首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-affinity variant of human growth hormone (hGH(v)) contains 15 mutations within site 1 and binds to the hGH receptor (hGHR) approximately 400-fold tighter than does wild-type (wt) hGH (hGH(wt)). We used shotgun scanning combinatorial mutagenesis to dissect the energetic contributions of individual residues within the hGH(v) binding epitope and placed them in context with previously determined structural information. In all, the effects of alanine substitutions were determined for 35 hGH(v) residues that are directly contained in or closely border the binding interface. We found that the distribution of binding energy in the functional epitope of hGH(v) differs significantly from that of hGH(wt). The residues that contributed the majority of the binding energy in the wt interaction (the so-called binding "hot spot") remain important, but their contributions are attenuated in the hGH(v) interaction, and additional binding energy is acquired from residues on the periphery of the original hotspot. Many interactions that inhibited the binding of hGH(wt) are replaced by interactions that make positive contributions to the binding of hGH(v). These changes produce an expanded and diffused hot spot in which improved affinity results from numerous small contributions distributed broadly over the interface. The mutagenesis results are consistent with previous structural studies, which revealed widespread structural differences between the wt and variant hormone-receptor interfaces. Thus, it appears that the improved binding affinity of hGH(v) site 1 was not achieved through minor adjustments to the wt interface, but rather, results from a wholesale reconfiguration of many of the original binding elements.  相似文献   

2.
The antigen-binding fragment Fab-YADS2 recognizes vascular endothelial growth factor (VEGF) and was derived from a library with chemical diversity restricted to only four amino acids (Tyr, Ser, Ala and Asp). The structure of the Fab:antigen complex revealed that the structural paratope is dominated by Tyr side-chains. Isothermal titration calorimetry and cell-based assays show that restricted chemical diversity does not limit the affinity or specificity of Fab-YADS2, which behaves in a manner comparable to natural antibodies. Mutagenesis experiments reveal that the functional paratope is dominated by Tyr, which represents 11 of the 15 functionally important residues. However, mutagenesis experiments also indicate that substitution of any of these tyrosine residues by Phe does not significantly affect binding to VEGF. Furthermore, saturation mutagenesis shows that replacement of three functionally important tyrosine residues by combinations of other hydrophobic residues is not only tolerated, but can actually improve affinity. The results support a model for na?ve antigen recognition in which large Tyr side-chains establish binding contacts with antigen, and small Ser and Ala side-chains serve as auxiliaries that help to position Tyr in favorable binding conformations. While Tyr may not be optimal for any particular antigen contact, it is nonetheless capable of mediating favorable interactions with a diverse array of surfaces. Furthermore, the side-chain hydroxyl group makes Tyr significantly more hydrophilic than Phe and other hydrophobic amino acids. Increased hydrophilicity may reduce non-specific binding in the unbound state, and this may be critical for a na?ve repertoire that is exposed to a diverse range of potential antigenic surfaces. The results show that the chemical nature of Tyr endows the amino acid with a privileged role in antigen recognition, and this likely explains the high abundance of Tyr in natural antigen-binding sites.  相似文献   

3.
The human antibody b12 recognizes a discontinuous epitope on gp120 and is one of the rare monoclonal antibodies that neutralize a broad range of primary human immunodeficiency virus type 1 (HIV-1) isolates. We previously reported the isolation of B2.1, a dimeric peptide that binds with high specificity to b12 and competes with gp120 for b12 antibody binding. Here, we show that the affinity of B2.1 was improved 60-fold over its synthetic-peptide counterpart by fusing it to the N terminus of a soluble protein. This affinity, which is within an order of magnitude of that of gp120, probably more closely reflects the affinity of the phage-borne peptide. The crystal structure of a complex between Fab of b12 and B2.1 was determined at 1.8 A resolution. The structural data allowed the differentiation of residues that form critical contacts with b12 from those required for maintenance of the antigenic structure of the peptide, and revealed that three contiguous residues mediate B2.1's critical contacts with b12. This single region of critical contact between the B2.1 peptide and the b12 paratope is unlikely to mimic the discontinuous key binding residues involved in the full b12 epitope for gp120, as previously identified by alanine scanning substitutions on the gp120 surface. These structural observations are supported by experiments that demonstrate that B2.1 is an ineffective immunogenic mimic of the b12 epitope on gp120. Indeed, an extensive series of immunizations with B2.1 in various forms failed to produce gp120 cross-reactive sera. The functional and structural data presented here, however, suggest that the mechanism by which b12 recognizes the two antigens is very different. Here, we present the first crystal structure of peptide bound to an antibody that was originally raised against a discontinuous protein epitope. Our results highlight the challenge of producing immunogens that mimic discontinuous protein epitopes, and the necessity of combining complementary experimental approaches in analyzing the antigenic and immunogenic properties of putative molecular mimics.  相似文献   

