首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Fermentations using Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST), and Zymomonas mobilis AX101 are compared side-by-side on corn steep liquor (CSL) media and the water extract and enzymatic hydrolysate from ammonia fiber expansion (AFEX)-pretreated corn stover.

Results

The three ethanologens are able produce ethanol from a CSL-supplemented co-fermentation at a metabolic yield, final concentration and rate greater than 0.42 g/g consumed sugars, 40 g/L and 0.7 g/L/h (0-48 h), respectively. Xylose-only fermentation of the tested ethanologenic bacteria are five to eight times faster than 424A(LNH-ST) in the CSL fermentation. All tested strains grow and co-ferment sugars at 15% w/v solids loading equivalent of ammonia fiber explosion (AFEX)-pretreated corn stover water extract. However, both KO11 and 424A(LNH-ST) exhibit higher growth robustness than AX101. In 18% w/w solids loading lignocellulosic hydrolysate from AFEX pretreatment, complete glucose fermentations can be achieved at a rate greater than 0.77 g/L/h. In contrast to results from fermentation in CSL, S. cerevisiae 424A(LNH-ST) consumed xylose at the greatest extent and rate in the hydrolysate compared to the bacteria tested.

Conclusions

Our results confirm that glucose fermentations among the tested strains are effective even at high solids loading (18% by weight). However, xylose consumption in the lignocellulosic hydrolysate is the major bottleneck affecting overall yield, titer or rate of the process. In comparison, Saccharomyces cerevisiae 424A(LNH-ST) is the most relevant strains for industrial production for its ability to ferment both glucose and xylose from undetoxified and unsupplemented hydrolysate from AFEX-pretreated corn stover at high yield.  相似文献   

2.
Sugarcane is one of the major agricultural crops cultivated in tropical climate regions of the world. Each tonne of raw cane production is associated with the generation of 130 kg dry weight of bagasse after juice extraction and 250 kg dry weight of cane leaf residue postharvest. The annual world production of sugarcane is ~1.6 billion tones, generating 279 MMT tones of biomass residues (bagasse and cane leaf matter) that would be available for cellulosic ethanol production. Here, we investigated the production of cellulosic ethanol from sugar cane bagasse and sugar cane leaf residue using an alkaline pretreatment: ammonia fiber expansion (AFEX). The AFEX pretreatment improved the accessibility of cellulose and hemicelluloses to enzymes during hydrolysis by breaking down the ester linkages and other lignin carbohydrate complex (LCC) bonds and the sugar produced by this process is found to be highly fermentable. The maximum glucan conversion of AFEX pretreated bagasse and cane leaf residue by cellulases was ~85%. Supplementation with hemicellulases during enzymatic hydrolysis improved the xylan conversion up to 95–98%. Xylanase supplementation also contributed to a marginal improvement in the glucan conversion. AFEX‐treated cane leaf residue was found to have a greater enzymatic digestibility compared to AFEX‐treated bagasse. Co‐fermentation of glucose and xylose, produced from high solid loading (6% glucan) hydrolysis of AFEX‐treated bagasse and cane leaf residue, using the recombinant Saccharomyces cerevisiae (424A LNH‐ST) produced 34–36 g/L of ethanol with 92% theoretical yield. These results demonstrate that AFEX pretreatment is a viable process for conversion of bagasse and cane leaf residue into cellulosic ethanol. Biotechnol. Bioeng. 2010;107: 441–450. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
The pentose phosphate pathway (PPP) plays an important role in the efficiency of xylose fermentation during cellulosic ethanol production. In simultaneous saccharification and co-fermentation (SSCF), the optimal temperature for cellulase hydrolysis of lignocellulose is much higher than that of fermentation. Successful use of SSCF requires optimization of the expression of PPP genes at elevated temperatures. This study examined the combinatorial expression of PPP genes at high temperature. The results revealed that over-expression of TAL1 and TKL1 in Saccharomyces cerevisiae (S. cerevisiae) at 30 °C and over-expression of all PPP genes at 36 °C resulted in the highest ethanol productivities. Furthermore, combinatorial over-expression of PPP genes derived from S. cerevisiae and a thermostable yeast Kluyveromyces marxianus allowed the strain to ferment xylose with ethanol productivity of 0.51 g/L/h, even at 38 °C. These results clearly demonstrate that xylose metabolism can be improved by the utilization of appropriate combinations of thermostable PPP genes in high-temperature production of ethanol.  相似文献   

