首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fas ligand (FasL), perforin, TNF-alpha, IL-1, and NO have been considered as effector molecule(s) leading to beta cell death in autoimmune diabetes. However, the real culprit(s) in beta cell destruction have long been elusive, despite intense investigation. We and others have demonstrated that FasL is not a major effector molecule in autoimmune diabetes, and previous inability to transfer diabetes to Fas-deficient nonobese diabetic (NOD)-lpr mice was due to constitutive FasL expression on lymphocytes from these mice. Here, we identified IFN-gamma/TNF-alpha synergism as the final effector molecules in autoimmune diabetes of NOD mice. A combination of IFN-gamma and TNF-alpha, but neither cytokine alone, induced classical caspase-dependent apoptosis in insulinoma and pancreatic islet cells. IFN-gamma treatment conferred susceptibility to TNF-alpha-induced apoptosis on otherwise resistant insulinoma cells by STAT1 activation followed by IFN regulatory factor (IRF)-1 induction. IRF-1 played a central role in IFN-gamma/TNF-alpha-induced cytotoxicity because inhibition of IRF-1 induction by antisense oligonucleotides blocked IFN-gamma/TNF-alpha-induced cytotoxicity, and transfection of IRF-1 rendered insulinoma cells susceptible to TNF-alpha-induced cytotoxicity. STAT1 and IRF-1 were expressed in pancreatic islets of diabetic NOD mice and colocalized with apoptotic cells. Moreover, anti-TNF-alpha Ab inhibited the development of diabetes after adoptive transfer. Taken together, our results indicate that IFN-gamma/TNF-alpha synergism is responsible for autoimmune diabetes in vivo as well as beta cell apoptosis in vitro and suggest a novel signal transduction in IFN-gamma/TNF-alpha synergism that may have relevance in other autoimmune diseases and synergistic anti-tumor effects of the two cytokines.  相似文献   

2.
3.
In type 1 diabetes, T cell-mediated death of pancreatic beta cells produces insulin deficiency. However, what attracts or restricts broadly autoreactive lymphocyte pools to the pancreas remains unclear. We report that TRPV1(+) pancreatic sensory neurons control islet inflammation and insulin resistance. Eliminating these neurons in diabetes-prone NOD mice prevents insulitis and diabetes, despite systemic persistence of pathogenic T cell pools. Insulin resistance and beta cell stress of prediabetic NOD mice are prevented when TRPV1(+) neurons are eliminated. TRPV1(NOD), localized to the Idd4.1 diabetes-risk locus, is a hypofunctional mutant, mediating depressed neurogenic inflammation. Delivering the neuropeptide substance P by intra-arterial injection into the NOD pancreas reverses abnormal insulin resistance, insulitis, and diabetes for weeks. Concordantly, insulin sensitivity is enhanced in trpv1(-/-) mice, whereas insulitis/diabetes-resistant NODxB6Idd4-congenic mice, carrying wild-type TRPV1, show restored TRPV1 function and insulin sensitivity. Our data uncover a fundamental role for insulin-responsive TRPV1(+) sensory neurons in beta cell function and diabetes pathoetiology.  相似文献   

4.
Stimulation of beta-adrenergic receptor normally results in signaling by the heterotrimeric G protein G(s), leading to the activation of adenylyl cyclase, production of cAMP, and activation of cAMP-dependent protein kinase (PKA). Here we report that cell death of thymocytes can be induced after stimulation of beta-adrenergic receptor, or by addition of exogenous cAMP. Apoptotic cell death in both cases was observed with the appearance of terminal deoxynucleotidyl transferase-mediated UTP end labeling reactivity and the activation of caspase-3 in S49 T cells. Using thymocytes deficient in either Galpha(s) or PKA, we find that engagement of beta-adrenergic receptors initiated a Galpha(s)-dependent, PKA-independent pathway leading to apoptosis. This alternative pathway involves Src family tyrosine kinase Lck. Furthermore, we show that Lck protein kinase activity can be directly stimulated by purified Galpha(s). Our data reveal a new signaling pathway for Galpha(s), distinct from the classical PKA pathway, that accounts for the apoptotic action of beta-adrenergic receptors.  相似文献   