4.
Li Y  Li H  Smith-Gill SJ  Mariuzza RA 《Biochemistry》2000,39(21):6296-6309
Antigen-antibody complexes provide useful models for studying the structure and energetics of protein-protein interactions. We report the cloning, bacterial expression, and crystallization of the antigen-binding fragment (Fab) of the anti-hen egg white lysozyme (HEL) antibody HyHEL-63 in both free and antigen-bound forms. The three-dimensional structure of Fab HyHEL-63 complexed with HEL was determined to 2.0 A resolution, while the structure of the unbound antibody was determined in two crystal forms, to 1.8 and 2.1 A resolution. In the complex, 19 HyHEL-63 residues from all six complementarity-determining regions (CDRs) of the antibody contact 21 HEL residues from three discontinuous polypeptide segments of the antigen. The interface also includes 11 bound water molecules, 3 of which are completely buried in the complex. Comparison of the structures of free and bound Fab HyHEL-63 reveals that several of the ordered water molecules in the free antibody-combining site are retained and that additional waters are added upon complex formation. The interface waters serve to increase shape and chemical complementarity by filling cavities between the interacting surfaces and by contributing to the hydrogen bonding network linking the antigen and antibody. Complementarity is further enhanced by small (<3 A) movements in the polypeptide backbones of certain antibody CDR loops, by rearrangements of side chains in the interface, and by a slight shift in the relative orientation of the V(L) and V(H) domains. The combining site residues of complexed Fab HyHEL-63 exhibit reduced temperature factors compared with those of the free Fab, suggesting a loss in conformational entropy upon binding. To probe the relative contribution of individual antigen residues to complex stabilization, single alanine substitutions were introduced in the epitope of HEL recognized by HyHEL-63, and their effects on antibody affinity were measured using surface plasmon resonance. In agreement with the crystal structure, HEL residues at the center of the interface that are buried in the complex contribute most to the binding energetics (DeltaG(mutant) - DeltaG(wild type) > 3.0 kcal/mol), whereas the apparent contributions of solvent-accessible residues at the periphery are much less pronounced (<1.5 kcal/mol). In the latter case, the mutations may be partially compensated by local rearrangements in solvent structure that help preserve shape complementarity and the interface hydrogen bonding network.  相似文献   

5.
In diploid cells of the yeast Saccharomyces cerevisiae, the α2 and a1 homeodomain proteins bind cooperatively to sites in the promoters of haploid cell-type-specific genes (hsg) to repress their expression. Although both proteins bind to the DNA, in the α2 homeodomain substitutions of residues that are involved in contacting the DNA have little or no effect on repression in vivo or cooperative DNA binding with a1 protein in vitro. This result brings up the question of the contribution of each protein in the heterodimer complex to the DNA-binding affinity and specificity. To determine the requirements for the a1-α2 homeodomain DNA recognition, we systematically introduced single base-pair substitutions in an a1-α2 DNA-binding site and examined their effects on repression in vivo and DNA binding in vitro. Our results show that nearly all substitutions that significantly decrease repression and DNA-binding affinity are at positions which are specifically contacted by either the α2 or a1 protein. Interestingly, an α2 mutant lacking side chains that make base-specific contacts in the major groove is able to discriminate between the wild-type and mutant DNA sites with the same sequence specificity as the wild-type protein. These results suggest that the specificity of α2 DNA binding in complex with a1 does not rely solely on the residues that make base-specific contacts. We have also examined the contribution of the a1 homeodomain to the binding affinity and specificity of the complex. In contrast to the lack of a defective phenotype produced by mutations in the α2 homeodomain, many of the alanine substitutions of residues in the a1 homeodomain have large effects on a1-α2-mediated repression and DNA binding. This result shows that the two proteins do not make equal contributions to the DNA-binding affinity of the complex.  相似文献   

