首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has recently become apparent that the microenvironment made up of the extracellular matrix may affect cell signaling. In this study, we evaluated Fas-triggered apoptosis in T cells in contact with tumor cells, which resembles the cell-to-cell interactions found in tumor regions. Jurkat cells were less susceptible to the Fas-mediated apoptosis when cocultured with U118, HeLa, A549, and Huh-7 tumor cells. This was indicated by less plasma membrane alteration, an amelioration of the loss of mitochondria membrane potential, a decrease in caspase-8 and caspase-3 activation, a decrease in DNA fragmentation factor-45/35 cleavage, and a reduction in the breakage of DNA when compared with Jurkat cells cultured alone. In contrast, the tumor cell lines MCF-7 and HepG2 produced no such protective effect. This protective event was independent of the expression of Fas ligand on the tumor cells. Interrupting the beta integrins-matrix interaction diminished the coculture effect. In Jurkat cells, cell matrix contact reduced the assembly of the Fas death-inducing signaling complex and Bcl-x(L) cleavage, but enhanced the phosphorylation of ERK1/2, p38 MAPK, and Akt. Only PI3K inhibitor, but not kinase inhibitors for MEK, ERK1/2, p38 MAPK, JNK, protein kinase C, and protein kinase A, completely abolished this tumor cell contact-associated protection and in parallel restored Fas-induced Bcl-x(L) cleavage as well as decreasing the phosphorylation of Bad at serine 136. Together, our results indicate that stimulation of the beta integrin signal of T cells by contact with tumor cells may trigger a novel protective signaling through the PI3K/Akt pathway of T cells against Fas-mediated apoptosis.  相似文献   

2.
FTY720 is a novel immunosuppressive drug derived from a metabolite from Isaria sinclairii that is known to induce apoptosis of rat splenic T cells. In this study, we examined the intracellular signaling pathway triggered by FTY720. Treatment of human Jurkat T lymphocytes with FTY720-induced apoptosis characterized by DNA fragmentation. The same treatment induced activation of protein kinases such as c-Jun NH2-terminal kinase (JNK), p38/CSBP (CSAID-binding protein), and a novel 36-kDa myelin basic protein (MBP) kinase, but not extracellular signal-regulated kinase (ERK). Pretreatment of Jurkat cells with DEVD-CHO blocked FTY720-induced DNA fragmentation as well as the activation of p38/CSBP. However, DEVD-CHO treatment failed to inhibit FTY720-induced activation of JNK and the 36-kDa MBP kinase. We have also demonstrated that activation of the ERK signaling pathway completely suppressed the FTY720-induced apoptotic process including activation of caspase 3 and activation of JNK and the 36-kDa MBP kinase. Furthermore, transient expression of constitutively active mitogen-activated protein kinase/ERK kinase (MEK) protected the cells from FTY720-induced cell death. The effect of MEK was canceled by coexpression of a mitogen-activated protein kinase phosphatase, CL100. These results indicate that JNK and p38 pathways are differentially regulated during FTY720-induced apoptosis and that activation of ERK pathway alone is sufficient to cancel the FTY720-induced death signal.  相似文献   

3.
T cells can undergo activation-induced cell death (AICD) upon stimulation of the T cell receptor-CD3 complex. We found that the extracellular signal-regulated kinase (ERK) pathway is activated during AICD. Transient transfection of a dominant interfering mutant of mitogen-activated/extracellular signal-regulated receptor protein kinase kinase (MEK1) demonstrated that down-regulation of the ERK pathway inhibited FasL expression during AICD, whereas activation of the ERK pathway with a constitutively active MEK1 resulted in increased expression of FasL. We also found that pretreatment with the specific MEK1 inhibitor PD98059 prevented the induction of FasL expression during AICD and inhibited AICD. However, PD98059 had no effect on other apoptotic stimuli. We found only very weak ERK activity during Fas-mediated apoptosis (induced by Fas cross-linking). Furthermore, preincubation with the MEK1 inhibitor did not inhibit Fas-mediated apoptosis. Finally, we also demonstrated that pretreatment with the MEK1 inhibitor could delay and decrease the expression of the orphan nuclear steroid receptor Nur77, which has been shown to be essential for AICD. In conclusion, this study demonstrates that the ERK pathway is required for AICD of T cells and appears to regulate the induction of Nur77 and FasL expression during AICD.  相似文献   