5.
Primary viral infections of the lung induce potent effector CD8 T cell responses. To function in the influenza-infected airways, CD8 T cells must be able to resist cell death. The majority of the CD8 T cells in the airways and lung parenchyma expressed CD49a, the alpha-chain of the type IV collagen receptor VLA-1, and these cells were highly activated, producing both IFN-gamma and TNF-alpha. In the airways, where type IV collagen is abundant, but not the spleen, the CD49a(+) CD8 cells had reduced proportions of annexin V and caspase 8, and >80% expressed the TNF-alpha receptor II, while Fas, TNFR-I, and CD27 expression were similar to CD49a(-) cells. Furthermore, the CD49a(+), but not CD49a(-), CD8 T cells from the airways were resistant to active induction of apoptosis in the presence of type IV collagen and TNF-alpha in vitro. We propose that TNFR-II and the VLA-1 synergize to protect effector CD8 T cells in the infected airways from apoptosis during the acute infection.  相似文献   

6.
Tumor necrosis factor (TNF) and epidermal growth factor (EGF) are key regulators in the intricate balance maintaining intestinal homeostasis. Previous work from our laboratory shows that TNF attenuates ligand-driven EGF receptor (EGFR) phosphorylation in intestinal epithelial cells. To identify the mechanisms underlying this effect, we examined EGFR phosphorylation in cells lacking individual TNF receptors. TNF attenuated EGF-stimulated EGFR phosphorylation in wild-type and TNFR2(-/-), but not TNFR1(-/-), mouse colon epithelial (MCE) cells. Reexpression of wild-type TNFR1 in TNFR1(-/-) MCE cells rescued TNF-induced EGFR inhibition, but expression of TNFR1 deletion mutant constructs lacking the death domain (DD) of TNFR1 did not, implicating this domain in EGFR downregulation. Blockade of p38 MAPK, but not MEK, activation of ERK rescued EGF-stimulated phosphorylation in the presence of TNF, consistent with the ability of TNFR1 to stimulate p38 phosphorylation. TNF promoted p38-dependent EGFR internalization in MCE cells, suggesting that desensitization is achieved by reducing receptor accessible to ligand. Taken together, these data indicate that TNF activates TNFR1 by DD- and p38-dependent mechanisms to promote EGFR internalization, with potential impact on EGF-induced proliferation and migration key processes that promote healing in inflammatory intestinal diseases.  相似文献   

7.
8.
9.
10.
The amniotic epithelium is in direct contact with the amniotic fluid and has tight junctions. The amniotic tight junctions function as a barrier to restrict fluid flux via the amniotic membrane during midpregnancy in the mouse. However, during late pregnancy, amniotic fluid volume significantly decreases in association with the disruption of amniotic tight junctions. The disruption of amniotic tight junctions is caused by apoptosis in the amniotic epithelium on Embryonic Day 17 (E17). In this study, we examine the molecular mechanisms underlying apoptosis of the amniotic epithelium of the mouse. We found that from E16, the number of activated macrophages that express high levels of NOS2 and tumor necrosis factor (TNF) increase in amniotic fluid. TNF receptor type 1 (TNFR1) was detectable from E16 onward. On E17, amniotic epithelial cells expressing TNFR1 became TUNEL positive, suggesting that TNF/TNFR1 signaling may initiate apoptosis. To further confirm the role of TNF/TNFR1 signaling, WP9QY, a TNFR1 antagonist, was injected into the amniotic cavity and was found to significantly reduce the numbers of apoptotic cells in the E17 amniotic epithelium. Furthermore, dehydroxymethylepoxyquinomicin, a specific nuclear factor-kappa B inhibitor, was found to inhibit TNF production in macrophages and amniotic apoptosis in vivo. Finally, we showed that injection of TNF into the amniotic cavity induces early onset of apoptosis. These results indicate that amniotic apoptosis is induced by the TNF pathway via TNFR1 expressed in the amniotic epithelial cells and that activation of macrophages may trigger amniotic apoptosis.  相似文献   

