首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Significant role for Fas in the pathogenesis of autoimmune diabetes   总被引:22,自引:0,他引:22  
Programmed cell death represents an important pathogenic mechanism in various autoimmune diseases. Type I diabetes mellitus (IDDM) is a T cell-dependent autoimmune disease resulting in selective destruction of the beta cells of the islets of Langerhans. beta cell apoptosis has been associated with IDDM onset in both animal models and newly diagnosed diabetic patients. Several apoptotic pathways have been implicated in beta cell destruction, including Fas, perforin, and TNF-alpha. Evidence for Fas-mediated lysis of beta cells in the pathogenesis of IDDM in nonobese diabetic (NOD) mice includes: 1) Fas-deficient NOD mice bearing the lpr mutation (NOD-lpr/lpr) fail to develop IDDM; 2) transgenic expression of Fas ligand (FasL) on beta cells in NOD mice may result in accelerated IDDM; and 3) irradiated NOD-lpr/lpr mice are resistant to adoptive transfer of diabetes by cells from NOD mice. However, the interpretation of these results is complicated by the abnormal immune phenotype of NOD-lpr/lpr mice. Here we present novel evidence for the role of Fas/FasL interactions in the progression of NOD diabetes using two newly derived mouse strains. We show that NOD mice heterozygous for the FasL mutation gld, which have reduced functional FasL expression on T cells but no lymphadenopathy, fail to develop IDDM. Further, we show that NOD-lpr/lpr mice bearing the scid mutation (NOD-lpr/lpr-scid/scid), which eliminates the enhanced FasL-mediated lytic activity induced by Fas deficiency, still have delayed onset and reduced incidence of IDDM after adoptive transfer of diabetogenic NOD spleen cells. These results provide evidence that Fas/FasL-mediated programmed cell death plays a significant role in the pathogenesis of autoimmune diabetes.  相似文献   

2.
TNF has been implicated in the pathogenesis of type 1 diabetes. When administered early in life, TNF accelerates and increases diabetes in NOD mice. However, when administered late, TNF decreases diabetes incidence and delays onset. TNFR1-deficient NOD mice were fully protected from diabetes and only showed mild peri-insulitis. To further dissect how TNFR1 deficiency affects type 1 diabetes, these mice were crossed to β cell-specific, highly diabetogenic TCR transgenic I-A(g7)-restricted NOD4.1 mice and Kd-restricted NOD8.3 mice. TNFR1-deficient NOD4.1 and NOD8.3 mice were protected from diabetes and had significantly less insulitis compared with wild type NOD4.1 and NOD8.3 controls. Diabetic NOD4.1 mice rejected TNFR1-deficient islet grafts as efficiently as control islets, confirming that TNFR1 signaling is not directly required for β cell destruction. Flow cytometric analysis showed a significant increase in the number of CD4(+)CD25(+)Foxp3(+) T regulatory cells in TNFR1-deficient mice. TNFR1-deficient T regulatory cells were functionally better at suppressing effector cells than were wild type T regulatory cells both in vitro and in vivo. This study suggests that blocking TNF signaling may be beneficial in increasing the function of T regulatory cells and suppression of type 1 diabetes.  相似文献   

3.
Tumor necrosis factor (TNF)-alpha and lymphotoxin (LT) alpha/beta play multiple roles in the development and function of the immune system. This article focuses on three important aspects of the effects of these cytokines on the immune response and on autoimmunity. In several experimental systems (Jurkat T cells, murine T-cell hybridomas), TNF-alpha appears to cause a downregulation of signaling through the TCR, revealed by changes in calcium flux, activation of p21, p23 and ZAP70, and a decrease in nuclear activation of NF-kappaB. Previous and present results suggest that TNF-alpha interferes in some manner with signaling through the TCR, at a locus yet to be delineated. Transgenic expression of LTbetaR-Fc in nonobese diabetic (NOD) transgenic mice results in prevention of type 1 diabetes in NOD mice as long as the level of expression of the fusion protein (under the control of the cytomegalovirus promoter) remains above a level of 2-3 microg/ml. Once the expression levels of the fusion protein have dropped below this critical level, the diabetic process resumes and the animals become diabetic at 40-50 weeks of age, whereas nontransgenic littermates develop diabetes by 25-30 weeks of age. The paradoxical effects of neonatal TNF-alpha administration in NOD mice in increasing incidence of and hastening onset of type 1 diabetes, while neonatal anti-TNF administration completely prevents all signs of islet cell autoimmunity, are due partly to the low levels of CD4+CD25+ T cells in NOD mice. These low levels are reduced by a further 50% on neonatal administration of nontoxic levels of TNF-alpha. In contrast, neonatal administration of anti-TNF-alpha results in a dramatic increase in the levels of CD4+CD25+ regulatory T cells, to levels beyond those seen in wild-type untreated NOD mice. TNF-alpha and LTalpha/beta thus have pleomorphic regulatory effects on the development and expression of autoimmunity.  相似文献   