4.
The hierarchy of events accompanying induction of apoptosis by the proteasome inhibitor Bortezomib was investigated in Jurkat lymphoblastic and U937 myelomonocytic leukemia cells. Treatment of Jurkat or U937 cells with Bortezomib resulted in activation of c-Jun-N-terminal kinase (JNK) and p38 MAPK (mitogen-activated protein kinase), inactivation of extracellular signal-regulating kinase 1/2 (ERK1/2), cytochrome c release, caspase-9, -3, and -8 activation, and apoptosis. Bortezomib-mediated cytochrome c release and caspase activation were blocked by the pharmacologic JNK inhibitor SP600125, but lethality was not diminished by the p38 MAPK inhibitor SB203580. Inducible expression of a constitutively active MEK1 construct blocked Bortezomib-mediated ERK1/2 inactivation, significantly attenuated Bortezomib lethality, and unexpectedly prevented JNK activation. Conversely, pharmacologic MEK/ERK1/2 inhibition promoted Bortezomib-mediated JNK activation and apoptosis. Lastly, the antioxidant N-acetyl-l-cysteine (LNAC) attenuated Bortezomib-mediated reactive oxygen species (ROS) generation, ERK inactivation, JNK activation, mitochondrial dysfunction, and apoptosis. In contrast, enforced MEK1 and ERK1/2 activation or JNK inhibition did not modify Bortezomib-induced ROS production. Together, these findings suggest that in human leukemia cells, Bortezomib-induced oxidative injury operates at a proximal point in the cell death cascade to antagonize cytoprotective ERK1/2 signaling, promote activation of the stress-related JNK pathway, and to trigger mitochondrial dysfunction, caspase activation, and apoptosis. They also suggest the presence of a feedback loop wherein Bortezomib-mediated ERK1/2 inactivation contributes to JNK activation, thereby amplifying the cell death process.  相似文献   

5.
In this study, we examined the role of Fas apoptotic inhibitory molecule 2 (Faim2), an inhibitor of the Fas signaling pathway, and its regulation by stress kinase signaling during Fas-mediated apoptosis of 661W cells, an immortalized photoreceptor-like cell line Treatment of 661W cells with a Fas-activating antibody led to increased levels of Faim2. Both ERK and JNK stress kinase pathways were activated in Fas-treated 661W cells, but only the inhibition of the ERK pathway reduced the levels of Faim2. Blocking the ERK pathway using a pharmacological inhibitor increased the susceptibility of 661W cells to Fas-induced caspase activation and apoptosis. When the levels of Faim2 were reduced in 661W cells by siRNA knockdown, Fas activating antibody treatment resulted in earlier and more robust caspase activation, and increased cell death. These results demonstrate that Faim2 acts as a neuroprotectant during Fas-mediated apoptosis of 661W cells. The expression of Faim2 is triggered, at least in part, by Fas-receptor activation and subsequent ERK signaling. Our findings identify a novel protective pathway that auto-regulates Fas-induced photoreceptor apoptosis in vitro. Modulation of this pathway to increase Faim2 expression may be a potential therapeutic option to prevent photoreceptor death.  相似文献   

