首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D. discoideum contains kinetically distinguishable cell surface cAMP binding sites. One class, S, is slowly dissociating and has high affinity for cAMP (Kd = 15 nM, t12 = 15 s). A second class is fast dissociating (t12 about 1 s) and is composed of high affinity binding sites H (Kd ≈ 60 nM), and low affinity binding sites L (Kd = ≈ 450 nM) which interconvert during the binding reaction. Guanine nucleotides affect these three binding types in membranes prepared by shearing D.discoideum cells through Nucleopore filters. The affinity of S for cAMP is reduced by guanine nucleotides from 13 nM to 25 nM, and the number of S-sites is reduced about 50%. The number of fast dissociating sites is not altered by guanine nucleotides, but these sites are mainly in the low affinity state. Half-maximal effects are obtained at about 1 μM GTP, 2 μM GDP and 10 μM Gpp(NH)p(guanyl-5′-yl-imidodiphosphate); ATP and ADP are without effect up to 1 mM. These results indicate that D.discoideum cells have a functionally active guanine nucleotide binding protein involved in the transduction of extracellular cAMP signals via cell surface cAMP receptors.  相似文献   

2.
The protein neurotoxin II from the venom of the scorpion Androctonusaustralis Hector was labeled with 125I by the lactoperoxidase method to a specific radioactivity of about 100 μCi/μg without loss of biological activity. The labeled neurotoxin binds specifically to a single class of non intereacting binding sites of high affinity (KD = 0.3 – 0.6 nM) and low capacity (4000 – 8000 sites/cell) to electrically excitable neuroblastoma cells. Relation of these sites to the action potential Na+ channel is derived from identical concentration dependence of scorpion toxin binding and increase in duration and amplitude of action potential. The protein neurotoxin II from the sea anemone Anemona sulcata also affects the closing of the action potential Na+ ionophore in nerve axons. The unlabelled sea anemone toxin modifies 125I-labeled scorpion toxin II binding to neuroblastoma cells by increasing the apparent KD for labeled scorpion toxin without modification of the number of binding sites. It is concluded that both Androctonus scorpion toxin II and Anemona sea anemone toxin II interact competitively with a regulatory component of the action potential Na+ channel.  相似文献   

3.
The search for an unusual cyclic nucleotide-dependent protein kinase in nematodes represented an attempt to gain some insight into the proposed homology of the cAMP and cGMP-dependent protein kinases. Two species of protein kinase were found in high speed supernatants of the mycophagous nematode Aphelenchusavenae. One of the two, bound to DEAE cellulose and was eluted from it in a manner characteristic of the type I cAMP kinase. The enzyme had high affinity for cAMP and dissociated upon binding to the cyclic nucleotide, as judged by the fact that catalytic activity did not bind to a cAMP affinity column. The second enzyme did not bind to DEAE. Unexpectedly, it too had high affinity for cAMP and much lower affinity for cGMP (unlike the cAMPcGMP kinase from insects). The holoenzyme bound tightly to the cAMP affinity column and required a high concentration of the cyclic nucleotide for elution. This latter enzyme is the only example of a cAMP-dependent protein kinase that does not dissociate upon activation.  相似文献   

4.
Gel electrophoresis and sucrose density gradient centrifugation techniques permitted the visualization for the first time of the ternary complex formed by the binding of cAMP to Mucor rouxii cAMP-dependent protein kinase holoenzyme. The addition of 0.5 M NaCl or histone plus ATP-Mg++, together with cAMP, dissociates the holoenzyme into free regulatory (R) and catalytic (C) subunits. At 4°C, cAMP bound to the holoenzyme is readily exchangeable with unlabeled cAMP (half life 2.5 min), while the nucleotide bound to the R subunit has a very slow exchange rate (half life 210 min). The amount of cAMP bound to R subunit is approximately twice the amount bound to holoenzyme at saturation.  相似文献   