4.
Cost-effective and efficient ethanol production from lignocellulosic materials requires the fermentation of all sugars recovered from such materials including glucose, xylose, mannose, galactose, and l-arabinose. Wild-type strains of Saccharomyces cerevisiae used in industrial ethanol production cannot ferment d-xylose and l-arabinose. Our genetically engineered recombinant S. cerevisiae yeast 424A(LNH-ST) has been made able to efficiently ferment xylose to ethanol, which was achieved by integrating multiple copies of three xylose-metabolizing genes. This study reports the efficient anaerobic fermentation of l-arabinose by the derivative of 424A(LNH-ST). The new strain was constructed by over-expression of two additional genes from fungi l-arabinose utilization pathways. The resulting new 424A(LNH-ST) strain exhibited production of ethanol from l-arabinose, and the yield was more than 40%. An efficient ethanol production, about 72.5% yield from five-sugar mixtures containing glucose, galactose, mannose, xylose, and arabinose was also achieved. This co-fermentation of five-sugar mixture is important and crucial for application in industrial economical ethanol production using lignocellulosic biomass as the feedstock.  相似文献   

5.
Robust microorganisms are necessary for economical bioethanol production. However, such organisms must be able to effectively ferment both hexose and pentose sugars present in lignocellulosic hydrolysate to ethanol. Wild type Saccharomyces cerevisiae can rapidly ferment hexose, but cannot ferment pentose sugars. Considerable efforts were made to genetically engineer S. cerevisiae to ferment xylose. Our genetically engineered S cerevisiae yeast, 424A(LNH-ST), expresses NADPH/NADH xylose reductase (XR) that prefer NADPH and NAD+-dependent xylitol dehydrogenase (XD) from Pichia stipitis, and overexpresses endogenous xylulokinase (XK). This strain is able to ferment glucose and xylose, as well as other hexose sugars, to ethanol. However, the preference for different cofactors by XR and XD might lead to redox imbalance, xylitol excretion, and thus might reduce ethanol yield and productivity. In the present study, genes responsible for the conversion of xylose to xylulose with different cofactor specificity (1) XR from N. crassa (NADPH-dependent) and C. parapsilosis (NADH-dependent), and (2) mutant XD from P. stipitis (containing three mutations D207A/I208R/F209S) were overexpressed in wild type yeast. To increase the NADPH pool, the fungal GAPDH enzyme from Kluyveromyces lactis was overexpressed in the 424A(LNH-ST) strain. Four pentose phosphate pathway (PPP) genes, TKL1, TAL1, RKI1 and RPE1 from S. cerevisiae, were also overexpressed in 424A(LNH-ST). Overexpression of GAPDH lowered xylitol production by more than 40%. However, other strains carrying different combinations of XR and XD, as well as new strains containing the overexpressed PPP genes, did not yield any significant improvement in xylose fermentation.  相似文献   

6.

Background

Simultaneous saccharification and fermentation (SSF) is a promising process for bioconversion of lignocellulosic biomass. High glucan loading for hydrolysis and fermentation is an efficient approach to reduce the capital costs for bio-based products production. The SSF of steam-exploded corn stover (SECS) for ethanol production at high glucan loading and high temperature was investigated in this study.

Results

Glucan conversion of corn stover biomass pretreated by steam explosion was maintained at approximately 71 to 79% at an enzyme loading of 30 filter paper units (FPU)/g glucan, and 74 to 82% at an enzyme loading of 60 FPU/g glucan, with glucan loading varying from 3 to 12%. Glucan conversion decreased obviously with glucan loading beyond 15%. The results indicated that the mixture was most efficient in enzymatic hydrolysis of SECS at 3 to 12% glucan loading. The optimal SSF conditions of SECS using a novel Saccharomyces cerevisiae were inoculation optical density (OD)600?=?4.0, initial pH 4.8, 50% nutrients added, 36 hours pre-hydrolysis time, 39°C, and 12% glucan loading (20% solid loading). With the addition of 2% Tween 20, glucan conversion, ethanol yield, final ethanol concentration reached 78.6%, 77.2%, and 59.8 g/L, respectively, under the optimal conditions. The results suggested that the solid and degradation products’ inhibitory effect on the hydrolysis and fermentation of SECS were also not obvious at high glucan loading. Additionally, glucan conversion and final ethanol concentration in SSF of SECS increased by 13.6% and 18.7%, respectively, compared with separate hydrolysis and fermentation (SHF).

