首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heparan sulfate proteoglycan (HSPG) was extracted from human tubular basement membrane (TBM) with guanidine and purified by ion-exchange chromatography and gel filtration. The glycoconjugate was sensitive to heparitinase and resistant to chondroitinase ABC, had an apparent molecular mass of 200-400 kDa and consisted of 70% protein and 30% glycosaminoglycan. The amino acid composition was characterized by its high content of glycine, proline, alanine and glutamic acid. Hydrolysis with trifluoromethanesulfonic acid yielded core proteins of 160 and 110 kDa. The heparan sulfate (HS) chains obtained after alkaline NaBH4 treatment had a molecular mass of about 18 kDa. Results of heparitinase digestion and HNO2 treatment suggest a clustering of sulfate groups in the distal portion of the HS side chains. These chemical data are comparable to those obtained previously on glomerular basement membrane (GBM) HSPG (Van den Heuvel et al. (1989) Biochem. J. 264, 457-465). Peptide patterns obtained after trypsin, clostripain or V8 protease digestion of TBM and GBM HSPG preparations showed a large similarity. Polyclonal antisera and a panel of monoclonal antibodies raised against both HSPG preparations and directed against the core protein showed complete cross-reactivity in ELISA and on Western blots. They stained all basement membranes in an intense linear fashion in indirect immunofluorescence studies on human kidneys. Based on these biochemical and immunological data we conclude that HSPGs from human GBM and TBM are identical, or at least very closely related, proteins.  相似文献   

2.
Previous histochemical studies have suggested a close temporal relationship between the deposition of highly sulfated glycosaminoglycans (GAGs) and amyloid during experimental AA amyloidosis. In the present investigation, we extended these initial observations by using specific immunocytochemical probes to analyze the temporal and ultrastructural relationship between heparan sulfate proteoglycan (HSPG) accumulation and amyloid deposition in a mouse model of AA amyloidosis. Antibodies against the basement membrane-derived HSPG (either protein core or GAG chains) demonstrated a virtually concurrent deposition of HSPGs and amyloid in specific tissue sites regardless of the organ involved (spleen or liver) or the induction protocol used (amyloid enhancing factor + silver nitrate, or daily azocasein injections). Polyclonal antibodies to AA amyloid protein and amyloid P component also demonstrated co-localization to sites of HSPG deposition in amyloid sites, whereas no positive immunostaining was observed in these locales with a polyclonal antibody to the protein core of a dermatan sulfate proteoglycan (known as "decorin"). Immunogold labeling of HSPGs (either protein core or GAG chains) in amyloidotic mouse spleen or liver revealed specific localization of HSPGs to amyloid fibrils. In the liver, heparan sulfate GAGs were also immunolocalized to the lysosomal compartment of hepatocytes and/or Kupffer cells adjacent to sites of amyloid deposition, suggesting that these cells are involved in HSPG production and/or degradation. The close temporal and ultrastructural relationship between HSPGs and AA amyloid further implies an important role for HSPGs during the initial stages of AA amyloidosis.  相似文献   

3.
Metabolism of biosynthetically [35S]sulphate-labelled heparan sulphate proteoglycan (HSPG) was studied in the isolated glomerulus. Chromatography and electrophoresis resolved HS into 5 components, designated HS1a, HS1b, and HS2 to HS4 in order of increasing Kd. Both HS1a (250 kDa) and HS1b (130 kDa) are present in the glomerular basement membrane and have glycosaminoglycan chains of 25-45 kDa. Chemical analysis of glycosaminoglycan chains indicated a similar content of 50% N-sulphation and 30% 6-O-sulphation on the hexosamine residues of all HSs, with the remaining 20% of sulphate likely at the 2-O-position of uronic acid residues. By pulse-chase analysis, the basement-membrane fraction was found to have a half-life of residency in the glomerulus of 37 h. Both HS1a and HS1b are mainly released intact into the medium and are not further broken down in that compartment. In contrast, HS2 is almost completely released into the medium immediately after synthesis and is not normally recovered from the tissue. It is a 90-kDa HSPG with a hydrophobic core protein and glycosaminoglycan chains similar in size to those of HS1. In addition to these larger PGs, HS3 and HS4 represent glycosaminoglycan chains with little or no core protein. HS1a, HS1b and HS2 were iodinated and deglycosylated. Each has a 30-kDa core protein in addition to 18 kDa of chondroitinase ABC- and nitrous-acid-resistant O-linked carbohydrate. This suggests the possibility of a single core protein with variable glycosylation and destination. HS1a has 5-6 glycosaminoglycan chains, HS1b 2-3 and HS2 1-2. We propose that basement-membrane HSPG (HS1a and HS1b) and a related, underglycosylated secreted HSPG (HS2) are the major HSPGs synthesized by the isolated glomerulus. Other molecular species may represent discrete steps in the turnover of basement-membrane HSPG.  相似文献   