5.
Four subunits of the acetylcholine receptor molecule, obtained from the electric organ of Torpedo ocellata, have been isolated using polyacrylamide gel electrophoresis, and assayed by titration with a fluorescent lanthanide, terbium, and by affinity-labeling with p-(N-maleimido)benzyl [trimethyl-3H] ammonium iodide. The site with which the activator-analogue affinity label reacts, as well as the terbium-binding sites, are mainly associated with the smallest of the subunits of an apparent molecular weight of 40,000. Calcium competes with terbium for these binding sites. The affinity for terbium is the same in the intact molecule as in the subunit (KTb ? 19 ± 1 μM), but the affinity for calcium decreases by a factor of 4 (KCa ? 4 mM) in the subunit. Hydrolysis of the receptor, catalyzed by trypsin and chymotrypsin, to peptides with an apparent molecular weight of 8000 or less, does not affect the terbium-binding sites. These experiments indicate that the binding sites for neural activators and for calcium are associated with the same subunit, and that the terbium- and calcium-binding sites reflect structural properties of the polypeptide chain rather than the three-dimensional structure of the protein.  相似文献   

6.
Dictyostelium discoideum cells contain a heterogeneous population of cell surface cAMP receptors with components possessing different affinities (Kd between 15 and 450 nM) and different off-rates of the cAMP-receptor complex (t12 between 0.7 and 150 s). The association of cAMP to the receptor and the dissociation of the cAMP-receptor complex still occur in the presence of 3.4 M ammonium sulfate. However, these processes are strongly altered. (1) Low concentrations of ammonium sulfate (≈ 50 mM) induce an approx. 2-fold increase of the number of cAMP binding sites. The same effect is induced by millimolar concentrations of CaCl2. Ammonium sulfate and CaCl2 are not additive, which suggests that these salts may act via the same mechanism. (2) High concentrations of ammonium sulfate (3.4 M) induce an alteration in the proportioning of the various cAMP binding sites to the components with the highest affinity. (3) High concentrations of ammonium sulfate (3.4 M) retard the dissociation of all binding sites about 3–6-fold, thus giving rise to an increase in the affinity of all cAMP-binding components.  相似文献   

7.
When aggregating amoebas of the cellular slime mold Dictyostelium discoideum are disaggregated and morphogenesis is reinitiated, the amoebas will reaggregate in less than 110th the original time. When aggregating amoebas are disaggregated and resuspended either in full nutrient medium or in buffered salts solution containing dextrose, they retain this developmentally acquired capacity to rapidly reaggregate for approximately 1 hr and then lose it completely in a synchronous and discrete step which we have referred to as the “erasure event.” In this report, it is demonstrated that micromolar concentrations of cAMP completely block this transition from the developmental to vegetative state, and that other cyclic nucleotides also inhibit it, but they do so at 20-fold higher concentrations. Neither the hydrolysis products of cAMP nor the vegetative chemoattractant folic acid inhibit dedifferentiation at concentrations as high as 10?3M, demonstrating a specificity for cyclic nucleotides and cAMP in particular. The addition of cAMP at any time during the lag period preceding the erasure event inhibits it and addition immediately after the erasure event reverses it. Since cAMP may inhibit the transition from the developmental to vegetative state intracellularly or extracellularly, we have also examined the intracellular concentration of cAMP and the levels of cAMP binding sites on the cell surface during the erasure process. Evidence is presented that the majority of cAMP binding sites on the cell surface are not necessary for the inhibition of erasure by cAMP. The results of these latter studies are discussed in terms of alternative models for the involvement of cAMP in the transition from the developing to vegetative state.  相似文献   

8.
Nature of the ribosomal binding site for initiation factor 3 (IF-3)   总被引:2,自引:0,他引:2  
In vitro labelled IF-3 binds to both 16S and 23S rRNA but while one molecule of IF-3 binds to each 30S particle, binding to 50S particles is negligible. If proteins are removed by LiCl or CsCl treatment from either ribosomal subunit, however, binding specificity is lost and new “binding sites” appear on both ribosomal particles. Controlled RNase digestion of the 30S subunits does not cause the loss of any r-protein while controlled trypsin digestion results in the loss or degradation of several r-proteins; compared to the Phe-tRNA binding site, the binding site of IF-3 seems to be more sensitive to RNase than to trypsin digestion. Antibodies against single 30S r-proteins, which inhibit other ribosomal functions, do not prevent the binding of IF-3. RNA-binding dyes (acridine orange and pyronine) inhibit the binding of IF-3 to 30S ribosomal subunits. It is proposed that a segment of the 16S rRNA provides the binding site for IF-3 and that r-proteins confer specificity, restricting the number of available “binding sites”, and stabilize the 30S-IF-3 interaction.  相似文献   