4.
Nonobese diabetic (NOD) mice develop spontaneous autoimmune diabetes that involves participation of both CD4+ and CD8+ T cells. Previous studies have demonstrated spontaneous reactivity to self-Ags within the CD4+ T cell compartment in this strain. Whether CD8+ T cells in NOD mice achieve and maintain tolerance to self-Ags has not previously been evaluated. To investigate this issue, we have assessed the extent of tolerance to a model pancreatic Ag, the hemagglutinin (HA) molecule of influenza virus, that is transgenically expressed by pancreatic islet beta cells in InsHA mice. Previous studies have demonstrated that BALB/c and B10.D2 mice that express this transgene exhibit tolerance of HA and retain only low-avidity CD8+ T cells specific for the dominant peptide epitope of HA. In this study, we present data that demonstrate a deficiency in peripheral tolerance within the CD8+ T cell repertoire of NOD-InsHA mice. CD8+ T cells can be obtained from NOD-InsHA mice that exhibit high avidity for HA, as measured by tetramer (K(d)HA) binding and dose titration analysis. Significantly, these autoreactive CD8+ T cells can cause diabetes very rapidly upon adoptive transfer into NOD-InsHA recipient mice. The data presented demonstrate a retention in the repertoire of CD8+ T cells with high avidity for islet Ags that could contribute to autoimmune diabetes in NOD mice.  相似文献   

5.
In the nonobese diabetic (NOD) mouse, pathogenic and suppressor CD4(+) T cells can be distinguished by the constitutive expression of CD25. In this study, we demonstrate that the progression of autoimmune diabetes in NOD mice reflects modifications in both T cell subsets. CD4(+)CD25(+) suppressor T cells from 8-, but not 16-wk-old NOD mice delayed the onset of diabetes transferred by 16-wk-old CD25-depleted spleen cells. These results were paralleled by the inhibition of alloantigen-induced proliferation of CD4(+)CD25(-) cells, indicating an age-dependent decrease in suppressive activity. In addition, CD4(+)CD25(-) pathogenic T cells became progressively less sensitive to immunoregulation by CD4(+)CD25(+) T cells during diabetes development. CD4(+)CD25(-) T cells showed a higher proliferation and produced more IFN-gamma, but less IL-4 and IL-10, whereas CD4(+)CD25(+) T suppressor cells produced significantly lower levels of IL-10 in 16- compared with 8-wk-old NOD mice. Consistent with these findings, a higher frequency of Th1 cells was observed in the pancreas of 16-wk-old compared with 8-wk-old NOD mice. An increased percentage of CD4(+)CD25(-) T cells expressing CD54 was present in 16-wk-old and in diabetic NOD, but not in BALB/c mice. Costimulation via CD54 increased the proliferation of CD4(+)CD25(-) T cells from 16-, but not 8-wk-old NOD mice, and blocking CD54 prevented their proliferation, consistent with the role of CD54 in diabetes development. Thus, the pathogenesis of autoimmune diabetes in NOD mice is correlated with both an enhanced pathogenicity of CD4(+)CD25(-) T cells and a decreased suppressive activity of CD4(+)CD25(+) T cells.  相似文献   

6.
Autoimmune (type 1) diabetes results from a loss of beta cells that is mediated by self-reactive T cells. Previous studies have shown that a single injection of CFA prevents diabetes in nonobese diabetic (NOD) mice, but the mechanism(s) of protection remain unknown. We show here that NOD mice immunized with CFA have a markedly reduced incidence of diabetes and that this reduced incidence is associated with a decrease in the number of beta cell-specific, autoreactive CTL. In addition, the adoptive transfer of diabetes into syngeneic NOD/SCID recipients was prevented by CFA immunization, and the protective effects of CFA were lost when cells expressing the NK cell marker, asialo GM1, were removed from both donor cells and recipient mice. Returning a population of CD3-DX5+ cells to the adoptive transfer restored the protective effects of CFA. Therefore, NK cells mediate the protective effects of CFA possibly through the down-regulation of autoreactive CTL and stimulation of NK cells represents a novel approach to the prevention of autoimmune diabetes.  相似文献   