4.
M G Kinsella  T N Wight 《Biochemistry》1988,27(6):2136-2144
Labeled heparan sulfate proteoglycans (HSPG) were isolated from wounded and confluent cultures of bovine aortic endothelial cells by nondegradative extraction with 4 M guanidine hydrochloride and detergent. HSPG were separated from more highly charged chondroitin or dermatan sulfate proteoglycans by ion-exchange chromatography, and subclasses of different hydrodynamic size were isolated by gel filtration. Three major subclasses of HSPG were characterized structurally with respect to the presence and relative size of protein core, the presence and amount of nonsulfated oligosaccharide, and size and structure of heparan sulfate (HS) chains. The largest (600-800-kDa) HSPG subclass (I), isolated from cell layers and media of confluent cultures, bears 38-kDa HS chains on an apparently heterogeneous class of relatively large glycoprotein cores. HSPG II (150-200 kDa), isolated from cell layer or media, has 22-kDa HS chains and smaller core glycoproteins (less than 50 kDa). HSPG III, the subclass of smallest hydrodynamic size, has 13-kDa HS chains and a glycopeptide core of less than 15 kDa. All subclasses bear varying proportions of non-sulfated oligosaccharides of similar sizes. Comparisons of HS chain structure indicated that the different subclasses have similar proportions (49-55%) of N-sulfate, with both O-sulfate and highly N-sulfated blocks of disaccharide distributed similarly along HS chains. In addition, HS chains from subclasses II and III contain sequences that are insensitive to periodate oxidation or heparitinase digestion, suggesting that they contain increased proportions of iduronate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Renal glomerular basement membranes (GBMs) exhibit a charge-selective barrier, comprised of anionic sites, that restrict the passage of anionic molecules into the urine. These sites are located primarily in the laminae rarae interna (LRI) and externa (LRE) of the GBM and consist of heparan sulfate proteoglycan (HSPG). Previous efforts to localize HSPG core protein within various layers of the GBM have been contradictory. In the present study when rat renal cortex blocks were treated by immersion with the cationic probe, polyethyleneimine (PEI), GBMs exhibited anionic sites concentrated primarily in the LRE and more irregularly within the LRI and lamina densa. All sites were heparitinase sensitive indicating that PEI positive sites represent negatively charged groups associated with heparan sulfate. In order to gain information on the distribution of the HSPG protein core, antibodies to HSPG from the EHS tumor matrix [anti-(EHS) HSPG] and GBMs [anti-(GBM) HSPG] were used together with immunogold to label thin sections of Lowicryl embedded kidney cortex. Depending upon the antisera used, markedly different distributions of HSPG were obtained. Immunolabelling with anti-(GBM) HSPG suggested a distribution of HSPG which was restricted to the laminae rarae, whereas labelling with anti-(EHS) HSPG indicated that the protein core penetrates through all layers of the GBM.  相似文献   

6.
Heparan sulphate proteoglycan was solubilized from human glomerular basement membranes by guanidine extraction and purified by ion-exchange chromatography and gel filtration. The yield of proteoglycan was approx. 2 mg/g of basement membrane. The glycoconjugate had an apparent molecular mass of 200-400 kDa and consisted of about 75% protein and 25% heparan sulphate. The amino acid composition was characterized by a high content of glycine, proline, alanine and glutamic acid. Hydrolysis with trifluoromethanesulphonic acid yielded core proteins of 160 and 110 kDa (and minor bands of 90 and 60 kDa). Alkaline NaBH4 treatment of the proteoglycan released heparan sulphate chains with an average molecular mass of 18 kDa. HNO2 oxidation of these chains yielded oligosaccharides of about 5 kDa, whereas heparitinase digestion resulted in a more complete degradation. The data suggest a clustering of N-sulphate groups in the peripheral regions of the glycosaminoglycan chains. A polyclonal antiserum raised against the intact proteoglycan showed reactivity against the core protein. It stained all basement membranes in an intense linear fashion in immunohistochemical studies on frozen kidney sections from man and various mammalian species.  相似文献   

