首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 633 毫秒
1.
Chemical investigation of an acidic methanol extract of the whole plants of Datura metel resulted in the isolation of two new guainane sesquiterpenes, 1β,5α,7β-guaiane-4β,10α,11-triol (1) and 1α,5α,7α-11-guaiene-2α,3β,4α,10α,13-pentaol (2), along with eight known compounds: pterodontriol B (3), disciferitriol (4), scopolamine (5), kaempferol 3-O-β-d-glucosyl(1  2)-β-d-galactoside 7-O-β-d-glucoside (6), kaempferol 3-O-β-glucopyranosyl(1  2)-β-glucopyranoside-7-O-α-rhamnopyranoside (7), pinoresinol 4′′-O-β-d-glucopyranoside (8), (7R,8S,7′S,8′R)-4,9,4′,7′-tetrahydroxy-3,3′-dimethoxy-7,9′-epoxy-lignan-4-O-β-d-glucopyranoside (9), and (7S,8R,7′S,8′S)-4,9,4′,7′-tetrahydroxy-3,3′-dimethoxy-7,9′-epoxylignan-4-O-β-d-glucopyranoside (10). Their structures were elucidated by extensive spectroscopic methods, including 1D and 2D NMR and MS spectra. Compounds 2-4 and 6-10 were shown to have modest anti-inflammatory effects through inhibition of NO production in LPS-stimulated BV cells.  相似文献   

2.
Fifteen isolates of Bacillus, isolated from the root-knot nematode suppressive soils, were used for the biocontrol of Meloidogyne incognita on tomato. Bacillus isolates B1, B4, B5 and B11 caused greater inhibitory effect on hatching of M. incognita than caused by other isolates. In addition, these isolates (B1, B4, B5 and B11) caused greater colonisation of tomato roots and also caused greater increase in the growth of tomato seedling than caused by other isolates. All the isolates of Bacillus were able to increase growth of tomato and caused reduction in galling and nematode multiplication in green house tests. Isolates B1, B4, B5 and B11 caused a greater increase in growth of tomato and higher reduction in galling and nematode multiplication than other isolates in a green house test. These isolates were also tested for hydrogen cyanide (HCN) and indole acetic acid productions. Only one isolate (B13) produced HCN out of 15 tested. On the other hand, isolates B5, B11, B4 and B1 showed greater production of IAA than the other 11 isolates tested. This study suggests that Bacillus isolates B5, B11, B4 and B1 may be used for the biocontrol of M. incognita on tomato.  相似文献   

3.
Activity of various glycosidases in the intracellular enzyme fraction of Bacteroides ovatus B4-11 was investigated. During 120 h of incubation at 37 degrees C, ca. 30% of the crude hemicellulose was hydrolyzed by an intracellular enzyme fraction of strain B4-11. Xylose was the major sugar released from crude hemicellulose. Glycosidases (alpha-1,6-glucosidase, alpha-1,4-glucosidase, beta-1,4-glucosidase, and beta-1,4-xylosidase) were induced in B. ovatus B4-11 by crude hemicellulose and heteroxylan. When B. ovatus B4-11 was grown on either crude hemicellulose or heteroxylan, the predominant enzyme in the intracellular enzyme fraction was beta-1,4-xylosidase.  相似文献   

4.
Activity of various glycosidases in the intracellular enzyme fraction of Bacteroides ovatus B4-11 was investigated. During 120 h of incubation at 37 degrees C, ca. 30% of the crude hemicellulose was hydrolyzed by an intracellular enzyme fraction of strain B4-11. Xylose was the major sugar released from crude hemicellulose. Glycosidases (alpha-1,6-glucosidase, alpha-1,4-glucosidase, beta-1,4-glucosidase, and beta-1,4-xylosidase) were induced in B. ovatus B4-11 by crude hemicellulose and heteroxylan. When B. ovatus B4-11 was grown on either crude hemicellulose or heteroxylan, the predominant enzyme in the intracellular enzyme fraction was beta-1,4-xylosidase.  相似文献   