9.
3H-nicotine binding was performed on intact and solubilized rat brain membranes as well as membranes from the electric organ of the Torpedo fish. The Kd for binding to intact and solubilized rat brain membranes was 5.6 × 10?9 M and 1.1 × 10?8M respectively, and the binding capacity 2.0 × 10?14 and 3.0 × 10?13 moles /mg protein respectively. The Kd for Torpedo membranes was 3.1 × 10?7M and the binding capacity 6.8 × 10?13 moles/mg protein. The binding was stereospecific with the affinity of the (?)-nicotine being about 8 times greater than the (+)-nicotine with all three preparations. The relative affinity for the nicotine binding site of nicotinic cholinergic drugs was considerably less in rat brain than in Torpedo membranes, where the sites are mainly cholinergic. A comparison was made of the ability of a variety of cholinergic drugs and nicotine derivatives to compete with 3H-nicotine binding and their relative pharmacologic potency to produce or inhibit a characteristic prostration syndrome caused by (?)-nicotine administered intraventricularly to rats. From such studies it was concluded that nicotine, in part, may be interacting at noncholinergic sites in rat brain.  相似文献   

10.
High affinity and saturable binding sites for [3H] imipramine have been demonstrated on human platelet membranes. These binding sites appear to be specific for tricyclic antidepressants and their pharmacologically-active metabolites. In contrast, inactive tricyclic compounds such as the parent iminodibenzyl and iminostilbenes do not inhibit [3H] imipramine binding. The binding of [3H] imipramine to human platelets is of high affinity (Kd ? 1.4nM), saturable (Bmax ? 625 fmols/mg prot), and sensitive to proteolytic degradation. The effects of various drugs and neurotransmitter agonists and antagonists suggests that these binding sites are pharmacologically distinct from the previously reported binding of tricyclic antidepressants to alpha-adrenergic, muscarinic-cholinergic, and histaminergic receptors. The binding characteristics of [3H] imipramine to platelets is similar to that in rat and human brain and may thus serve as a useful model in elucidating the pharmacological and physiological significance of these binding sites.  相似文献   

11.
Extracellular cAMP induces an intracellular accumulation of cAMP and cGMP levels in Dictyostelium discoideum. cAMP is detected by cell-surface receptors which are composed of a class of fast-dissociating sites (t12 = 1?2 s) and a class of slow-dissociating sites (t12 = 15?150 s). Exposure of D. discoideum cells to 1 mM cAMP for 30 min induces a reduction of cAMP binding (down-regulation; Klein, C. and Juliani, M.H. (1977) Cell 10, 329–335). The number of fast-dissociating sites was reduced by 80–90% in down-regulated cells. These sites are composed of two forms with high and low affinity which interconvert during the binding reaction. In down-regulated cells this transition still occurred in the residual sites. The accumulation of cellular cAMP levels induced by a saturating stimulus decreased by 80–90%. The number of slow-dissociating sites was not significantly reduced in down-regulated cells, but their affinity decreased about 10-fold. The accumulation of cellular cGMP levels induced by a saturating stimulus was not decreased; however, about 20-fold higher cAMP concentrations were required to induce the same response. These results demonstrate that the cAMP transduction pathways to adenylate cyclase and guanylate cyclase are down-regulated differently. Furthermore, the results suggest that the fast-dissociating sites are involved in the activation of adenylate cyclase, while the slow-dissociating sites are coupled to guanylate cyclase.  相似文献   