7.
Heparan sulfate proteoglycans (HSPG) were solubilized from human lung fibroblast monolayers with detergent. Presumptive membrane-associated forms displaying hydrophobic properties were purified by gel filtration on Sepharose CL-4B, by ion-exchange chromatography on Mono Q and by incorporation in lipid vesicles. The HSPG preparations were 125I-iodinated and treated with heparitinase before sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Five radiolabeled proteins with apparent molecular weights of 125,000, 90,000, 64,000, 48,000, and 35,000 were visualized by autoradiography. A sixth protein, identified in nonreduced 125I-HSPG preparations, appeared as a non-HS chain-bearing Mr 35,000 peptide which was disulfide-linked to an HS chain-bearing peptide of similar size. This multiplicity of core proteins did not seem to result from proteolysis during the heparitinase treatment itself, since some of the core proteins migrated independently during gel filtration before heparitinase digestion. Moreover, heparitinase digestion of 125I-HSPG purified by affinity chromatography on an immobilized monoclonal antibody yielded only the Mr 64,000 protein. Alternative depolymerizations of the HS chains by heparinase or HNO2 also yielded multiple protein bands. These results imply that heterogeneity of the core protein moiety may be a genuine property of the hydrophobic HSPG of human lung fibroblasts. The occurrence of multiple integral membrane HSPG forms may be relevant for the multiple functions that have been ascribed to cell-surface HSPG.  相似文献   

8.
《The Journal of cell biology》1990,111(5):2053-2062
Schwann cells synthesize both hydrophobic and peripheral cell surface heparan sulfate proteoglycans (HSPGs). Previous analysis of the kinetics of radiolabeling suggested the peripheral HSPGs are derived from the membrane-anchored forms (Carey, D., and D. Evans. 1989. J. Cell Biol. 108:1891-1897). Peripheral cell surface HSPGs were purified from phytic acid extracts of cultured neonatal rat sciatic nerve Schwann cells by anion exchange, gel filtration, and laminin-affinity chromatography. Approximately 250 micrograms of HSPG protein was obtained from 2 X 10(9) cells with an estimated recovery of 23% and an overall purification of approximately 2000-fold. SDS-PAGE analysis indicated the absence of non-HSPG proteins in the purified material. Analysis of heparinase digestion products revealed the presence of at least six core protein species ranging in molecular weight from 57,000 to 185,000. The purified HSPGs were used to produce polyclonal antisera in rabbits. The antisera immunoprecipitated a subpopulation of 35SO4- labeled HSPGs that were released from Schwann cells by incubation in medium containing phosphatidylinositol-specific phospholipase C (PI- PLC); smaller amounts of immunoprecipated HSPGs were also present in phytic acid extracts. In the presence of excess unlabeled PI-PLC- released proteins, immunoprecipitation of phytic acid-solubilized HSPGs was inhibited. SDS-PAGE analysis of proteins immunoprecipitated from extracts of [35S]methionine labeled Schwann cells demonstrated that the antisera precipitated an HSPG species that was present in the pool of proteins released by PI-PLC, with smaller amounts present in phytic acid extracts. Nitrous acid degradation of the immunoprecipitated proteins produced a single 67,000-Mr core protein. When used for indirect immunofluorescence labeling, the antisera stained the external surface of cultured Schwann cells. Preincubation of the cultures in medium containing PI-PLC but not phytic acid significantly reduced the cell surface staining. The antisera stained the outer ring of Schwann cell membrane in sections of adult rat sciatic nerve but did not stain myelin or axonal membranes. This localization suggests the HSPG may play a role in binding the Schwann cell plasma membrane to the adjacent basement membrane surrounding the individual axon-Schwann cell units.  相似文献   