6.
7.
8.
The Fas receptor mediates a signalling cascade resulting in programmed cell death (apoptosis) within hours of receptor cross-linking. In this study Fas activated the stress-responsive mitogen-activated protein kinases, p38 and JNK, within 2 h in Jurkat T lymphocytes but not the mitogen-responsive kinase ERK1 or pp70S6k. Fas activation of p38 correlated temporally with the onset of apoptosis, and transfection of constitutively active MKK3 (glu), an upstream regulator of p38, potentiated Fas-induced cell death, suggesting a potential involvement of the MKK3/p38 activation pathway in Fas-mediated apoptosis. Fas has been shown to require ICE (interleukin-1 beta-converting enzyme) family proteases to induce apoptosis from studies utilizing the cowpox ICE inhibitor protein CrmA, the synthetic tetrapeptide ICE inhibitor YVAD-CMK, and the tripeptide pan-ICE inhibitor Z-VAD-FMK. In this study, crmA antagonized, and YVAD-CMK and Z-VAD-FMK completely inhibited, Fas activation of p38 kinase activity, demonstrating that Fas-dependent activation of p38 requires ICE/CED-3 family members and conversely that the MKK3/p38 activation cascade represents a downstream target for the ICE/CED-3 family proteases. Intriguingly, p38 activation by sorbitol and etoposide was resistant to YVAD-CMK and Z-VAD-FMK, suggesting the existence of an additional mechanism(s) of p38 regulation. The ICE/CED-3 family-p38 regulatory relationship described in the current work indicates that in addition to the previously described destructive cleavage of substrates such as poly(ADP ribose) polymerase, lamins, and topoisomerase, the apoptotic cysteine proteases also function to regulate stress kinase signalling cascades.  相似文献   

9.
Bystander B cells may be initially stimulated through CD40, which enhances susceptibility to Fas-mediated apoptosis, before encountering Ag, which produces Fas resistance. A key issue in this process is to what extent CD40 cross-talk might affect subsequent BCR signaling. It has previously been shown that CD40 engagement bypasses or mitigates the need for Bruton's tyrosine kinase in subsequent BCR signaling for NF-kappaB activation. However, the full extent of the effects of CD40 on BCR signaling has not been delineated. In the present study we evaluated the possibility that CD40-mediated cross-talk also affects another principal outcome of BCR signaling: MAPK activation. We found that prior stimulation of primary murine B cells with CD40L markedly enhanced the level of ERK and JNK (but not p38 MAPK) phosphorylation produced by subsequently added anti-Ig Ab, and much, but not all, of this enhancement was independent of PI3K and phospholipase C. CD40L treatment similarly enhanced BCR-induced MAPK kinase (MEK) phosphorylation, and MEK was required for enhancement of ERK. Although BCR-induced c-Raf phosphorylation was also enhanced by prior CD40L treatment, c-Raf was not required for MEK/ERK phosphorylation. These results identify a novel system of receptor cross-talk between CD40 and BCR and indicate that the effects of CD40 engagement on subsequent BCR stimulation spread beyond NF-kappaB to involve the MAPK pathway.  相似文献   

10.
The c-Jun N-terminal protein kinase (JNK) plays a context-dependent role in tumorigenesis. Stress-induced redistribution of JNK from the cytoplasm to the nucleus has been demonstrated as essential for stress-induced cell death. However, accumulation of basal JNK activity in the nucleus has frequently been seen in tumor cells. Our previous report revealed aberrant nuclear entry of JNK protein in Jurkat human leukemic T-cells even without JNK hyperactivation. Because inhibition of JNK activity, especially JNK1 activity, in Jurkat cells results in augmented Fas-mediated apoptosis, it is possible that aberrant subcellular localization of JNK, especially the JNK1 isoform, contributes to the resistance to Fas-mediated apoptosis. Here we report that MKK7 works as a cytoplasmic anchoring protein for JNK1 in various types of cells, including human peripheral blood mononuclear cell (PBMC) T-cells, but exhibits aberrant nuclear entry in Jurkat cells. Ectopic expression of a JNK1 mutant defective of nuclear entry or a nuclear JNK inhibitor leads to impaired UV-induced apoptosis in both PBMC T- and Jurkat cells. The same treatment shows no effect on Fas-mediated apoptosis of PBMC T-cells but sensitizes Jurkat cells to Fas-mediated apoptosis. Taken together, our work suggests that aberrant subcellular organization of the JNK pathway might render certain tumor cells resistant to Fas-mediated apoptosis.  相似文献   