11.
IL-12 was thought to be involved in the development of experimental autoimmune encephalomyelitis (EAE), a Th1 cell-mediated autoimmune disorder of the CNS. However, we have recently found that IL-12 responsiveness, via IL-12Rbeta2, is not required in the induction of EAE. To determine the role of IL-12Rbeta1, a key subunit for the responsiveness to both IL-12 and IL-23, in the development of autoimmune diseases, we studied EAE in mice deficient in this subunit of IL-12R. IL-12Rbeta1(-/-) mice are completely resistant to myelin oligodendrocyte glycoprotein (MOG)-induced EAE, with an autoantigen-specific Th2 response. To study the mechanism underlying this Th2 bias, we cocultured purified CD4(+) T cells and APCs of MOG-immunized mice. We demonstrate that IL-12Rbeta1(-/-) APCs drive CD4(+) T cells of both wild-type and IL-12Rbeta1(-/-) mice to an Ag-induced Th2 phenotype, whereas wild-type APCs drive these CD4(+) T cells toward a Th1 type. IL-12Rbeta1(-/-) CD4(+) T cells, in turn, appear to exert an immunoregulatory effect on the capacity of wild-type APCs to produce IFN-gamma and TNF-alpha. Furthermore, decreased levels of IL-12p40, p35, and IL-23p19 mRNA expression were found in IL-12Rbeta1(-/-) APCs, indicating an autocrine pathway of IL-12/IL-23 via IL-12Rbeta1. IL-18 production and IL-18Ralpha expression are also significantly decreased in IL-12Rbeta1(-/-) mice immunized with MOG. We conclude that in the absence of IL-12Rbeta1, APCs play a prominent regulatory role in the induction of autoantigen-specific Th2 cells.  相似文献   

12.
Intrathymic tolerance results in elimination of T cells bearing self-reactive TCR V beta regions in mice expressing certain combinations of I-E and minor lymphocyte stimulatory (Mls) phenotypes. To determine if autoimmune strains of mice have a defect in intrathymic deletion of self-reactive TCR V beta regions, expression of V beta 3, V beta 6, V beta 8.1, and V beta 11 were examined in lpr/lpr and +/+ strains of mice; MRL/MpJ(H-2K, I-E+, Mlsb,), C57BL/6J(H-2b, I-E-, Mlsb,), C3H/HeJ(H-2k, I-E+, Mlsc), AKR/J(H-2k, I-E+, Mlsa); and in autoimmune NZB/N(H-2d, I-E+, Mlsa) and BXSB(H-2b, I-E-, Mlsb) mice. The results suggest that, during intrathymic development, self-reactive T cells are deleted in autoimmune strains of mice as found in normal control strains of mice. However, the TCR V beta repertoire is skewed in autoimmune strains compared to normal strains of mice. For example, MRL-lpr/lpr mice, but not other lpr/lpr strains, had increased expression of V beta 6 relative to expression in control MRL(-)+/+ mice, which is associated with collagen-induced arthritis. These data are consistent with a model of normal affinity for negative selection of self-reactive T cells in the thymus of autoimmune strains of mice followed by expansion of autoreactive T cell clones in the peripheral lymphoid organs. The peripheral lymphoid organs of lpr/lpr mice contain an expanded population of abnormal CD4-, CD8-, 6B2+ T cells. Elimination of self-reactive peripheral T cells suggests that these abnormal cells are derived from a CD4+ subpopulation in the thymus. Flow cytometry analysis of peripheral lymph node T cells from MRL-lpr/lpr mice reveal three populations of CD4+ T cells expressing low, intermediate and high intensity of B220 (6B2). This supports the hypothesis that in lpr/lpr mice, self-reactive CD4+ T cells are eliminated in the thymus, and that these cells lose expression of CD4 and acquire expression of 6B2 in the periphery.  相似文献   

13.
Long term effects of in vivo treatment with human rIL-1 beta on diabetogenesis and thyroid disease were determined in the Biobreeding rat. Administration of high dose (10 micrograms/kg) IL-1 beta accelerated the onset of insulin-dependent diabetes mellitus compared to saline-injected controls. High dose treatment resulted in goiter development, pronounced LT, reduced serum T4 levels, and overall growth reduction. In contrast, low dose IL-1 beta (0.5 microgram/kg) administration significantly reduced the frequency of insulin-dependent diabetes mellitus (48%) compared to placebo (86%) and high dose IL-1 beta (93%) treatment groups. Rats protected by low dose IL-1 beta had unaffected growth rates and minimal to no pancreatic and thyroid pathology. Our results demonstrate that exogenous administration of IL-1 beta modulates Biobreeding rat idiopathic autoimmune diabetes and thyroid disease in a dose-dependent manner.  相似文献   