Conclusions

Our research suggested that high glucan loading (6 to 12% glucan loading) and high temperature (39°C) significantly improved the SSF performance of SECS using a thermal- and ethanol-tolerant strain of S. cerevisiae due to the removal of degradation products, sugar feedback, and solid’s inhibitory effects. Furthermore, the surfactant addition obviously increased ethanol yield in SSF process of SECS.
  相似文献   

7.
In this study, dilute sulfuric acid pretreatment was performed to improve the sugars recovery from Korean Miscanthus straw. The effect of pretreatment conditions on solubilized xylose was fundamentally investigated for the efficient removal of xylan. The optimal conditions were determined using a statistical method, and were shown to be a temperature of 121.6°C, an acid concentration of 1.1%, and a reaction time of 12.8 min. The combined severity factor was shown to be 1.1 under the optimum conditions. Following the pretreatment, the solubilized xylose in liquid fraction was found to be 71.2%, and about 72.6% of the solid was recovered. After enzymatic hydrolysis, about 86.4% glucose conversion was achieved when the pretreated biomass was used as a substrate, with the conversion being improved 4-fold compared with the control (untreated). The hydrolysates, approximately 10 g/L glucose, were applied to the fermentation of Saccharomyces cerevisiae K35, and the ethanol yield was about 96%. The overall process was evaluated based on the material balance, and the results show that approximately 172 g bioethanol can be produced when 1,000 g Miscanthus straw is loaded into the process.  相似文献   

8.
Sporotrichum thermophile BJAMDU5 secreted high titres of xylanolytic and cellulolytic enzymes in solid state fermentation using mixture of wheat straw and cotton oil cake (ratio 1:1) at 45?°C, pH 5.0 after 72 h inoculated with 2.9?×?107 CFU/mL conidiospores. Supplementation of solid medium with lactose and ammonium sulphate further enhanced the production of hydrolytic enzymes. Among different surfactants studied, Tween 80 enhanced the production of all enzymes [3455 U/g DMR (dry mouldy residue), 879.26 U/g DMR, 976.28 U/g DMR and 35.10 U/g DMR for xylanase, CMCase (Carboxymethylcellulase), FPase (Filter paper activity) and β-glucosidase, respectively] as compared to other surfactants. Recycling of solid substrate reduced the production of all these enzymes after second cycle. End products analysis by TLC showed the ability of hydrolytic enzymes of S. thermophile to liberate monomeric (xylose and glucose) as well as oligomeric (xylobiose, cellobiose and higher ones) sugars. Supplementation of enzyme resulted in improved nutritional properties of the bread. Formation of oligomeric sugars by xylanase enzyme of S. thermophile BJAMDU5 make it a good candidate in food industry.  相似文献   

9.
Rice straw (RS) is an important lignocellulosic biomass with nearly 800 million dry tons produced annually worldwide. RS has immense potential as a lignocellulosic feedstock for making renewable fuels and chemicals in a biorefinery. However, because of its natural recalcitrance, RS needs thermochemical treatment prior to further biological processing. Ammonia fiber expansion (AFEX) is a leading biomass pretreatment process utilizing concentrated/liquefied ammonia to pretreat lignocellulosic biomass at moderate temperatures (70–140°C). Previous research has shown improved cellulose and hemicellulose conversions upon AFEX treatment of RS at 2:1 ammonia to biomass (w/w) loading, 40% moisture (dwb) and 90°C. However, there is still scope for further improvement. Fungal pretreatment of lignocellulosics is an important biological pretreatment method that has not received much attention in the past. A few reasons for ignoring fungal-based pretreatments are substantial loss in cellulose and hemicellulose content and longer pretreatment times that reduce overall productivity. However, the sugar loss can be minimized through use of white-rot fungi (e.g. Pleutorus ostreatus) over a much shorter duration of pretreatment time. It was found that mushroom spent RS prior to AFEX allowed reduction in thermochemical treatment severity, while resulting in 15% higher glucan conversions than RS pretreated with AFEX alone. In this work, we report the effect of fungal conditioning of RS followed by AFEX pretreatment and enzymatic hydrolysis. The recovery of other byproducts from the fungal conditioning process such as fungal enzymes and mushrooms are also discussed. JIMB-2008: BioEnergy—Special issue.  相似文献   