11.
12.
Cellular events involved in butyric acid-induced T cell apoptosis   总被引:4,自引:0,他引:4  
We have previously demonstrated that butyric acid induces cytotoxicity and apoptosis of murine thymocytes, splenic T cells, and human Jurkat T cells. Therefore, to determine the apoptotic signaling pathway induced by butyric acid, we investigated the contribution of reactive oxygen species (ROS), mitochondria, ceramide, and mitogen-activated protein kinases in butyric acid-induced human Jurkat cell apoptosis. After exposure of cells to butyric acid, a pronounced accumulation of ROS was seen. Pretreatment of cells with the antioxidant N-acetyl-cysteine or 3-aminobenzamide attenuated butyric acid-induced apoptosis through a reduction of ROS generation. Cytochrome c, apoptosis-inducing factor, and second mitochondria-derived activator of caspases protein release from mitochondria into the cytosol were detected shortly after butyric acid treatment. Exposure of cells to butyric acid resulted in an increase in cellular ceramide in a time-dependent fashion. In addition, butyric acid-induced apoptosis was inhibited by DL-threo-dihidrosphingosine, a potent inhibitor of sphingosine kinase. Using anti-extracellular signal-regulated kinase (ERK), anti-c-Jun N-terminal kinase (JNK), and anti-p38 phosphospecific Abs, we showed a decrease in ERK, but not in JNK and p38 phosphorylation after treatment of cells with butyric acid. Pretreatment of cells with the JNK inhibitor SP600125 attenuated the effect of butyric acid on apoptosis, whereas no effect was seen with the p38 inhibitor SB202190 or the ERK inhibitor PD98059. Taken together, our results indicate that butyric acid-induced T cell apoptosis is mediated by ceramide production, ROS synthesis in mitochondria, and JNK activation in the mitogen-activated protein kinase cascade. Finally, these results were further substantiated by the expression profile of butyric acid-treated Jurkat cells obtained by means of cDNA array.  相似文献   

13.
Cross-linking of cell surface Fas molecules by Fas ligand or by agonistic anti-Fas Abs induces cell death by apoptosis. We found that a serine protease inhibitor, N-tosyl-L-lysine chloromethyl ketone (TLCK), dramatically enhances Fas-mediated apoptosis in the human T cell line Jurkat and in various B cell lines resistant to Fas-mediated apoptosis. The enhancing effect of TLCK is specific to Fas-induced cell death, with no effect seen on TNF-alpha or TNF-related apoptosis-inducing ligand-induced apoptosis. TLCK treatment had no effect on Fas expression levels on the cell surface, and neither promoted death-inducing signaling complex formation nor decreased expression levels of cellular inhibitors of apoptosis (FLICE inhibitory protein, X chromosome-linked inhibitor of apoptosis, and Bcl-2). Activation of the Fas-mediated apoptotic pathway by anti-Fas Ab is accompanied by aggregation of Fas molecules to form oligomers that are stable to boiling in SDS and beta-ME. Fas aggregation is often considered to be required for Fas-mediated apoptosis. However, sensitization of cells to Fas-mediated apoptosis by TLCK or other agents (cycloheximide, protein kinase C inhibitors) causes less Fas aggregation during the apoptotic process compared with that in nonsensitized cells. These results show that Fas aggregation and Fas-mediated apoptosis are not directly correlated and may even be inversely correlated.  相似文献   