9.
A heparan sulfate proteoglycan (HSPG) synthesized by murine parietal yolk sac (PYS-2) cells has been characterized and purified from culture supernatants. A monospecific polyclonal antiserum was raised against it which showed activity against the HSPG core protein and basement membrane specificity in immunohistochemical studies on frozen tissue sections from many rat organs. However, there was no reactivity with some basement membranes, notably those of several smooth muscle types and cardiac muscle. In addition, it was found that pancreatic acinar basement membranes also lacked the HSPG type recognized by this antiserum. Those basement membranes that lacked the HSPG strongly stained with antisera against laminin and type IV collagen. The striking distribution pattern is possibly indicative of multiple species of basement membrane HSPGs of which one type is recognized by this antiserum. Further evidence for multiple HSPGs was derived from the finding that skeletal neuromuscular junction and liver epithelia also did not contain this type of HSPG, though previous reports have indicated the presence of HSPGs at these sites. The PYS-2 HSPG was shown to be antigenically related to the large, low buoyant density HSPG from the murine Engelbreth-Holm swarm tumor. It was, however, confirmed that only a single population of antibodies was present in the serum. Despite the presence of similar epitopes on these two proteoglycans of different hydrodynamic properties, it was apparent that the PYS-2 HSPG represents a basement membrane proteoglycan of distinct properties reflected in its restricted distribution in vivo.  相似文献   

10.
We have previously shown that asymmetric collagen-tailed acetylcholinesterase (AChE) is anchored to the extracellular matrix (ECM) by heparan sulfate proteoglycans (HSPGs). Here we present our studies on the characterization of such PGs from the ECM of rat skeletal muscles. After radiolabeling with 35SO4 for 24h, PGs were extracted from the muscle ECM with 4.0 M guanidine-HCl containing protease inhibitors. PGs were subsequently isolated using sequential DEAE-Sephacel chromatography, digestion with chondroitinase ABC, and Sepharose CL-4B. Two different hydrodynamic size species of HSPGs were found. One type had a Mr of 4-6 X 10(5) (Kav = 0.25) as estimated by gel chromatography in the presence of 1% SDS and accounted for 75% of the total HSPGs. The other HSPG had a Mr 1.5-2.5 X 10(5) (Kav = 0.41). The glycosaminoglycan (GAG) side chains (Mr 20,000 and 12,000) were found composed only of heparan sulfate as determined by nitrous acid oxidation and heparitinase treatment. The large-sized HSPG, which is concentrated in synaptic regions, contains only GAG chains of Mr 20,000, suggesting that each HSPG contains only one kind of heparan sulfate chain in its structure. Our results definitively establish by biochemical criteria that the basement membrane of mammalian skeletal muscle contains HSPGs, the likely matrix receptor for the immobilization of the asymmetric collagen-tailed AChE at the neuromuscular junction.  相似文献   

11.
After extraction with 4 M guanidinium chloride and purification by DEAE-cellulose chromatography, the heparan sulfate proteoglycan (HSPG) of calf anterior lens capsule was found to consist of two immunologically related components (Mr = 340,000 and 250,000) which upon deglycosylation with trifluoromethanesulfonic acid yielded core proteins with Mr values of 170,000 and 145,000. The heparan sulfate chains were uniform in size (Mr = 14,000) and manifested a clustering of sulfate groups in a peripheral domain. From the decrease in Mr observed after heparitinase digestion, it could be estimated that 6 and 11 glycosaminoglycan chains were present in the Mr = 250,000 and 340,000 components respectively. The occurrence of N-linked oligosaccharides was evident from the size difference of the heparitinase- and trifluoromethane-sulfonic acid-treated proteoglycans (approximately 20 kDa), as well as from the presence of a substantial number of mannose residues; furthermore, interaction of the capsule proteoglycan with Bandeiraea simplicifolia I suggested that these carbohydrate units contains terminal alpha-D-Gal groups. Cultured lens epithelial cells deposited a single [35S]sulfate-labeled proteoglycan into their matrix (Mr = 400,000) which was immunologically related to the lens capsule proteoglycan and contained only heparan sulfate chains. In addition to this component, the medium from these cells contained an immunologically unrelated HSPG (Mr = 150,000) as well as a chondroitin sulfate proteoglycan (Mr = 240,000). Examination of bovine glomeruli indicated that, in addition to the previously described 200-kDa HSPG, an immunologically related 350-kDa component was also present. This size heterogeneity, which is comparable to that seen in the lens capsule, is most readily attributable to proteolytic processing of a precursor molecule. Studies with polyclonal antibodies demonstrated only limited cross-reactivities between the Engelbreth-Holms-Swarm proteoglycan and the components from lens capsule and glomerular basement membrane; since even the latter two differed somewhat in their antigenic sites, it would appear that cell- and species-dictated genetic differences as well as post-translational events contribute to the diversity observed in basement membrane HSPGs.  相似文献   