6.
The broadly neutralizing HIV-1 antibody 2F5 recognizes an epitope in the gp41 membrane proximal external region (MPER). The MPER adopts a helical conformation as free peptide, as post-fusogenic forms of gp41, and when bound to the 4E10 monoclonal antibody (Mab). However, when bound to 2F5, the epitope is an extended-loop. The antibody-peptide structure reveals binding between the heavy and light chains with most the long, hydrophobic CDRH3 not contacting peptide. However, mutagenesis identifies this loop as critical for binding, neutralization and for putative hydrophobic membrane interactions. Here, we examined length requirements of the 2F5 CDRH3 and plasticity regarding binding and neutralization. We generated 2F5 variants possessing either longer or shorter CDRH3s and assessed function. The CDRH3 tolerated elongations and reductions up to four residues, displaying a range of binding affinities and retaining some neutralizing capacity. 2F5 antibody variants selective recognition of conformationally distinctive MPER probes suggests a new role for the CDRH3 loop in destabilizing the helical MPER. Binding and neutralization were enhanced by targeted tryptophan substitutions recapitulating fully the activities of the wild-type 2F5 antibody in a shorter CDRH3 variant. MPER alanine scanning revealed binding contacts of this variant downstream of the 2F5 core epitope, into the 4E10 epitope region. This variant displayed increased reactivity to cardiolipin-beta-2-glycoprotein. Tyrosine replacements maintained neutralization while eliminating cardiolipin-beta-2-glycoprotein interaction. The data suggest a new mechanism of action, important for vaccine design, in which the 2F5 CDRH3 contacts and destabilizes the MPER helix downstream of its core epitope to allow induction of the extended-loop conformation.  相似文献   

7.
The three-dimensional structure of the Fab fragment of a monoclonal antibody (LNKB-2) to human interleukin-2 (IL-2) complexed with a synthetic antigenic nonapeptide, Ac-Lys-Pro-Leu-Glu-Glu-Val-Leu-Asn-Leu-OMe, has been determined at 3.0 A resolution. In the structure, four out of the six hypervariable loops of the Fab (complementarity determining regions [CDRs] L1, H1, H2, and H3) are involved in peptide association through hydrogen bonding, salt bridge formation, and hydrophobic interactions. The Tyr residues in the Fab antigen binding site play a major role in antigen-antibody recognition. The structures of the complexed and uncomplexed Fab were compared. In the antigen binding site the CDR-L1 loop of the antibody shows the largest structural changes upon peptide binding. The peptide adopts a mostly alpha-helical conformation similar to that in the epitope fragment 64-72 of the IL-2 antigen. The side chains of residues Leu 66, Val 69, and Leu 70, which are shielded internally in the IL-2 structure, are involved in interactions with the Fab in the complex studied. This indicates that antibody-antigen complexation involves a significant rearrangement of the epitope-containing region of the IL-2 with retention of the alpha-helical character of the epitope fragment.  相似文献   

8.
A bacterially expressed single chain antibody (scFv215) directed against the largest subunit of drosophila RNA polymerase II was analysed. Structure and function of the antigen binding site in scFv215 were probed by chain shuffling and by site‐specific mutagenesis. The entire variable region of either the heavy or light chain was replaced by an unrelated heavy or light chain. Both replacements resulted in a total loss of binding activity suggesting that the antigen binding site is contributed by both chains. The functional contributions of each complementarity determining region (CDR) were investigated by site specific mutagenesis of each CDR separately. Mutations in two of the CDRs, CDR1 of light chain and CDR2 of heavy chain, reduced the binding activity significantly. Each of the amino acids in these two CDRs was replaced individually by alanine (alanine walking). Seven amino acid substitutions in the two CDRs were found to reduce the binding activity by more than 50%. The data support a computer model of scFv215 which fits an epitope model based on a mutational analysis of the epitope suggesting an alpha‐helical structure for the main contact area. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Vaccinia virus A33 is an extracellular enveloped virus (EEV)-specific type II membrane glycoprotein that is essential for efficient EEV formation and long-range viral spread within the host. A33 is a target for neutralizing antibody responses against EEV. In this study, we produced seven murine anti-A33 monoclonal antibodies (MAbs) by immunizing mice with live VACV, followed by boosting with the soluble A33 homodimeric ectodomain. Five A33 specific MAbs were capable of neutralizing EEV in the presence of complement. All MAbs bind to conformational epitopes on A33 but not to linear peptides. To identify the epitopes, we have adetermined the crystal structures of three representative neutralizing MAbs in complex with A33. We have further determined the binding kinetics for each of the three antibodies to wild-type A33, as well as to engineered A33 that contained single alanine substitutions within the epitopes of the three crystallized antibodies. While the Fab of both MAbs A2C7 and A20G2 binds to a single A33 subunit, the Fab from MAb A27D7 binds to both A33 subunits simultaneously. A27D7 binding is resistant to single alanine substitutions within the A33 epitope. A27D7 also demonstrated high-affinity binding with recombinant A33 protein that mimics other orthopoxvirus strains in the A27D7 epitope, such as ectromelia, monkeypox, and cowpox virus, suggesting that A27D7 is a potent cross-neutralizer. Finally, we confirmed that A27D7 protects mice against a lethal challenge with ectromelia virus.  相似文献   