5.
The mAb 1B11 has been characterized as recognizing the activation-associated glycoform of murine CD43, a heavily O-glycosylated protein implicated in leukocyte homing. When hemopoietic cells from CD43-/- mice were stained with 1B11, CD43-independent binding of 1B11 was observed on peripheral CD8 T cells and at low levels on thymocytes, while no binding was detected on CD4 T cells, B cells, or bone marrow cells. Levels of 1B11 staining were comparable in lymph node CD8+ T cells from both CD43-/- mice and CD43+/+ mice. We sought to identify the CD43-independent target of 1B11 expressed on CD8 T cells. Previous work had demonstrated that neuraminidase treatment of lymph node cells (LNC) enhanced 1B11 binding on CD43+/+ LNC; this enhancement was also observed in CD43-/- LNC. We show that neuraminidase-enhanced 1B11 binding in CD43-/- LNC and EL4 thymoma cells is CD43 independent and that 1B11 detects a novel target of apparent mass of approximately 200 kDa identified as a hyposialylated form of CD45RB preferentially expressed on peripheral CD8, but not CD4, T cells. Our data also show that the recognition of CD43 and CD45RB by 1B11 is differentially affected by O-linked glycosylation and sialic acid. Whereas 1B11 recognition of CD43 on activated T cells required both core 2 O-glycan branching and sialic acid, 1B11 recognition of CD45 only occurred in the absence of both core 2 glycosylation and sialic acid.  相似文献   

6.
Previously, we have successfully integrated a spectinomycin/streptomycin resistance gene into Enterobacter amnigenus strain An11, a potential host for mosquito control, using in vivo recombination via homologous recombination (An11S4::Omega). We now report the successful transfer of two mosquito-larvicidal genes, cry4B from Bacillus thuringiensis subsp. israelensis and binary toxin genes from Bacillus sphaericus, into the host genome. To facilitate the screening procedure, the E. amnigenus derivative, An11S4::Omega, was used as a host. The integration of both toxin genes by two successive crossover events interrupted the Omega region yielding two integrants designated An11S4::cry4B and An11S4::Omega::bin, respectively. Differences in the integration efficiency of these toxin genes were observed. The presence of both genes in the target sites of the host genome was verified by PCR. Cry4B was expressed weakly from An11S4::cry4B, but no expression of the binary toxin gene could be detected from An11S4::Omega::bin. Nevertheless, these two integrants exhibited mosquito-larvicidal activity against Aedes and Culex, suggesting that both proteins were expressed, but at very low levels.  相似文献   

7.
We previously reported that the expression of rotavirus phenotypes by reassortants was affected by recipient genetic background and proposed specific interactions between the outer capsid proteins VP4 and VP7 as the basis for the phenotypic effects (D. Chen, J. W. Burns, M. K. Estes, and R. F. Ramig, Proc. Natl. Acad. Sci. USA 86:3743-3747, 1989). A neutralizing, cross-reactive VP4-specific monoclonal antibody (MAb), 2G4, was used to probe the protein-protein interactions. The VP4 specificity of 2G4 was confirmed by immunoblot analysis. MAb 2G4 reacted with both standard (SA11-C13) and variant rotavirus SA11 (SA11-4F) but did not react with bovine rotavirus B223 as determined by plaque reduction neutralization (PRN) and enzyme-linked immunosorbent assay (ELISA). When a panel of SA11-4F/B223 and SA11-Cl3/B223 reassortants in purified or crude lysate form that had been grown in the presence or absence of trypsin was analyzed with MAb 2G4 by PRN and ELISA, the results with some reassortants were unexpected. That is, MAb 2G4 reacted with VP4 of SA11 parental origin (4F or C13) when it was assembled into capsids with the homologous SA11 VP7 but failed to react with VP4 of SA11 assembled into capsids with heterologous B223 VP7. Conversely, MAb 2G4 failed to react with VP4 of B223 parental origin when it was assembled into capsids with homologous B223 VP7 but did react with B223 VP4 assembled into capsids with the heterologous SA11 VP7. Similar reactivity was observed when 2G4 was used to immunoprecipitate purified double-shelled virions. When soluble unassembled viral proteins were analyzed by ELISA, the 2G4 reactive pattern was as predicted from the parental origin of VP4. That is, 2G4 reacted with the soluble VP4 of reassortants having VP4 from SA11-Cl3 or SA11-4F and failed to react with VP4 of B223 origin, regardless of the origin of VP7. PRN and ELISA results obtained with nonglycosylated viruses revealed that the unexpected reactivity of 2G4 with virus particles was not the result of differential glycosylation of VP7 and epitope masking. These results indicate that the 2G4 epitope existed in the soluble form of VP4 encoded by SA11-Cl3 or SA11-4F but not in soluble B223 VP4. On the other hand, in assembled virions, the presentation of the 2G4 epitope on VP4 was unexpected in some reassortants and was affected by the specific interactions between VP4 and VP7 of heterologous parental origin.  相似文献   