7.
Type 1 diabetes is caused by death of insulin-producing pancreatic beta cells. Beta-cell apoptosis induced by FasL may be important in type 1 diabetes in humans and in the non-obese diabetic (NOD) mouse model. Deficiency of the pro-apoptotic BH3-only molecule Bid protects beta cells from FasL-induced apoptosis in vitro. We aimed to test the requirement for Bid, and the significance of Bid-dependent FasL-induced beta-cell apoptosis in type 1 diabetes. We backcrossed Bid-deficient mice, produced by homologous recombination and thus without transgene overexpression, onto a NOD genetic background. Genome-wide single nucleotide polymorphism analysis demonstrated that diabetes-related genetic regions were NOD genotype. Transferred beta cell antigen-specific CD8+ T cells proliferated normally in the pancreatic lymph nodes of Bid-deficient mice. Moreover, Bid-deficient NOD mice developed type 1 diabetes and insulitis similarly to wild-type NOD mice. Our data indicate that beta-cell apoptosis in type 1 diabetes can proceed without Fas-induced killing mediated by the BH3-only protein Bid.  相似文献   

8.
Cross-presentation of self Ags by APCs is key to the initiation of organ-specific autoimmunity. As MHC class I molecules are essential for the initiation of diabetes in nonobese diabetic (NOD) mice, we sought to determine whether the initial insult that allows cross-presentation of beta cell autoantigens in diabetes is caused by cognate interactions between naive CD8(+) T cells and beta cells. Naive splenic CD8(+) T cells from transgenic NOD mice expressing a diabetogenic TCR killed peptide-pulsed targets in the absence of APCs. To ascertain the role of CD8(+) T cell-induced beta cell lysis in the initiation of diabetes, we expressed a rat insulin promoter (RIP)-driven adenovirus E19 transgene in NOD mice. RIP-E19 expression inhibited MHC class I transport exclusively in beta cells and rendered these cells resistant to lysis by CD8(+) (but not CD4(+)) T cells, both in vitro and in vivo. Surprisingly, RIP-E19 expression impaired the accumulation of CD8(+) T cells in islets and delayed the onset of islet inflammation, without affecting the timing or magnitude of T cell cross-priming in the pancreatic lymph nodes, which is the earliest known event in diabetogenesis. These results suggest that access of beta cell autoantigens to the cross-presentation pathway in diabetes is T cell independent, and reveal a previously unrecognized function of MHC class I molecules on target cells in autoimmunity: local retention of disease-initiating clonotypes.  相似文献   

9.
Fas (CD95) is a potential mechanism of pancreatic beta cell death in type 1 diabetes. beta cells do not constitutively express Fas but it is induced by cytokines. The hypothesis of this study is that Fas expression should be measurable on beta cells for them to be killed by this mechanism. We have previously reported that up to 5% of beta cells isolated from nonobese diabetic (NOD) mice are positive for Fas expression by flow cytometry using autofluorescence to identify beta cells. We have now found that these are not beta cells but contaminating dendritic cells, macrophages, and B lymphocytes. In contrast beta cells isolated from NODscid mice that are recipients of T lymphocytes from diabetic NOD mice express Fas 18-25 days after adoptive transfer but before development of diabetes. Fas expression on beta cells was also observed in BDC2.5, 8.3, and 4.1 TCR-transgenic models of diabetes in which diabetes occurs more rapidly than in unmodified NOD mice. In conclusion, Fas is observed on beta cells in models of diabetes in which rapid beta cell destruction occurs. Its expression is likely to reflect differences in the intraislet cytokine environment compared with the spontaneous model and may indicate a role for this pathway in beta cell destruction in rapidly progressive models.  相似文献   