10.
The human monoclonal antibody 2F5 neutralizes primary human immunodeficiency virus type 1 (HIV-1) with rare breadth and potency. A crystal structure of a complex of 2F5 and a peptide corresponding to its core epitope on gp41, ELDKWAS, revealed that the peptide interacts with residues at the base of the unusually long (22-residue) third complementarity-determining region of the heavy chain (CDR H3) but not the apex. Here, we perform alanine-scanning mutagenesis across CDR H3 and make additional substitutions of selected residues to map the paratope of Fab 2F5. Substitution of residues from the base of the H3 loop or from CDRs H1, H2, and L3, which are proximal to the peptide, significantly diminished the affinity of Fab 2F5 for gp41 and a short peptide containing the 2F5 core motif. However, nonconservative substitutions to a phenylalanine residue at the apex of the H3 loop also markedly decreased 2F5 binding to both gp41 and the peptide, suggesting that recognition of the core epitope is crucially dependent on features at the apex of the H3 loop. Furthermore, substitution at the apex of the H3 loop had an even more pronounced effect on the neutralizing activity of 2F5 against three sensitive HIV-1. These observations present a challenge to vaccine strategies based on peptide mimics of the linear epitope.  相似文献   

11.
Although multiple different procedures to characterize the epitopes recognized by antibodies have been developed, site-directed mutagenesis remains the method of choice to define the energetic contribution of antigen residues to binding. These studies are useful to identify critical residues and to delineate functional maps of the epitopes. However, they tend to underestimate the roles of residues that are not critical for binding on their own, but contribute to the formation of the target epitope in an additive, or even cooperative, way. Mapping antigenic determinants with a diffuse energetic landscape, which establish multiple individually weak interactions with the antibody paratope, resulting in high affinity and specificity recognition of the epitope as a whole, is thus technically challenging. The current work was aimed at developing a combinatorial strategy to overcome the limitations of site-directed mutagenesis, relying on comprehensive randomization of discrete antigenic regions within phage-displayed antigen libraries. Two model antibodies recognizing epidermal growth factor were used to validate the mapping platform. Abrogation of antibody recognition due to the introduction of simultaneous replacements was able to show the involvement of particular amino acid clusters in epitope formation. The abundance of some of the original residues (or functionally equivalent amino acids sharing their physicochemical properties) among the set of mutated antigen variants selected on a given antibody highlighted their contributions and allowed delineation of a detailed functional map of the corresponding epitope. The use of the combinatorial approach could be expanded to map the interactions between other antigens/antibodies.  相似文献   

12.
To investigate the molecular structural and functional characteristics of tumor-suppressive anti-ErbB-2 monoclonal antibody (mAb) SER4, we performed mAb-gene cloning and epitope mapping by a phage display system. Structural analysis demonstrated that both the heavy chain (HC) and light chain variable regions are highly homologous with the derived germline sequences, while the HC complementarity determining region (HCDR) 3 has a relatively short length and biased amino acid usage. A cloned gene-derived recombinant Fab (rFab) fragment showed antigen binding activity and specificity comparable to the parent mAb. Cross-linking of the rFab fragment with the anti-Fab antibody elicited cell growth inhibition in vitro. These results imply that the cloned genes actually encode the Fab part of SER4. The epitope mimetic peptide (mimotope) isolated by panning a phage-displayed random peptide library against SER4 showed no cross-reactivity with mAbs other than SER4. The mimotope was found to be homologous with (87)AHNQVRQVPLQR(98) in the extracellular domain of ErbB-2 by means of a clustalw search. Since SER4 causes the growth inhibition of ErbB-2 positive cells, the predicted epitope sequence may constitute the putative functional domain of ErbB-2.  相似文献   