8.
The biopesticide Bacillus thuringiensis israelensis (B.t.i.) is highly toxic to the larvae of Chironomus tepperi, an important pest of aerially sown rice in southern Australia. In this study, all of the known Cry genes and the Cyt1A gene from B.t.i. were expressed and tested for individual toxicity against fourth instar C. tepperi larvae. Possible synergism between toxins in two component mixtures involving all toxins except Cry10A was also evaluated. Of the Cry toxins, only Cry11A and Cry4B displayed substantial toxicity; however, both were 10- to 20-fold less toxic than the parental B.t.i. strain. The only detected synergy was between the mildly toxic Cry4A and Cyt1A toxins. In direct contrast to previous studies with mosquitoes, mixtures of Cry11A/Cry4B and Cry11A/Cyt1A were mildly antagonistic. The activity of Cry11A and Cry4B is sufficient to justify investigation as to whether their expression in transgenic rice plants could provide control of C. tepperi larvae.  相似文献   

9.
The mosquitocidal bacterium Bacillus thuringiensis subsp. israelensis (Bti) produces four major endotoxin proteins, Cry4A, Cry4B, Cry11A, and Cyt1A, and has toxicity in the range of many synthetic chemical insecticides. Cry11B, which occurs naturally in B. thuringiensis subsp. jegathesan, is a close relative of Cry11A, but is approximately 10-fold as toxic to Culex quinquefasciatus. To determine whether the addition of Cry11B to Bti would improve its toxicity, we produced this protein in Bti. High levels of Cry11B synthesis were obtained by expression of the cry11B gene under the control of cyt1A promoters and the STAB-SD sequence. This construct was cloned into the shuttle vector pHT3101, yielding the derivative plasmid pPFT11Bs, which was then transformed by electroporation into acrystalliferous (4Q7) and crystalliferous (IPS-82) strains of Bti. Synthesis of Cry11B in Bti 4Q7 produced crystals approximately 50% larger than those produced with its natural promoters without STAB-SD. However, less Cry11B was produced per unit culture medium with this construct than with the wild-type construct, apparently because the latter construct produced more cells per unit medium. Nevertheless, the Bti IPS-82 strain that produced Cry11B with pPFT11Bs was twice as toxic as the parental IPS-82 strain (LC(50) = 1.4 ng/ml versus 3.3 ng/ml, respectively) to fourth instars of C. quinquefasciatus. Against fourth instars of Aedes aegypti, no statistically significant difference between parental Bti IPS-82 (LC(50) = 4.7 ng/ml) and the Bti IPS-82 recombinant producing Cry11B (LC(50) = 3.5 ng/ml) was found in toxicity.  相似文献   

10.
Autosomal recessive Charcot–Marie–Tooth disease type 4B (CMT4B) is a demyelinating hereditary motor and sensory neuropathy characterized by abnormal folding of myelin sheaths. A locus for CMT4B has previously been mapped to chromosome 11q23 in a southern Italian pedigree. We initially excluded linkage in two Tunisian families with CMT4B to chromosome 11q23, demonstrating genetic heterogeneity within the CMT4B phenotype. Subsequently, using homozygosity mapping and linkage analysis in the largest Tunisian pedigree, we mapped a new locus to chromosome 11p15. A maximum two-point lod score of 6.05 was obtained with the marker D11S1329. Recombination events refined the CMT4B locus region to a 5.6-cM interval between markers D11S1331 and D11S4194. The second Tunisian CMT4B family was excluded from linkage to the new locus, demonstrating the existence of at least a third locus for the CMT4B phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号