10.
TNF is an important inflammatory mediator and a target for intervention. TNF is produced by many cell types and is involved in innate inflammation as well as adaptive immune responses. CD8 T cells produce TNF and can also respond to TNF. Deficiency of TNF or TNFR2 has been shown to affect anti-viral immunity. However, as the complete knockout of TNF or its receptors has effects on multiple cell types as well as on lymphoid architecture, it has been difficult to assess the role of TNF directly on T cells during viral infection. Here we have addressed this issue by analyzing the effect of CD8 T cell intrinsic TNF/TNFR2 interactions during respiratory influenza infection in mice, using an adoptive transfer model in which only the T cells lack TNF or TNFR2. During a mild influenza infection, the capacity of the responding CD8 T cells to produce TNF increases from day 6 through day 12, beyond the time of viral clearance. Although T cell intrinsic TNF is dispensable for initial expansion of CD8 T cells up to day 9 post infection, intrinsic TNF/TNFR2 interactions potentiate contraction of the CD8 T cell response in the lung between day 9 and 12 post infection. On the other hand, TNF or TNFR2-deficient CD8 T cells in the lung express lower levels of IFN-γ and CD107a per cell than their wild type counterparts. Comparison of TNF levels on the TNFR2 positive and negative T cells is consistent with TNF/TNFR2 interactions inducing feedback downregulation of TNF production by T cells, with greater effects in the lung compared to spleen. Thus CD8 T cell intrinsic TNF/TNFR2 interactions fine-tune the response to influenza virus in the lung by modestly enhancing effector functions, but at the same time potentiating the contraction of the CD8 T cell response post-viral clearance.  相似文献   

11.
The nonobese diabetic (NOD) mouse spontaneously develops autoimmune diabetes after 12 weeks of age and is the most extensively studied animal model of human Type 1 diabetes (T1D). Cell transfer studies in irradiated recipient mice have established that T cells are pivotal in T1D pathogenesis in this model. We describe herein a simple method to rapidly induce T1D by adoptive transfer of purified, primary CD4+ T cells from pre-diabetic NOD mice transgenic for the islet-specific T cell receptor (TCR) BDC2.5 into NOD.SCID recipient mice. The major advantages of this technique are that isolation and adoptive transfer of diabetogenic T cells can be completed within the same day, irradiation of the recipients is not required, and a high incidence of T1D is elicited within 2 weeks after T cell transfer. Thus, studies of pathogenesis and therapeutic interventions in T1D can proceed at a faster rate than with methods that rely on heterogenous T cell populations or clones derived from diabetic NOD mice.  相似文献   

12.
Pancreatic beta cell destruction in type 1 diabetes is mediated by cytotoxic CD8(+) T lymphoctyes (CTL). Granzyme B is an effector molecule used by CTL to kill target cells. We previously showed that granzyme B-deficient allogeneic CTL inefficiently killed pancreatic islets in vitro. We generated granzyme B-deficient non-obese diabetic (NOD) mice to test whether granzyme B is an important effector molecule in spontaneous type 1 diabetes. Granzyme B-deficient islet antigen-specific CD8(+) T cells had impaired homing into islets of young mice. Insulitis was reduced in granzyme B-deficient mice at 70 days of age (insulitis score 0.043±0.019 in granzyme B-deficient versus 0.139±0.034 in wild-type NOD mice p<0.05), but was similar to wild-type at 100 and 150 days of age. We observed a reduced frequency of CD3(+)CD8(+) T cells in the islets and peripheral lymphoid tissues of granzyme B-deficient mice (p<0.005 and p<0.0001 respectively), but there was no difference in cell proportions in the thymus. Antigen-specific CTL developed normally in granzyme B-deficient mice, and were able to kill NOD islet target cells as efficiently as wild-type CTL in vitro. The incidence of spontaneous diabetes in granzyme B-deficient mice was the same as wild-type NOD mice. We observed a delayed onset of diabetes in granzyme B-deficient CD8-dependent NOD8.3 mice (median onset 102.5 days in granzyme B-deficient versus 57.50 days in wild-type NOD8.3 mice), which may be due to the delayed onset of insulitis or inefficient priming at an earlier age in this accelerated model of diabetes. Our data indicate that granzyme B is dispensable for beta cell destruction in type 1 diabetes, but is required for efficient early activation of CTL.  相似文献   

