   

14.
Due to its protective properties of biological samples at low temperatures and under desiccation, dimethyl sulfoxide (DMSO) in aqueous solutions has been studied widely by many experimental approaches and molecular dynamics (MD) simulations. In the case of the latter, AMBER is among the most commonly used force fields for simulations of biomolecular systems; however, the parameters for DMSO published by Fox and Kollman in 1998 have only been tested for pure liquid DMSO. We have conducted an MD simulation study of DMSO in a water mixture and computed several structural and dynamical properties such as of the mean density, self-diffusion coefficient, hydrogen bonding and DMSO and water ordering. The AMBER force field of DMSO is seen to reproduce well most of the experimental properties of DMSO in water, with the mixture displaying strong and specific water ordering, as observed in experiments and multiple other MD simulations with other non-polarizable force fields.
Graphical abstract Hydration structure within hydrogen-bonding distance around a DMSOmolecule
  相似文献   

15.
ABSTRACT: BACKGROUND: Protein-DNA interactions are important for many cellular processes, however structural knowledge for a large fraction of known and putative complexes is still lacking. Computational docking methods aim at the prediction of complex architecture given detailed structures of its constituents. They are becoming an increasingly important tool in the field of macromolecular assemblies, complementing particularly demanding protein-nucleic acids X ray crystallography and providing means for the refinement and integration of low resolution data coming from rapidly advancing methods such as cryoelectron microscopy. RESULTS: We present a new coarse-grained force field suitable for protein-DNA docking. The force field is an extension of previously developed parameter sets for protein-RNA and protein-protein interactions. The docking is based on potential energy minimization in translational and orientational degrees of freedom of the binding partners. It allows for fast and efficient systematic search for native-like complex geometry without any prior knowledge regarding binding site location. CONCLUSIONS: We find that the force field gives very good results for bound docking. The quality of predictions in the case of unbound docking varies, depending on the level of structural deviation from bound geometries. We analyze the role of specific protein-DNA interactions on force field performance, both with respect to complex structure prediction, and the reproduction of experimental binding affinities. We find that such direct, specific interactions only partially contribute to protein-DNA recognition, indicating an important role of shape complementarity and sequence-dependent DNA internal energy, in line with the concept of indirect protein-DNA readout mechanism.  相似文献   

16.
The direct reaction field (DRF) approach has proven to be a useful tool to investigate the influence of solvents on the quantum/classical behaviour of solute molecules. In this paper, we report the latest extension of this DRF approach, which consists of the gradient of the completely classical energy expressions of this otherwise QM/MM method. They can be used in (completely classical) molecular dynamics (MD) simulations and geometry optimizations, that can be followed by a number of single point QM/MM calculations on configurations obtained in these simulations/optimizations. We report all energy and gradient expressions, and results for a number of interesting (model) systems. They include geometry optimization of the benzene dimer as well as MD simulations of some solvents. The most stable configuration for the benzene dimer is shown to be the parallel-displaced form, which is slightly more stable (0.3 kcal/mol) than the T-shaped dimer.  相似文献   

17.
The excitation of plasma oscillations in a thin-walled annular plasma by an annular electron beam in a cylindrical waveguide is considered in the linear approximation. The instability growth rates and spatial amplification coefficients in the beam-plasma system under the conditions of the Cherenkov and anomalous Doppler resonances are obtained and compared with those in a transversely homogeneous system. The contributions from different instability mechanisms are analyzed.  相似文献   

18.
The AMBER family of force fields is one of the most commonly used alternatives to describe proteins and drug-like molecules in molecular dynamics simulations. However, the absence of a specific set of parameters for lipids has been limiting the widespread application of this force field in biomembrane simulations, including membrane protein simulations and drug-membrane simulations. Here, we report the systematic parameterization of 12 common lipid types consistent with the General Amber Force Field (GAFF), with charge-parameters determined with RESP at the HF/6–31G(d) level of theory, to be consistent with AMBER. The accuracy of the scheme was evaluated by comparing predicted and experimental values for structural lipid properties in MD simulations in an NPT ensemble with explicit solvent in 100:100 bilayer systems. Globally, a consistent agreement with experimental reference data on membrane structures was achieved for some lipid types when using the typical MD conditions normally employed when handling membrane proteins and drug-membrane simulations (a tensionless NPT ensemble, 310?K), without the application of any of the constraints often used in other biomembrane simulations (such as the surface tension and the total simulation box area). The present set of parameters and the universal approach used in the parameterization of all the lipid types described here, as well as the consistency with the AMBER force field family, together with the tensionless NPT ensemble used, opens the door to systematic studies combining lipid components with small drug-like molecules or membrane proteins and show the potential of GAFF in dealing with biomembranes.  相似文献   

19.
Elucidating the underlying mechanisms of cell physiology is currently an important research topic in life sciences. Atomic force microscopy methods can be used to investigate these molecular mechanisms. In this study, single-molecule force spectroscopy was used to explore the specific recognition between the CD20 antigen and anti-CD20 antibody Rituximab on B lymphoma cells under near-physiological conditions. The CD20-Rituximab specific binding force was measured through tip functionalization. Distribution of CD20 on the B lymphoma cells was visualized three-dimensionally. In addition, the relationship between the intramolecular force and the molecular extension of the CD20-Rituximab complex was analyzed under an external force. These results facilitate further investigation of the mechanism of Rituximab’s anti-cancer effect.  相似文献   

20.
A united-atom potential model for naproxen suitable for molecular dynamics (MD) simulation has been developed. The charge distribution is approximated by point charges obtained from ab initio calculations using the CHELPG method. Also the intramolecular interactions such as bond and angle vibration, and the torsion potential are obtained from ab initio calculations. The dispersive interaction contribution is taken from the literature. By MD simulation using a naproxen film in slap geometry, the temperature dependence of the density, surface tension and self-diffusion coefficient as well as the melting temperature for the developed potential model are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号