12.
The alphaherpesvirus pseudorabies virus (PrV) has been shown to attach to cells by interaction between the viral glycoprotein gC and cell membrane proteoglycans carrying heparan sulfate chains (HSPGs). A secondary binding step requires gD and presumably another, hitherto unidentified cellular receptor. By use of a virus overlay protein binding assay (VOPBA), cosedimentation analyses, and affinity chromatography, we identified three species of cell membrane constituents that bind PrV. By treatment with EDTA, peripheral HSPGs of very high apparent molecular mass (>200 kDa) could be extracted from Madin-Darby bovine kidney cells. Binding of PrV to these HSPGs in the VOPBA was sensitive to enzymatic digestion with heparinase or papain. Cosedimentation analyses indicated that binding between PrV and high-molecular-weight HSPG depended on the presence of gC in the virion. In addition, adsorption of radiolabeled PrV virions to cells could be inhibited by the addition of purified high-molecular-weight HSPG. By using urea extraction buffer, a second species of HSPG of approximately 140 kDa could be solubilized. Binding of PrV to this HSPG in the VOPBA was also dependent on the presence of heparan sulfate, since reactivity was abolished after suppression of glycosaminoglycan biosynthesis with NaClO3 and after heparinase treatment. In addition to HSPG, in cellular membrane extracts obtained by treatment with mild detergent, a 85-kDa membrane protein was demonstrated to bind PrV in the VOPBA and affinity chromatography. In summary, we identified three species of cell membrane constituents that bind PrV: a peripheral HSPG of high molecular weight, an integral HSPG of approximately 140 kDa, and an integral membrane protein of 85 kDa. It is tempting to speculate that interaction between PrV and the two species of HSPG mediates primary attachment of PrV and that the 85-kDa protein is involved in a subsequent attachment step.  相似文献   

13.
Our recent studies demonstrated that apolipoprotein E mediates cell attachment of hepatitis C virus (HCV) through interactions with the cell surface heparan sulfate (HS). HS is known to covalently attach to core proteins to form heparan sulfate proteoglycans (HSPGs) on the cell surface. The HSPG core proteins include the membrane-spanning syndecans (SDCs), the lycosylphosphatidylinositol-linked glypicans (GPCs), the basement membrane proteoglycan perlecan (HSPG2), and agrin. In the present study, we have profiled each of the HSPG core proteins in HCV attachment. Substantial evidence derived from our studies demonstrates that SDC1 is the major receptor protein for HCV attachment. The knockdown of SDC1 expression by small interfering RNA (siRNA)-induced gene silence resulted in a significant reduction of HCV attachment to Huh-7.5 cells and stem cell-differentiated human hepatocytes. The silence of SDC2 expression also caused a modest decrease of HCV attachment. In contrast, the siRNA-mediated knockdown of other SDCs, GPCs, HSPG2, and agrin had no effect on HCV attachment. More importantly, ectopic expression of SDC1 was able to completely restore HCV attachment to Huh-7.5 cells in which the endogenous SDC1 expression was silenced by specific siRNAs. Interestingly, mouse SDC1 is also fully functional in mediating HCV attachment when expressed in the SDC1-deficient cells, consistent with recent reports that mouse hepatocytes are also susceptible to HCV infection when expressing other key HCV receptors. Collectively, our findings demonstrate that SDC1 serves as the major receptor protein for HCV attachment to cells, providing another potential target for discovery and development of antiviral drugs against HCV.  相似文献   

14.