13.
Beta-cell apoptosis in an accelerated model of autoimmune diabetes.   总被引:4,自引:0,他引:4       下载免费PDF全文
BACKGROUND: The non-obese diabetic (NOD) mouse is a model of human type 1 diabetes in which autoreactive T cells mediate destruction of pancreatic islet beta cells. Although known to be triggered by cytotoxic T cells, apoptosis has not been unequivocally localized to beta cells in spontaneously diabetic NOD mice. We created a model of accelerated beta-cell destruction mediated by T cells from spontaneously diabetic NOD mice to facilitate the direct detection of apoptosis in beta cells. MATERIALS AND METHODS: NOD.scid (severe combined immunodeficiency) mice were crossed with bm1 mice transgenically expressing the costimulatory molecule B7-1 (CD80) in their beta cells, to generate B7-1 NOD.scid mice. Apoptosis in islet cells was measured as DNA strand breakage by the TdT-mediated-dUTP-nick end labeling (TUNEL) technique. RESULTS: Adoptive transfer of splenocytes from spontaneously diabetic NOD mice into B7-1 NOD.scid mice caused diabetes in recipients within 12-16 days. Mononuclear cell infiltration and apoptosis were significantly greater in the islets of B7-1 NOD.scid mice than in nontransgenic NOD.scid mice. Dual immunolabeling for TUNEL and either B-7 or insulin, or the T cell markers CD4 and CD8, and colocalization by confocal microscopy clearly demonstrated apoptosis in beta cells as well in a relatively larger number of infiltrating T cells. The clearance time of apoptotic beta cells was estimated to be less than 6 min. CONCLUSIONS: B7-1 transgenic beta cells undergo apoptosis during their accelerated destruction in response to NOD mouse effector T cells. Rapid clearance implies that beta cells undergoing apoptosis would be detected only rarely during more protracted disease in spontaneously diabetic NOD mice.  相似文献   

14.
To investigate how CD8+ T cells interact with beta cells and local inflammatory cells in islets, we have isolated CD8+ T cell clones from nonobese diabetic (NOD) spleen that recognize and destroy both islets and the NOD insulinoma cell line NIT-1. The clones destroyed NOD islets with pre-existing inflammation better than islets without signs of inflammation. Islets from NOD-scid mice were destroyed only poorly, but that could be improved by adding IL-7 to the assay. Anti-IFN-gamma Abs inhibited destruction of infiltrated islets. Single islets were effective stimulators of IFN-gamma production by cloned CD8+ T cells, which varied >50-fold depending on the degree of islet infiltration. This effect of the islet mononuclear infiltrate could be mimicked by adding spleen cells to NIT-1 cells, which augmented IFN-gamma production above the level stimulated by NIT-1 cells alone. The enhancing effect of spleen cells could be attributed to their macrophage subpopulation and was not MHC restricted, although recognition of islet Ag by cloned CD8+ T cells and subsequent islet destruction was restricted to islets expressing H-2Db molecules. An inhibitor of inducible NO synthase inhibited destruction of inflamed islets by cloned CD8+ T cells. We propose that macrophages in inflamed islets provide a form of bystander costimulation of beta cell-specific CD8+ T cells. CD8+ T cells respond to Ag and costimulation by producing IFN-gamma that activates macrophages. Activated macrophages facilitate islet destruction by CD8+ T cells through a NO synthesis-dependent pathway.  相似文献   

15.
IFN-gamma affects homing of diabetogenic T cells.   总被引:2,自引:0,他引:2  
IFN-gamma is a cytokine with pleiotropic functions that participates in immune and autoimmune responses. The lack of IFN-gamma is known to delay the development of autoimmune diabetes in nonobese diabetic (NOD) mice. Splenocytes from diabetic NOD and IFN-gamma knockout (KO) NOD mice transfer diabetes into NOD recipients equally well. However, adoptive transfer of diabetogenic T cells from NOD mice into NOD.IFN-gamma-KO or NOD mice lacking beta-chain of IFN-gamma receptor (NOD.IFN-gammaRbeta-KO) appeared to be much less efficient. We found that IFN-gamma influences the ability of diabetogenic cells to penetrate pancreatic islets. Tracing in vivo of insulin-specific CD8+ T cells has shown that homing of these cells to the islets of Langerhans was affected by the lack of IFN-gamma. While adhesion of insulin-specific CD8+ cells to microvasculature was normal, the diapedesis was significantly impaired. This effect was reversible by treatment of the animals with rIFN-gamma. Thus, IFN-gamma may, among other effects, influence immune and autoimmune responses by supporting the homing of activated T cells.  相似文献   

16.
Non-obese diabetic (NOD) mice develop spontaneous T-cell responses against pancreatic beta-cells, leading to islet cell destruction and diabetes. Despite high genetic similarity, non-obese resistant (NOR) mice do not develop diabetes. We show here that spleen cells of both NOD and NOR mice respond to the islet cell antigen glutamic acid decarboxylase-65 in IFN-gamma-ELISPOT assays. Moreover, NOR-T cells induce periinsulitis in NOD SCID recipient mice. Thus, a potentially pathogenic islet cell-specific T-cell response arises in NOR and NOD mice alike; the mechanism that prevents the autoimmune progression of self-reactive T cells in NOR mice presumably acts at the level of effector function. Consistent with this hypothesis, CD4+CD25+ cell-depleted spleen cells from NOR mice mediated islet cell destruction and overt diabetes in NOD SCID mice. Therefore, islet cell-specific effector cells in NOR mice appear to be under the control of CD4+CD25+ regulatory T cells, confirming the importance of regulatory cells in the control of autoimmune diabetes.  相似文献   