10.
A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process.  相似文献   

11.
E. coli has the ability to ferment both C5 and C6 sugars and produce mixture of acids along with small amount of ethanol. In our previous study, we reported the construction of an ethanologenic E. coli strain by modulating flux through the endogenous pathways. In the current study, we made further changes in the strain to make the overall process industry friendly; the changes being (1) removal of plasmid, (2) use of low-cost defined medium, and (3) improvement in consumption rate of both C5 and C6 sugars. We first constructed a plasmid-free strain SSY13 and passaged it on AM1–xylose minimal medium plate for 150 days. Further passaging was done for 56 days in liquid AM1 medium containing either glucose or xylose on alternate days. We observed an increase in specific growth rate and carbon utilization rate with increase in passage numbers until 42 days for both glucose and xylose. The 42nd day passaged strain SSK42 fermented 113 g/L xylose in AM1 minimal medium and produced 51.1 g/L ethanol in 72 h at 89% of maximum theoretical yield with ethanol productivity of 1.4 g/L/h during 24–48 h of fermentation. The ethanol titer, yield and productivity were 49, 40 and 36% higher, respectively, for SSK42 as compared to unevolved SSY13 strain.  相似文献   

12.

Objectives

To develop a xylose-nonutilizing Escherichia coli strain for ethanol production and xylose recovery.

Results

Xylose-nonutilizing E. coli CICIM B0013-2012 was successfully constructed from E. coli B0013-1030 (pta-ack, ldhA, pflB, xylH) by deletion of frdA, xylA and xylE. It exhibited robust growth on plates containing glucose, arabinose or galactose, but failed to grow on xylose. The ethanol synthesis pathway was then introduced into B0013-2012 to create an ethanologenic strain B0013-2012PA. In shaking flask fermentation, B0013-2012PA fermented glucose to ethanol with the yield of 48.4 g/100 g sugar while xylose remained in the broth. In a 7-l bioreactor, B0013-2012PA fermented glucose, galactose and arabinose in the simulated corncob hydrolysate to 53.4 g/l ethanol with the yield of 48.9 g/100 g sugars and left 69.6 g/l xylose in the broth, representing 98.6% of the total xylose in the simulated corncob hydrolysate.

Conclusions

By using newly constructed strain B0013-2012PA, we successfully developed an efficient bioprocess for ethanol production and xylose recovery from the simulated corncob hydrolysate.
  相似文献   

13.
Optimization of pH controlled liquid hot water pretreatment of corn stover   总被引:4,自引:0,他引:4  
Controlled pH, liquid hot water pretreatment of corn stover has been optimized for enzyme digestibility with respect to processing temperature and time. This processing technology does not require the addition of chemicals such as sulfuric acid, lime, or ammonia that add cost to the process because these chemicals must be neutralized or recovered in addition to the significant expense of the chemicals themselves. Second, an optimized controlled pH, liquid hot water pretreatment process maximizes the solubilization of the hemicellulose fraction as liquid soluble oligosaccharides while minimizing the formation of monomeric sugars. The optimized conditions for controlled pH, liquid hot water pretreatment of a 16% slurry of corn stover in water was found to be 190 degrees C for 15 min. At the optimal conditions, 90% of the cellulose was hydrolyzed to glucose by 15FPU of cellulase per gram of glucan. When the resulting pretreated slurry, in undiluted form, was hydrolyzed by 11FPU of cellulase per gram of glucan, a hydrolyzate containing 32.5 g/L glucose and 18 g/L xylose was formed. Both the xylose and the glucose in this undiluted hydrolyzate were shown to be fermented by recombinant yeast 424A(LNH-ST) to ethanol at 88% of theoretical yield.  相似文献   

14.
Xylan represents a major component of lignocellulosic biomass, and its utilization by Saccharomyces cerevisiae is crucial for the cost effective production of ethanol from plant biomass. A recombinant xylan-degrading and xylose-assimilating Saccharomyces cerevisiae strain was engineered by co-expression of the xylanase (xyn2) of Trichoderma reesei, the xylosidase (xlnD) of Aspergillus niger, the Scheffersomyces stipitis xylulose kinase (xyl3) together with the codon-optimized xylose isomerase (xylA) from Bacteroides thetaiotaomicron. Under aerobic conditions, the recombinant strain displayed a complete respiratory mode, resulting in higher yeast biomass production and consequently higher enzyme production during growth on xylose as carbohydrate source. Under oxygen limitation, the strain produced ethanol from xylose at a maximum theoretical yield of ~90 %. This study is one of only a few that demonstrates the construction of a S. cerevisiae strain capable of growth on xylan as sole carbohydrate source by means of recombinant enzymes.  相似文献   