13.
《MABS-AUSTIN》2013,5(3):637-648
Although multiple different procedures to characterize the epitopes recognized by antibodies have been developed, site-directed mutagenesis remains the method of choice to define the energetic contribution of antigen residues to binding. These studies are useful to identify critical residues and to delineate functional maps of the epitopes. However, they tend to underestimate the roles of residues that are not critical for binding on their own, but contribute to the formation of the target epitope in an additive, or even cooperative, way. Mapping antigenic determinants with a diffuse energetic landscape, which establish multiple individually weak interactions with the antibody paratope, resulting in high affinity and specificity recognition of the epitope as a whole, is thus technically challenging. The current work was aimed at developing a combinatorial strategy to overcome the limitations of site-directed mutagenesis, relying on comprehensive randomization of discrete antigenic regions within phage-displayed antigen libraries. Two model antibodies recognizing epidermal growth factor were used to validate the mapping platform. Abrogation of antibody recognition due to the introduction of simultaneous replacements was able to show the involvement of particular amino acid clusters in epitope formation. The abundance of some of the original residues (or functionally equivalent amino acids sharing their physicochemical properties) among the set of mutated antigen variants selected on a given antibody highlighted their contributions and allowed delineation of a detailed functional map of the corresponding epitope. The use of the combinatorial approach could be expanded to map the interactions between other antigens/antibodies.  相似文献   

14.
DNA:m(5)C MTases comprise a catalytic domain with conserved residues of the active site and a strongly diverged TRD with variable residues involved in DNA recognition and binding. To date, crystal structures of 2 DNA:m(5)C MTases complexed with the substrate DNA have been obtained; however, for none of these enzymes has the importance of the whole set of DNA-binding residues been comprehensively studied. We built a comparative model of M.NgoPII, a close homologue and isomethylomer of M.HaeIII, and systematically analyzed the effect of alanine substitutions for the complete set of amino acid residues from its TRD predicted to be important for DNA binding and target recognition. Our data demonstrate that only 1 Arg residue is indispensable for the MTase activity in vivo and in vitro, and that mutations of only a few other residues cause significant reduction of the activity in vitro, with little effect on the activity in vivo. The identification of dispensable protein-DNA contacts in the wild-type MTase will serve as a platform for exhaustive combinatorial mutagenesis aimed at the design of new contacts, and thus construction of enzyme variants that retain the activity but exhibit potentially new substrate preferences.  相似文献   

15.
The antigenic recognition of Shigella flexneri O-polysaccharide, which consists of a repeating unit ABCD [-->2)-alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->3)-beta-D-GlcpNAc-(1-->], by the monoclonal antibody SYA/J6 (IgG3, kappa) has been investigated by crystallographic analysis of the Fab domain and its two complexes with two antigen segments (a pentasaccharide Rha A-Rha B-Rha C-GlcNAc D-Rha A' and a modified trisaccharide Rha B-Rha C-GlcNAc D in which Rha C* is missing a C2-OH group). These complex structures, the first for a Fab specific for a periodic linear heteropolysaccharide, reveal a binding site groove (between the V(H) and V(L) domains) that makes polar and nonpolar contacts with all the sugar residues of the pentasaccharide. Both main-chain and side-chain atoms of the Fab are used in ligand binding. The charged side chain of Glu H50 of CDR H2 forms crucial hydrogen bonds to GlcNAc of the oligosaccharides. The modified trisaccharide is more buried and fits more snugly than the pentasaccharide. It also makes as many contacts (approximately 75) with the Fab as the pentasaccharide, including the same number of hydrogen bonds (eight, with four being identical). It is further engaged in more hydrophobic interactions than the pentasaccharide. These three features favorable to trisaccharide binding are consistent with the observation of a tighter complex with the trisaccharide than the pentasaccharide. Thermodynamic data demonstrate that the native tri- to pentasaccharides have free energies of binding in the range of 6.8-7.4 kcal mol(-1), and all but one of the hydrogen bonds to individual hydroxyl groups provide no more than approximately 0.7 kcal mol(-1). They further indicate that hydrophobic interactions make significant contributions to binding and, as the native epitope becomes larger across the tri-, tetra-, pentasaccharide series, entropy contributions to the free energy become dominant.  相似文献   