14.
15.
Eph receptors and their membrane-tethered ligands, the ephrins, have important functions in embryo morphogenesis and in adult tissue homeostasis. Eph/ephrin signaling is essential for cell segregation and cell repulsion. This process is accompanied by morphological changes and actin remodeling that drives cell segregation and tissue patterning. The actin cortex must be mechanically coupled to the plasma membrane to orchestrate the cell morphology changes. Here, we demonstrate that myosin 1b that can mechanically link the membrane to the actin cytoskeleton interacts with EphB2 receptors via its tail and is tyrosine phosphorylated on its tail in an EphB2-dependent manner. Myosin 1b regulates the redistribution of myosin II in actomyosin fibers and the formation of filopodia at the interface of ephrinB1 and EphB2 cells, which are two processes mediated by EphB2 signaling that contribute to cell repulsion. Together, our results provide the first evidence that a myosin 1 functions as an effector of EphB2/ephrinB signaling, controls cell morphology, and thereby cell repulsion.  相似文献   

16.
Receptor-interacting protein 1 (RIP1; RIPK1) is a key regulator of multiple signaling pathways that mediate inflammatory responses and cell death. TNF-TNFR1 triggered signaling complex formation, subsequent NF-κB and MAPK activation and induction of cell death involve RIPK1 ubiquitination at several lysine residues including Lys376 and Lys115. Here we show that mutating the ubiquitination site K376 of RIPK1 (K376R) in mice activates cell death resulting in embryonic lethality. In contrast to Ripk1K376R/K376R mice, Ripk1K115R/K115R mice reached adulthood and showed slightly higher responsiveness to TNF-induced death. Cell death observed in Ripk1K376R/K376R embryos relied on RIPK1 kinase activity as administration of RIPK1 inhibitor GNE684 to pregnant heterozygous mice effectively blocked cell death and prolonged survival. Embryonic lethality of Ripk1K376R/K376R mice was prevented by the loss of TNFR1, or by simultaneous deletion of caspase-8 and RIPK3. Interestingly, elimination of the wild-type allele from adult Ripk1K376R/cko mice was tolerated. However, adult Ripk1K376R/cko mice were exquisitely sensitive to TNF-induced hypothermia and associated lethality. Absence of the K376 ubiquitination site diminished K11-linked, K63-linked, and linear ubiquitination of RIPK1, and promoted the assembly of death-inducing cellular complexes, suggesting that multiple ubiquitin linkages contribute to the stability of the RIPK1 signaling complex that stimulates NF-κB and MAPK activation. In contrast, mutating K115 did not affect RIPK1 ubiquitination or TNF stimulated NF-κB and MAPK signaling. Overall, our data indicate that selective impairment of RIPK1 ubiquitination can lower the threshold for RIPK1 activation by TNF resulting in cell death and embryonic lethality.Subject terms: Acute inflammation, Chronic inflammation  相似文献   

17.
ID1, inhibitor of differentiation/DNA binding, plays an important role in cell proliferation, differentiation, and tumorigenesis. It has been shown that ID1 is de-regulated in multiple cancers and up-regulation of ID1 is correlated with high grades and poor prognosis of human cancers. In contrast, the p53 tumor suppressor was found to be mutated or inactivated in most human cancers and loss of p53 results in early onset of multiple cancers. Although the biological functions of the ID1 oncogene and the p53 tumor suppressor have been intensively investigated, little is known about the upstream regulators of ID1 and the cross-talk between ID1 and p53. Here, we showed that ID1 is down-regulated in cells treated with various DNA damage agents in a p53-dependent manner. Interestingly, we found that DEC1, which was recently identified as a p53 target and mediates p53-dependent cell cycle arrest and senescence, is capable of inhibiting ID1 expression. Conversely, we found that knockdown of DEC1 attenuates DNA damage-induced ID1 repression. In addition, we identified several potential DEC1 responsive elements in the proximal promoter region of the ID1 gene. Moreover, we showed that overexpression of ID1 or ID1', an isoform of ID1, promotes cell proliferation potentially through inhibition of p21 expression. Finally, we found that the extent of DNA damage-induced premature senescence was substantially decreased by overexpression of ID1 or ID1'. Taken together, our study suggests that p53 trans-repressional activity can be mediated by its own target DEC1 and ID1 is an effector of the p53-dependent DNA damage response pathway.  相似文献   