Background

Heparan sulfate proteoglycans (HSPGs) are one of the basic constituents of plasma membranes. Specific molecular interactions between HSPGs and a number of extracellular ligands have been reported. Mechanisms involved in controlling the localization and abundance of HSPG on specific domains on the cell surface, such as membrane rafts, could play important regulatory roles in signal transduction.

Methodology/Principal Findings

Using metabolic radiolabeling and sucrose-density gradient ultracentrifugation techniques, we identified [35S]sulfate-labeled macromolecules associated with detergent-resistant membranes (DRMs) isolated from a rat parathyroid cell line. DRM fractions showed high specific radioactivity ([35S]sulfate/mg protein), implying the specific recruitment of HSPGs to the membrane rafts. Identity of DRM-associated [35S]sulfate-labeled molecules as HSPGs was confirmed by Western blotting with antibodies that recognize heparan sulfate (HS)-derived epitope. Analyses of core proteins by SDS-PAGE revealed bands with an apparent MW of syndecan-4 (30–33 kDa) and syndecan-1 (70 kDa) suggesting the presence of rafts with various HSPG species. DRM fractions enriched with HSPGs were characterized by high sphingomyelin content and found to only partially overlap with the fractions enriched in ganglioside GM1. HSPGs could be also detected in DRMs even after prior treatment of cells with heparitinase.

Conclusions/Significance

Both syndecan-1 and syndecan-4 have been found to specifically associate with membrane rafts and their association seemed independent of intact HS chains. Membrane rafts in which HSPGs reside were also enriched with sphingomyelin, suggesting their possible involvement in FGF signaling. Further studies, involving proteomic characterization of membrane domains containing HSPGs might improve our knowledge on the nature of HSPG-ligand interactions and their role in different signaling platforms.  相似文献   

15.
L-Selectin, a leukocyte adhesion molecule, mediates leukocyte rolling on the endothelium and plays a critical role in leukocyte recruitment at inflammatory sites as well as in lymphocyte homing. We have previously shown that L-selectin reactive chondroitin sulfate and heparan sulfate proteoglycans (HSPGs) are both expressed in the distal tubules of the kidney and that versican is one of the chondroitin sulfate-type ligands. In the present study, we characterized the heparan sulfate-type ligand(s) in more detail. The molecular sizes of HSPGs were approximately 600 kDa with core protein sizes of 160 and 180 kDa. Western blotting analysis showed that L-selectin reactive HSPGs were neither agrin nor perlecan, major basement membrane HSPGs in the kidney. The binding to L-selectin was mediated by the lectin domain of L-selectin in a Ca2+-dependent manner and required heparan sulfate side chains, but not sialic acid. To our knowledge, this is the first biochemical characterization of the L-selectin reactive heparan sulfate proteoglycan(s) in the distal tubules of the kidney.  相似文献   

16.
X Lin  N Perrimon 《Matrix biology》2000,19(4):303-307
Heparan sulfate proteoglycans (HSPGs) are abundant molecules associated with the cell surface and extracellular matrix, and consist of a protein core to which heparan sulfate (HS) glycosaminoglycan (GAG) chains are attached. Although these molecules have been the focus of intense biochemical studies in vitro, their biological functions in vivo were unclear until recently. We have undertaken an in vivo functional study of HSPGs in Drosophila. Our studies, as well as others, demonstrate the critical roles of HSPGs in several major signaling pathways, including ibroblast growth factor (FGF), Wnt, Hedgehog (Hh) and TGF-beta. Our results also suggest that specific HS GAG chain modifications, as well as specific HSPG protein cores, are involved in specific signaling pathways.  相似文献   