14.
Lee SH  Park SW  Pyo CW  Yoo NK  Kim J  Choi SY 《Biochimie》2009,91(1):102-108
The cell proliferation of p53-deficient Jurkat T cells is controlled after prolonged exposure to human lactoferrin (Lf). However, the molecular mechanism by which Lf influences these cellular responses remains unclear. In this study, we demonstrate that Lf-induced apoptosis in Jurkat T cells occurs in a dose- and time-dependent manner via the regulation of c-Jun N-terminal kinase (JNK) activity. Jurkat cells exposed to Lf for 1 day, especially at concentrations in excess of 500 microg/ml, showed typical apoptosis, as indicated by decreased cell viability and increased Annexin V binding. Our results also showed that Lf induced the activation of caspase 9 and caspase 3 activation, as demonstrated by our detection of cleaved caspases and PARP. Lf-induced apoptosis did not influence Bcl-2 expression via an ERK1/2 phosphorylation pathway, but was rather associated with the level of Bcl-2 phosphorylation. The treatment of cells with the specific JNK inhibitor SP600125, but not the p38 MAPK inhibitor SB203580, revealed that the JNK-Bcl-2 signaling cascade is required for Lf-induced apoptosis. When JNK activation was abolished by SP600125, no Bcl-2 phosphorylation was detected, and the Lf-treated Jurkat cells did not undergo cell death. These findings indicate that Lf functions as a biological mediator of apoptosis in the human leukemia Jurkat T-cell line, via the JNK-associated Bcl-2 signaling pathway.  相似文献   

15.
Ceramide is a key mediator of apoptosis, yet its role in Fas-mediated apoptosis is controversial. Some reports have indicated that ceramide is either a primary signaling molecule in Fas-induced cell death, or that it functions upstream of Fas by increasing FasL expression. Other studies have suggested that ceramide is not relevant to Fas-induced cell death. We have approached this problem by studying ceramide-induced apoptosis in unique Jurkat cell clones selected for resistance to membrane-bound FasL-induced death. Resistance of the mutant Jurkat cells was specific for FasL killing, since the mutant clones were sensitive to other apoptotic stimuli such as cycloheximide and staurosporine. We tested the effects of serum withdrawal, one of the strongest inducers of ceramide, and of exogenous ceramide on apoptosis of both wild-type and FasL-resistant clones. Wild-type Jurkat cells were remarkably sensitive to serum withdrawal and to exogenous ceramide. In contrast all FasL-resistant mutant clones were resistant to these apoptosis-inducing conditions. In contrast to previous work, we did not detect an increase in FasL in either wild-type or mutant clones. Moreover activation of stress-activated protein kinases (JNK/SAPKs) after serum withdrawal and exogenous ceramide treatment was detected only in the wild-type and not in the resistant clones. Because of the parallel resistance of the mutant clones to Fas and to ceramide-induced apoptosis, our data support the notion that ceramide is a second messenger for the Fas/FasL pathway and that serum withdrawal, through production of ceramide, shares a common step with the Fas-mediated apoptotic pathway. Finally, our data suggest that activation of JNK/SAPKs is a common mediator of the three pathways tested.  相似文献   

16.
17.
Sodium 4-phenylbutyrate (PB) has been used in the therapy of urea cycle defects for many years. Recently, it has been shown to cause cellular differentiation, growth arrest, and apoptosis in certain malignancies. We have analyzed the effects of PB on human lung carcinoma cells. PB has distinct patterns of effects on different lung carcinoma cells, inducing apoptosis in NCI-H460 and NCI-H1792 cells, causing G1 arrest in A549 and SK-LU-1 cells, but having no effect on a non-transformed bronchial epithelial cell line HBE4-E6/E7. We investigated the role of MAP kinase family members, extracellular signal-regulated kinase (ERK), JNK, and p38 mitogen-activated protein kinase (MAPK), as well as other important cell survival signaling molecules in PB-induced apoptosis. We observed activation of JNK and ERK by PB in the lung cancer cells. JNK was activated only in the two apoptotic cells, whereas ERK was activated in both the apoptotic and the growth-arrested cells, demonstrating a correlation between apoptosis and activation of JNK in response to PB. Both JNK inhibitor and JNK RNA interference (RNAi) inhibited PB-induced apoptosis, whereas MEK inhibitor did not, supporting that apoptosis induced by PB is through activation of JNK. De novo protein synthesis is required for the PB-induced JNK activation and induction of apoptosis. However, the production of known upstream activators of JNK, namely Fas/Fas ligand, tumor necrosis factor (TNF)-alpha, TNF-beta, and TRAIL, are not altered by PB treatment. Therefore, PB activates JNK through an unidentified and cell type-specific mechanism. Understanding of this mechanism is of therapeutic value in treating cancer patients with PB.  相似文献   