18.
We have previously reported that B cell receptors, depending on the degree to which they are cross-linked, can promote apoptosis in various human B cell types. In this study, we show that B cell receptors can trigger two apoptotic pathways according to cross-linking and that these pathways control mitochondrial activation in human Burkitt's lymphoma cells. Whereas soluble anti-mu Ab triggers caspase-independent mitochondrial activation, cross-linked anti-mu Ab induces an apoptotic response associated with a caspase-dependent loss of mitochondrial transmembrane potential. This B cell receptor-mediated caspase-dependent mitochondrial activation is associated with caspase-8 activation. We show here that caspase-8 inhibitors strongly decrease cross-linking-dependent B cell receptor-mediated apoptosis in Burkitt's lymphoma BL41 cells. These inhibitors act upstream from the mitochondria as they prevented the loss of mitochondrial membrane potential observed in B cell receptor-treated BL41 cells. Caspase-8 activation in these cells was also evident from the detection of cleaved fragments of caspase-8 and the cleavage of specific substrates, including Bid. Our data show that cross-linked B cell receptors induced an apoptotic pathway involving sequential caspase-8 activation, loss of mitochondrial membrane potential, and the activation of caspase-9 and caspase-3. Cells expressing a dominant negative mutant of Fas-associated death domain protein were sensitive to cross-linked B cell receptor-induced caspase-8 activation and apoptosis; therefore, this caspase-8 activation was independent of the death effector domain of Fas-associated death domain protein.  相似文献   

19.
Ding Q  Wang Z  Chen Y 《Cell research》2009,19(3):317-327
In eukaryotic cells, receptor endocytosis is a key event regulating signaling transduction. Adiponectin receptors belong to a new receptor family that is distinct from G-protein-coupled receptors and has critical roles in the pathogenesis of diabetes and metabolic syndrome. Here, we analyzed the endocytosis of adiponectin and adiponectin receptor 1 (AdipoR1) and found that they are both internalized into transferrin-positive compartments that follow similar traffic routes. Blocking clathrin-mediated endocytosis by expressing Eps15 mutants or depleting K(+) trapped AdipoR1 at the plasma membrane, and K(+) depletion abolished adiponectin internalization, indicating that the endocytosis of AdipoR1 and adiponectin is clathrin-dependent. Depletion of K(+) and overexpression of Eps15 mutants enhance adiponectin-stimulated AMP-activated protein kinase phosphorylation, suggesting that the endocytosis of AdipoR1 might downregulate adiponectin signaling. In addition, AdipoR1 colocalizes with the small GTPase Rab5, and a dominant negative Rab5 abrogates AdipoR1 endocytosis. These data indicate that AdipoR1 is internalized through a clathrin- and Rab5-dependent pathway and that endocytosis may play a role in the regulation of adiponectin signaling.  相似文献   

20.
TNF has been implicated in the pathogenesis of type 1 diabetes. When administered early in life, TNF accelerates and increases diabetes in NOD mice. However, when administered late, TNF decreases diabetes incidence and delays onset. TNFR1-deficient NOD mice were fully protected from diabetes and only showed mild peri-insulitis. To further dissect how TNFR1 deficiency affects type 1 diabetes, these mice were crossed to β cell-specific, highly diabetogenic TCR transgenic I-A(g7)-restricted NOD4.1 mice and Kd-restricted NOD8.3 mice. TNFR1-deficient NOD4.1 and NOD8.3 mice were protected from diabetes and had significantly less insulitis compared with wild type NOD4.1 and NOD8.3 controls. Diabetic NOD4.1 mice rejected TNFR1-deficient islet grafts as efficiently as control islets, confirming that TNFR1 signaling is not directly required for β cell destruction. Flow cytometric analysis showed a significant increase in the number of CD4(+)CD25(+)Foxp3(+) T regulatory cells in TNFR1-deficient mice. TNFR1-deficient T regulatory cells were functionally better at suppressing effector cells than were wild type T regulatory cells both in vitro and in vivo. This study suggests that blocking TNF signaling may be beneficial in increasing the function of T regulatory cells and suppression of type 1 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号