16.
Two distinct spontaneous variants of the murine anti-digoxin hybridoma 26-10 were isolated by fluorescence-activated cell sorting for reduced affinity of surface antibody for antigen. Nucleotide and partial amino acid sequencing of the variant antibody variable regions revealed that 1 variant had a single amino acid substitution: Lys for Asn at heavy chain position 35. The second variant antibody had 2 heavy chain substitutions: Tyr for Asn at position 35, and Met for Arg at position 38. Mutagenesis experiments confirmed that the position 35 substitutions were solely responsible for the markedly reduced affinity of both variant antibodies. Several mutants with more conservative position 35 substitutions were engineered to ascertain the contribution of Asn 35 to the binding of digoxin to antibody 26-10. Replacement of Asn with Gln reduced affinity for digoxin 10-fold relative to the wild-type antibody, but maintained wild-type fine specificity for cardiac glycoside analogues. All other substitutions (Val, Thr, Leu, Ala, and Asp) reduced affinity by at least 90-fold and caused distinct shifts in fine specificity. The Ala mutant demonstrated greatly increased relative affinities for 16-acetylated haptens and haptens with a saturated lactone. The X-ray crystal structure of the 26-10 Fab in complex with digoxin (Jeffrey PD et al., 1993, Proc Natl Acad Sci USA 90:10310-10314) reveals that the position 35 Asn contacts hapten and forms hydrogen bonds with 2 other contact residues. The reductions in affinity of the position 35 mutants for digoxin are greater than expected based upon the small hapten contact area provided by the wild-type Asn. We therefore performed molecular modeling experiments which suggested that substitution of Gln or Asp can maintain these hydrogen bonds whereas the other substituted side chains cannot. The altered binding of the Asp mutant may be due to the introduction of a negative charge. The similarities in binding of the wild-type and Gln-mutant antibodies, however, suggest that these hydrogen bonds are important for maintaining the architecture of the binding site and therefore the affinity and specificity of this antibody. The Ala mutant eliminates the wild-type hydrogen bonding, and molecular modeling suggests that the reduced side-chain volume also provides space that can accommodate a congener with a 16-acetyl group or saturated lactone, accounting for the altered fine specificity of this antibody.  相似文献   

17.
We analyzed antigen-binding residues from the variable domains of anti-CD4 antibody 13B8.2 using the Spot method of parallel peptide synthesis. Sixteen amino acids, defined as Spot critical residues (SCR), were identified on the basis of a 50% decrease in CD4 binding to alanine analogs of reactive peptides. Recombinant Fab 13B8.2 mutants were constructed with alanine residues in place of each of the 16 SCR, expressed in the baculovirus cell system, and purified. CD measurements indicated that the mutated proteins were conformationally intact, with a beta-sheet secondary structure similar to that of wild-type Fab. Compared with the CD4-binding capacity of wild-type Fab 13B8.2, 11 light (Y32-L, W35-L, Y36-L, H91-L, and Y92-L) and heavy chain (H35-H, R38-H, W52-H, R53-H, F100K-H, and W103-H) Fab single mutants showed a decrease in CD4 recognition as demonstrated by enzyme-linked immunosorbent assay, BIAcore, and flow cytometry analyses. The five remaining Fab mutants showed antigen-binding properties similar to those of wild-type Fab. Recombinant Fab mutants that showed decreased CD4 binding also lost their capacity to inhibit human immunodeficiency virus promoter activation and the antigen-presenting ability that wild-type Fab displays. Molecular modeling of the 13B8.2 antibody paratope indicated that most of these critical residues are appropriately positioned inside the putative CD4-binding pocket, whereas the five SCR that were not confirmed by mutagenesis show an unfavorable positioning. Taken together, these results indicate that most of the residues defined by the Spot method as critical matched with important residues defined by mutagenesis in the whole protein context. The identification of critical residues for CD4 binding in the paratope of anti-CD4 recombinant Fab 13B8.2 provides the opportunity for the generation of improved anti-CD4 molecules with more efficient pharmacological properties.  相似文献   