18.
Fas (CD95) mediates apoptosis of many cell types, but the susceptibility of cells to killing by Fas ligand and anti-Fas antibodies is highly variable. Jurkat T cells lacking CD47 (integrin-associated protein) are relatively resistant to Fas-mediated death but are efficiently killed by Fas ligand or anti-Fas IgM (CH11) upon expression of CD47. Lack of CD47 impairs events downstream of Fas activation including caspase activation, poly-(ADP-ribose) polymerase cleavage, cytochrome c release from mitochondria, loss of mitochondrial membrane potential, and DNA cleavage. Neither CD47 signaling nor raft association of CD47 is required to enable Fas apoptosis. CH11 induces association of Fas and CD47. Primary T cells from CD47-null mice are also protected from Fas-mediated killing relative to wild type T cells. Thus CD47 associates with Fas upon its activation and augments Fas-mediated apoptosis.  相似文献   

19.
Oncogenic Ras induces cells to undergo apoptosis after inhibition of protein kinase C (PKC) activity. The integration of differential signaling pathways is required for full execution of apoptosis. In this study, we used Jurkat as well as Fas/FADD-defective cell lines expressing v-ras to determine the upstream elements required for activation of the caspase cascade in PKC/Ras-mediated apoptosis. During this Ras-induced apoptotic process, caspase-8 was activated, possibly through its binding to Fas-associated death domain (FADD), in Jurkat/ras and Jurkat/Fas(m)/ras cells but not in Jurkat/FADD(m)/ras cells. c-Jun NH(2)-terminal kinase (JNK) was activated in all three cell lines expressing ras in response to apoptotic stimulation. Suppression of JNK by dn-JNK1 blocked the interaction of FADD and caspase-8 and partially protected Jurkat/ras and Jurkat/Fas(m)/ras cells from apoptosis. However, dn-JNK1 had no effect on PKC/Ras-induced apoptosis in Jurkat/FADD(m)/ras cells. The results indicate that FADD/caspase-8 signaling is involved in PKC/Ras-mediated apoptosis, and JNK may be an upstream effector of caspase activation.  相似文献   

20.
Caspases and c-Jun N-terminal kinase (JNK) are activated in tumor cells during induction of apoptosis. We investigated the signaling cascade and function of these enzymes in cisplatin-induced apoptosis. Treatment of Jurkat T-cells with cisplatin induced cell death with DNA fragmentation and activation of caspase and JNK. Bcl-2 overexpression suppressed activation of both enzymes, whereas p35 and CrmA inhibited only the DEVDase (caspase-3-like) activity, indicating that the activation of these enzymes may be differentially regulated. Cisplatin induced apoptosis with the cytochrome c release and caspase-3 activation in both wild-type and caspase-8-deficient JB-6 cells, while the Fas antibody induced these apoptotic events only in wild-type cells. This indicates that caspase-8 activation is required for Fas-mediated apoptosis, but not cisplatin-induced cell death. On the other hand, cisplatin induced the JNK activation in both the wild-type and JB-6 cells, and the caspase-3 inhibitor Z-DEVD-fmk did not inhibit this activation. The JNK overexpression resulted in a higher JNK activity, AP-1 DNA binding activity, and metallothionein expression than the empty vector-transfected cells following cisplatin treatment. It also partially protected the cells from cisplatin-induced apoptosis by decreasing DEVDase activity. These data suggest that the cisplatin-induced apoptotic signal is initiated by the caspase-8-independent cytochrome c release, and the JNK activation protects cells from cisplatin-induced apoptosis via the metallothionein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号