15.
The high cost of enzymes is a major bottleneck preventing the development of an economically viable lignocellulosic ethanol industry. Commercial enzyme cocktails for the conversion of plant biomass to fermentable sugars are complex mixtures containing more than 80 proteins of suboptimal activities and relative proportions. As a step toward the development of a more efficient enzyme cocktail for biomass conversion, we have developed a platform, called GENPLAT, that uses robotic liquid handling and statistically valid experimental design to analyze synthetic enzyme mixtures. Commercial enzymes (Accellerase 1000 +/? Multifect Xylanase, and Spezyme CP +/? Novozyme 188) were used to test the system and serve as comparative benchmarks. Using ammonia‐fiber expansion (AFEX) pretreated corn stover ground to 0.5 mm and a glucan loading of 0.2%, an enzyme loading of 15 mg protein/g glucan, and 48 h digestion at 50°C, commercial enzymes released 53% and 41% of the available glucose and xylose, respectively. Mixtures of three, five, and six pure enzymes of Trichoderma species, expressed in Pichia pastoris, were systematically optimized. Statistical models were developed for the optimization of glucose alone, xylose alone, and the average of glucose + xylose for two digestion durations, 24 and 48 h. The resulting models were statistically significant (P < 0.0001) and indicated an optimum composition for glucose release (values for optimized xylose release are in parentheses) of 29% (5%) cellobiohydrolase 1, 5% (14%) cellobiohydrolase 2, 25% (25%) endo‐β1,4‐glucanase 1, 14% (5%) β‐glucosidase, 22% (34%) endo‐β1,4‐xylanase 3, and 5% (17%) β‐xylosidase in 48 h at a protein loading of 15 mg/g glucan. Comparison of two AFEX‐treated corn stover preparations ground to different particle sizes indicated that particle size (100 vs. 500 µm) makes a large difference in total digestibility. The assay platform and the optimized “core” set together provide a starting point for the rapid testing and optimization of alternate core enzymes from other microbial and recombinant sources as well as for the testing of “accessory” proteins for development of superior enzyme mixtures for biomass conversion. Biotechnol. Bioeng. 2010;106: 707–720. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
Natural Saccharomyces cerevisiae isolates from vineyards in the Western Cape, South Africa were evaluated for ethanol production in industrial conditions associated with the production of second-generation biofuels. The strains displayed high phenotypic diversity including the ability to grow at 45 °C and in the presence of 20% (v/v) ethanol, strain YI13. Strains HR4 and YI30 were inhibitor-tolerant under aerobic and oxygen-limited conditions, respectively. Spore-to-spore hybridization generated progeny that displayed heterosis, including increased ethanol productivity and improved growth in the presence of a synthetic inhibitor cocktail. Hybrid strains HR4/YI30#6 and V3/YI30#6 were able to grow at a high salt concentration (2 mol/L NaCl) with V3/YI30#6 also able to grow at a high temperature (45 °C). Strains HR4/YI30#1 and #3 were inhibitor-tolerant, with strain HR4/YI30#3 having similar productivity (0.36 ± 0.0036 g/L per h) as the superior parental strain, YI30 (0.35 ± 0.0058 g/L per h). This study indicates that natural S. cerevisiae strains display phenotypic variation and heterosis can be achieved through spore-to-spore hybridization. Several of the phenotypes (temperature-, osmo-, and inhibitor tolerance) displayed by both the natural strains and the generated progeny were at the maximum conditions reported for S. cerevisiae strains.  相似文献   

17.

Background

Integration of second-generation (2G) bioethanol production with existing first-generation (1G) production may facilitate commercial production of ethanol from cellulosic material. Since 2G hydrolysates have a low sugar concentration and 1G streams often have to be diluted prior to fermentation, mixing of streams is beneficial. Improved ethanol concentrations in the 2G production process lowers energy demand in distillation, improves overall energy efficiency and thus lower production cost. There is also a potential to reach higher ethanol yields, which is required in economically feasible ethanol production. Integrated process scenarios with addition of saccharified wheat meal (SWM) or fermented wheat meal (FWM) were investigated in simultaneous saccharification and (co-)fermentation (SSF or SSCF) of steam-pretreated wheat straw, while the possibility of recovering the valuable protein-rich fibre residue from the wheat was also studied.