12.
Some opiates with morphinan- and benzomorphan-structures possess affinities for neuroleptic receptors as revealed by their abilities to compete with 3H-spiroperidol for common binding sites in rat striatum in vitro (IC50 in the range between 10?6 and 10?5M). The binding of these opiates to neuroleptic receptors appears to be of pharmacological significance, since in vivo studies in mice revealed a small but significant displacement of spiroperidol by high doses of the opiate antagonist levallorphan from specific binding sites in the striatum. In addition, there exists some correlation between the ability of opiates to bind to neuroleptic receptor sites in vitro and their potency to evoke “bizarre behavior” in rats in vivo. In contrast, a wide variety of other opiates having morphine-, morphinone- or oripavine-structure showed no affinity for neuroleptic binding sites in vitro (IC50 greater than 10?4 M). Of the opioid peptides (methionine-enkephalin, leucine-enkephalin and β-endorphin) none has an affinity for neuroleptic binding sites. A variety of other peptides were also investigated but did not interfere with spiroperidol binding. Only ACTH showed a moderate affinity for neuroleptic binding sites.  相似文献   

13.
The effects of danazol on steroidogenesis invitro in the 16–20 week old human fetal adrenal were examined by studying: 1) danazol binding to adrenal microsomal and mitochondrial cytochrome P-450, and 2) enzyme kinetics of danazol inhibition of the adrenal microsomal 21-hydroxylase and the mitochondrial llβ-hydroxylase. The addition of danazol to preparations of adrenal microsomes or mitochondria elicited a type I cytochrome P-450 binding spectrum. Danazol bound to microsomal cytochrome P-450 with a high affinity apparent spectral dissociation constant (Kg) of 1 μM and with a lower affinity K's of 10 μM. Danazol bound to mitochondrial cytochrome P-450 with a Kg of 5 μM. In addition, danazol competitively inhibited the microsomal 21-hydroxylase (apparent enzymatic inhibition constant KI = 0.8 μM) and the mitochondrial 11β-hydroxylase (KI = 3 μM). These findings demonstrate that low concentrations of danazol directly inhibit steroidogenesis in the human fetal adrenal invitro.  相似文献   

14.
BACKGROUND: Cyclic AMP binding domains possess common structural features yet are diversely coupled to different signaling modules. Each cAMP binding domain receives and transmits a cAMP signal; however, the signaling networks differ even within the same family of regulatory proteins as evidenced by the long-standing biochemical and physiological differences between type I and type II regulatory subunits of cAMP-dependent protein kinase. RESULTS: We report the first type II regulatory subunit crystal structure, which we determined to 2.45 A resolution and refined to an R factor of 0.176 with a free R factor of 0.198. This new structure of the type II beta regulatory subunit of cAMP-dependent protein kinase demonstrates that the relative orientations of the two tandem cAMP binding domains are very different in the type II beta as compared to the type I alpha regulatory subunit. Each structural unit for binding cAMP contains the highly conserved phosphate binding cassette that can be considered the "signature" motif of cAMP binding domains. This motif is coupled to nonconserved regions that link the cAMP signal to diverse structural and functional modules. CONCLUSIONS: Both the diversity and similarity of cAMP binding sites are demonstrated by this new type II regulatory subunit structure. The structure represents an intramolecular paradigm for the cooperative triad that links two cAMP binding sites through a domain interface to the catalytic subunit of cAMP-dependent protein kinase. The domain interface surface is created by the binding of only one cAMP molecule and is enabled by amino acid sequence variability within the peptide chain that tethers the two domains together.  相似文献   

15.
[3H]Flunitrazepam was used to characterize benzodiazepine binding sites in human brain. The benzodiazepine binding sites exhibited high affinity, pharmacological specificity and saturability in their binding of [3H]flunitrazepam. The dissociation constant (KD) of [3H]flunitrazepam binding was determined by three different methods and found to be in the range of 2–3 nM. The potency of several benzodiazepine analogs to inhibit specific [3H]-flunitrazepam binding invitro correlated well with their potency in several invivo human and animal tests. The density of [3H]-flunitrazepam binding sites was highest in the cerebrocortical and rhinencephalic areas, intermediate in the cerebellum, and lowest in the brain stem and commissural tracts.  相似文献   