17.
Confluent cultured human lung fibroblasts were labeled with 35SO4(2-). After 48 h of labeling, the pericellular matrix was prepared by Triton X-100 and deoxycholate extraction of the monolayers. Heparan sulfate proteoglycan (HSPG) accounted for nearly 80% of the total matrix [35S]proteoglycans. After solubilization in 6 M guanidinium HCl and cesium chloride density gradient centrifugation, the majority (78%) of these [35S] HSPG equilibrated at an average buoyant density of 1.35 g/ml. This major HSPG fraction was purified by ion-exchange chromatography on Mono Q and by gel filtration on Sepharose CL-4B, and further characterized by gel electrophoresis and immunoblotting. Intact [35S]HSPG eluted with Kav 0.1 from Sepharose CL-4B, whereas the protein-free [35S]heparan sulfate chains, obtained by alkaline borohydride treatment of the proteoglycan fractions, eluted with Kav 0.45 (Mr approximately 72,000). When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography, core (protein) preparations, obtained by heparitinase digestion of 125I-labeled HSPG fractions, yielded one major labeled band with apparent molecular mass of approximately 300 kDa. Reduction with beta-mercaptoethanol slightly increased the apparent Mr of the labeled band, suggesting a single polypeptide structure and the presence of intrachain disulfide bonds. Immunoadsorption experiments and immunostaining of electrophoretically separated heparitinase-digested core proteins with monoclonal antibodies raised against matrix and cell surface-associated HSPG suggested that the major matrix-associated HSPG of cultured human lung fibroblasts is distinct from the HSPG that are anchored in the membranes of these cells. Binding studies suggested that this matrix HSPG interacts with several matrix components, both through its glycosaminoglycan chains and through its heparitinase-resistant core. Core (protein) interactions seem to be responsible for the association of the proteoglycan with the extracellular matrix.  相似文献   

18.
Heparan sulfate proteoglycans (HSPGs) are glycoconjugates bearing heparan sulfate (HS) chains covalently attached to core proteins, which are ubiquitously distributed on the cell surface and in the extracellular matrix. HSPGs interact with a number of molecules mainly through HS chains, which play critical roles in diverse physiological and disease processes. Among these, recent vertebrate studies showed that HSPGs are closely involved in synapse development and function. However, the detailed molecular mechanisms remain elusive. Genetic studies from fruit flies, Drosophila melanogaster, have begun to reveal the molecular mechanisms by which HSPGs regulate synapse formation at neuromuscular junctions (NMJs). In this review, we introduce Drosophila studies showing how HSPGs regulate various signaling pathways in developing NMJs. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.  相似文献   

19.
Basement membrane-associated heparan sulfate proteoglycan (HSPG) was extracted from isolated porcine glomerular basement membranes and purified by ion-exchange chromatography. The proteogycan was characterized by specific enzymatic digestions, by amino-acid analysis, by SDS-polyacrylamide gel electrophoresis and by density gradient centrifugation. Polyclonal antibodies were raised against the purified HSPG in rabbits. Antibodies were characterized by enzyme immunoassays, immunoprecipitation and immunohistological methods. They were shown to recognize specifically the core protein of HSPG from porcine, human and rat glomerular basement membrane but did not recognize HSPG from guinea pig or rabbit kidney. The affinity-purified antibodies did not cross-react with other basement membrane proteins like laminin, fibronectin or collagen type IV nor with chondroitin sulfate-rich or keratan sulfate-rich proteoglycans from human or bovine tissue. Using these antibodies an enzyme immunoassay was developed for determination of HSPG in the range of 1-100 ng/ml. Studies with cultured porcine endothelial cells showed that subendothelial basement membrane-associated HSPG may be determined with the enzyme immunoassay.  相似文献   

20.
Bülow HE  Hobert O 《Neuron》2004,41(5):723-736
Heparan sulfate proteoglycans (HSPG) are components of the extracellular matrix through which axons navigate to reach their targets. The heparan sulfate (HS) side chains of HSPGs show complex and differentially regulated patterns of secondary modifications, including sulfations of distinct hydroxyl groups and epimerization of an asymmetric carbon atom. These modifications endow the HSPG-containing extracellular matrix with the potential to code for an enormous molecular diversity. Attempting to decode this diversity, we analyzed C. elegans animals lacking three HS-modifying enzymes, glucuronyl C5-epimerase, heparan 6O-sulfotransferase, and 2O-sulfotransferase. Each of the mutant animals exhibit distinct as well as overlapping axonal and cellular guidance defects in specific neuron classes. We have linked individual HS modifications to two specific guidance systems, the sax-3/Robo and kal-1/Anosmin-1 systems, whose activity is dependent on different HS modifications in different cellular contexts. Our results demonstrate that the molecular diversity in HS encodes information that is crucial for different aspects of neuronal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号