Results

The addition of SWM to SSF of steam-pretreated wheat straw, using commercially used dried baker’s yeast, S. cerevisiae, resulted in ethanol concentrations of about 60 g/L, equivalent to ethanol yields of about 90% of the theoretical. The addition of FWM in batch mode SSF was toxic to baker’s yeast, due to the ethanol content of FWM, resulting in a very low yield and high accumulation of glucose. The addition of FWM in fed-batch mode still caused a slight accumulation of glucose, but the ethanol concentration was fairly high, 51.2 g/L, corresponding to an ethanol yield of 90%, based on the amount of glucose added.In batch mode of SSCF using the xylose-fermenting, genetically modified S. cerevisiae strain KE6-12, no improvement was observed in ethanol yield or concentration, compared with baker’s yeast, despite the increased xylose utilization, probably due to the considerable increase in glycerol production. A slight increase in xylose consumption was seen when glucose from SWM was fed at a low feed rate, after 48 hours, compared with batch SSCF. However, the ethanol yield and concentration remained in the same range as in batch mode.

Conclusion

Ethanol concentrations of about 6% (w/v) were obtained, which will result in a significant reduction in the cost of downstream processing, compared with SSF of the lignocellulosic substrate alone. As an additional benefit, it is also possible to recover the protein-rich residue from the SWM in the process configurations presented, providing a valuable co-product.
  相似文献   

18.
The inhibitory effects of furfural and acetic acid on the fermentation of xylose and glucose to ethanol in YEPDX medium by a recombinant Saccharomyces cerevisiae strain (LNH‐ST 424A) were investigated. Initial furfural concentrations below 5 g/L caused negligible inhibition to glucose and xylose consumption rates in batch fermentations with high inoculum (4.5–6.0 g/L). At higher initial furfural concentrations (10–15 g/L) the inhibition became significant with xylose consumption rates especially affected. Interactive inhibition between acetic acid and pH were observed and quantified, and the results suggested the importance of conditioning the pH of hydrolysates for optimal fermentation performance. Poplar biomass pretreated by various CAFI processes (dilute acid, AFEX, ARP, SO2‐catalyzed steam explosion, and controlled‐pH) under respective optimal conditions was enzymatically hydrolyzed, and the mixed sugar streams in the hydrolysates were fermented. The 5‐hydroxymethyl furfural (HMF) and furfural concentrations were low in all hydrolysates and did not pose negative effects on fermentation. Maximum ethanol productivity showed that 0–6.2 g/L initial acetic acid does not substantially affect the ethanol fermentation with proper pH adjustment, confirming the results from rich media fermentations with reagent grade sugars. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

19.
A wild-type strain was isolated from slightly rotted pears after three rounds of enrichment culture, identified as Saccharomyces cerevisiae 3308, and evaluated for its fermentation capability of second generation bioethanol and tolerance of temperature, glucose and ethanol. S. cerevisiae 3308 was mutated by using the physical and chemical mutagenesis methods, ultraviolet (UV) and diethyl sulfate (DES), respectively. Positive mutated strains were mainly generated by the treatment of UV, but numerous negative mutations emerged under the treatment of DES. A positive mutated strain, UV-20, produced ethanol from 62.33?±?1.34 to 122.22?±?2.80 g/L at 30–45 °C, and had a maximum yield of ethanol at 37 °C. Furthermore, UV-20 produced 121.18?±?2.51 g/L of second generation bioethanol at 37 °C. Simultaneously, UV-20 exhibited superior tolerance to 50% of glucose and 21% of ethanol. In a conclusion, all of these results indicated that UV-20 has a potential industrial application value.  相似文献   

20.
Consolidated bioprocessing (CBP) using Clostridium phytofermentans (ATCC 700394) on ammonia fiber expansion (AFEX?)‐treated corn stover (AFEX?‐CS) at a low solids loading showed promising results [Jin et al. (2011) Biotechnol Bioeng 108(6): 1290–1297]. However, industrial relevant process requires high solids loading. Therefore, we studied high solids loading CBP performance on AFEX?‐CS. The factors potentially affecting the performance including solids loading, CBP products acetate and ethanol, and degradation products resulting from pretreatment were investigated. At 4% (w/w) glucan loading, C. phytofermentans performed well on AFEX?‐CS with no nutrients supplementation and reached similar sugar conversions as a fermentation with nutrients supplementation. A glucan conversion of 48.9% and a xylan conversion of 77.9% were achieved after 264 h with 7.0 g/L ethanol and 8.8 g/L acetate produced. Relatively high concentrations of acetate produced at high solids loading was found to be the major factor limiting the CBP performance. Degradation products in AFEX?‐CS helped enhance ethanol production. Biotechnol. Bioeng. 2012; 109:1929–1936. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号