16.
Affinity chromatography on cyclic AMP columns allowed a two-step isolation of the cyclic-AMP-binding proteins from bovine kidney cytosol. An AMP-binding protein (apparent molecular weight approximately 60 000) and large amounts of a low affinity binding protein ('P35'; apparent subunit size approximately 35 000) were obtained in practically pure form besides the high affinity binding proteins of the R type. Among the R proteins the dimer R2 of the regulatory subunit of protein kinase II (apparent subunit size approximately 54 000) represented the bulk material. Small amounts of monomer, of higher aggregates, and of a protein 'P49' (subunit size approximately 49 000) presumably identical with the regulatory subunit of protein kinase I were also detected. The R protein fraction of kidney also contained a high affinity binding protein of smaller size (designated as R'; molecular weight approximately 37 000) which appeared to be derived from protein R2 of protein kinase II by limited proteolysis. At all stages of purification, R protein and its aggregates could be quantitatively transformed into R' protein (or a closely related polypeptide) by several proteases including the relatively unspecific proteinase K. The degradation product exhibited unchanged cyclic-AMP-binding capacities but had largely lost the ability to inhibit the catalytic subunit C of protein kinase, to be phosphorylated by C, and to form a dimer. Preliminary experiments indicate that protein R' may be a natural component of kidney tissue.  相似文献   

17.
We report the preparation and characterization of a stable half met (Cu(II)Cu(I)) type 2 copper depleted derivative of Rhus laccase. Anion binding studies to this mixed valent type 3 protein form indicate no tight binding of anions nor group 1 - group 2 ligand behavior. This suggests that, in contrast to the well-characterized hemocyanins and tyrosinase coupled binuclear sites, exogenous ligands do not appear to bridge the type 3 binuclear copper ions in laccase.  相似文献   

18.
A method is described which makes use of 4M MgCl2 to dissociate the testicular luteinizing hormone-receptor complex without altering either the binding capacity or binding affinity of the receptor. Using this method, it was demonstrated that in vitro incubation at 4° of decapsulated rat testes with various concentrations of luteinizing hormone or with human chorionic gonadotropin resulted in a reduction in binding capacity. This reduction of binding capacity could not be completely accounted for by occupation of receptors by homologous hormone, suggesting that receptors were lost. Thus negative regulation of LH receptors by LH and hCG was observed. The reduction in LH binding capacity was specific for LH and hCG, dose dependent and time related. FSH, prolactin and growth hormone did not exert the same effect.  相似文献   

19.
Binding characteristics of benzodiazepine receptors were studied with synaptosomal and microsomal membranes from rabbit brain invitro utilizing [methyl-3H]diazepam. In synaptosomal membranes, both high and low affinity binding sites were identified with the dissociation constants (Kd) of 4.92 nM and 83.8 nM, respectively. However, only the high affinity site was identified with Kd of 3.96 nM with microsomal membranes. Benzodiazepine binding sites appear to include at least two subpopulations of receptors, one with high affinity and another with low affinity binding site.  相似文献   

20.
Studies of the localization of the Na+-dependent sugar transport in monolayers of LLC PK1 cells show that the uptake of a methyl α-d-glucoside, a nonmetabolizable sugar which shares the glucose-galactose transport system, occurs mainly from the apical side of the monolayer. Kinetics of [3H]phlorizin binding to monolayers of LLC PK1 cells were also measured. These studies demonstrate the presence of two distinct classes of receptor sites. The class comprising high affinity binding sites had a dissociation constant (Kd) of 1.2 μM and a concentration of high affinity receptors of 0.30 μmol binding sites per g DNA. The other class involving low affinity sites had a Kd of 240 μM with the number of binding sites equal to 12 μmol/g DNA. Phlorizin binding at high affinity binding sites is a Na+-dependent process. Binding at the low affinity sites on the contrary is Na+-independent. The mode of action of Na+ on the high affinity binding sites was to increase the dissociation constant without modifying the number of binding sites. The Na+ dependence and the matching of Kd for high affinity binding sites with the Ki of phlorizin for the inhibition of methyl α-d-glucoside strongly suggest that the high affinity phlorizin binding site is, or is part of the methyl α-d-glucoside transport system. Binding studies from either side of the monolayer also show that the binding of phlorizin at the Na+ dependent high affinity binding sites occurs mainly from the apical rather than the basolateral side. The specific location of the Na+-dependent sugar transport system in the apical membrane of LLC PK1 cells is, therefore, another expression of the functional polarization of epithelial cells that is retained under tissue culture condition. In addition, since this sugar transport almost disappears after the cells are brought into suspension, it can be used as a marker to study the development of the apical membrane in this cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号