18.
Vaccinia DNA topoisomerase catalyzes the cleavage and re-joining of DNA strands through a DNA-(3'-phosphotyrosyl)-enzyme intermediate formed at a specific target sequence, 5'-(C/T)CCTT downward arrow. The 314 aa protein consists of three protease-resistant structural domains demarcated by protease-sensitive interdomain segments referred to as the bridge and the hinge. The bridge is defined by trypsin-accessible sites at Arg80, Lys83 and Arg84. Photocrosslinking and proteolytic footprinting experiments suggest that residues near the interdomain bridge interact with DNA. To assess the contributions of specific amino acids to DNA binding and transesterification chemistry, we introduced alanine substitutions at 16 positions within a 24 aa segment from residues 63 to 86(DSKGRRQYFYGKMHVQNRNAKRDR). Assays of the rates of DNA relaxation under conditions optimal for the wild-type topoisomerase revealed significant mutational effects at six positions; Arg67, Tyr70, Tyr72, Arg80, Arg84 and Asp85. The mutated proteins displayed normal or near-normal rates of single-turnover transesterification to DNA. The effects of amino acid substitutions on DNA binding were evinced by inhibition of covalent adduct formation in the presence of salt and magnesium. The mutant enzymes also displayed diminished affinity for a subset of cleavage sites in pUC19 DNA. Tyr70 and Tyr72 were subjected to further analysis by replacement with Phe, His, Gln and Arg. At both positions, the aromatic moiety was important for DNA binding.  相似文献   

19.
The Fab portion of a humanized antibody (Fab-12; IgG form known as rhuMAb VEGF) to vascular endothelial growth factor (VEGF) has been affinity-matured through complementarity-determining region (CDR) mutation, followed by affinity selection using monovalent phage display. After stringent binding selections at 37 degrees C, with dissociation (off-rate) selection periods of several days, high affinity variants were isolated from CDR-H1, H2, and H3 libraries. Mutations were combined to obtain cumulatively tighter-binding variants. The final variant identified here, Y0317, contained six mutations from the parental antibody. In vitro cell-based assays show that four mutations yielded an improvement of about 100-fold in potency for inhibition of VEGF-dependent cell proliferation by this variant, consistent with the equilibrium binding constant determined from kinetics experiments at 37 degrees C. Using X-ray crystallography, we determined a high-resolution structure of the complex between VEGF and the affinity-matured Fab fragment. The overall features of the binding interface seen previously with wild-type are preserved, and many contact residues are maintained in precise alignment in the superimposed structures. However, locally, we see evidence for improved contacts between antibody and antigen, and two mutations result in increased van der Waals contact and improved hydrogen bonding. Site-directed mutants confirm that the most favorable improvements as judged by examination of the complex structure, in fact, have the greatest impact on free energy of binding. In general, the final antibody has improved affinity for several VEGF variants as compared with the parental antibody; however, some contact residues on VEGF differ in their contribution to the energetics of Fab binding. The results show that small changes even in a large protein-protein binding interface can have significant effects on the energetics of interaction.  相似文献   

20.
IL4-BP, the extracellular binding domain of the IL-4 receptor alpha chain, contains a high-affinity binding epitope for IL-4 (K(D) 150 pM). Previous results on the crystal structure of the IL-4/IL4-BP complex and on the functional epitope of IL-4 suggested that this contact comprises a mosaic of two binding clusters. The present mutational analysis of IL4-BP supports this view and demonstrates that the energetically most important group is the receptor carboxylate group of D72 forming an ion pair with IL-4 R88 in cluster II. The second main receptor determinant is the hydroxyl group of Y183 forming a hydrogen bond with IL-4 E9 in cluster I. The latter is engaged in additional hydrogen bonds with Y13 and also in van der Waals contacts with Y127. Receptor residue D72 as well as Y183 are each surrounded by a shell of hydrophobic groups from residues that upon mutation lead to smaller decreases in binding affinity. Analysis of IL4-BP double mutants showed that receptor side-chains within one cluster but not those of different clusters cooperate. Interaction analysis of IL-4 and IL4-BP single mutants also revealed additivity in binding of side-chains between clusters and cooperativity within each cluster I or II.These results show that the high-affinity IL-4/IL4-BP contact is constituted by two independent binding units, each containing a central polar or charged side-chain surrounded by hydrophobic groups (avocado cluster).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号