17.
beta cell replacement via islet or pancreas transplantation is currently the only approach to cure type 1 diabetic patients. Recurrent beta cell autoimmunity is a critical factor contributing to graft rejection along with alloreactivity. However, the specificity and dynamics of recurrent beta cell autoimmunity remain largely undefined. Accordingly, we compared the repertoire of CD8+ T cells infiltrating grafted and endogenous islets in diabetic nonobese diabetic mice. In endogenous islets, CD8+ T cells specific for an islet-specific glucose-6-phosphatase catalytic subunit-related protein derived peptide (IGRP206-214) were the most prevalent T cells. Similar CD8+ T cells dominated the early graft infiltrate but were expanded 6-fold relative to endogenous islets. Single-cell analysis of the TCR alpha and beta chains showed restricted variable gene usage by IGRP206-214-specific CD8+ T cells that was shared between the graft and endogenous islets of individual mice. However, as islet graft infiltration progressed, the number of IGRP206-214-specific CD8+ T cells decreased despite stable numbers of CD8+ T cells. These results demonstrate that recurrent beta cell autoimmunity is characterized by recruitment to the grafts and expansion of already prevalent autoimmune T cell clonotypes residing in the endogenous islets. Furthermore, depletion of IGRP206-214-specific CD8+ T cells by peptide administration delayed islet graft survival, suggesting IGRP206-214-specific CD8+ T cells play a role early in islet graft rejection but are displaced with time by other specificities, perhaps by epitope spread.  相似文献   

18.
Insulin, an autoantigen in type 1 diabetes, when administered mucosally to diabetes-prone NOD mice induces regulatory T cells (T(reg)) that protect against diabetes. Compared with protein, Ag encoded as DNA has potential advantages as a therapeutic agent. We found that intranasal vaccination of NOD mice with plasmid DNA encoding mouse proinsulin II-induced CD4+ T(reg) that suppressed diabetes development, both after adoptive cotransfer with "diabetogenic" spleen cells and after transfer into NOD mice given cyclophosphamide to accelerate diabetes onset. In contrast to prototypic CD4+ CD25+ T(reg), CD4+ T(reg) induced by proinsulin DNA were both CD25+ and CD25- and not defined by markers such as glucocorticoid-induced TNFR-related protein (GITR), CD103, or Foxp3. Intriguingly, despite induction of T(reg) and reduced islet inflammation, diabetes incidence in proinsulin DNA-treated mice was unchanged. However, diabetes was prevented when DNA vaccination was performed under the cover of CD40 ligand blockade, known to prevent priming of CTL by mucosal Ag. Thus, intranasal vaccination with proinsulin DNA has therapeutic potential to prevent diabetes, as demonstrated by induction of protective T(reg), but further modifications are required to improve its efficacy, which could be compromised by concomitant induction of pathogenic immunity.  相似文献   

19.
In the present study, we investigated the therapeutic potential of a selective S1P1 receptor modulator, ponesimod, to protect and reverse autoimmune diabetes in non-obese diabetic (NOD) mice. Ponesimod was administered orally to NOD mice starting at 6, 10, 13 and 16 weeks of age up to 35 weeks of age or to NOD mice showing recent onset diabetes. Peripheral blood and spleen B and T cell counts were significantly reduced after ponesimod administration. In pancreatic lymph nodes, B lymphocytes were increased and expressed a transitional 1-like phenotype. Chronic oral ponesimod treatment efficiently prevented autoimmune diabetes in 6, 10 and 16 week-old pre-diabetic NOD mice. Treatment withdrawal led to synchronized disease relapse. Ponesimod did not inhibit the differentiation of autoreactive T cells as assessed by adoptive transfer of lymphocytes from treated disease-free NOD mice. In addition, it did not affect the migration, proliferation and activation of transgenic BDC2.5 cells into the target tissue. However, ponesimod inhibited spreading of the T cell responses to islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP). Treatment of diabetic NOD mice with ponesimod induced disease remission. However, here again, upon treatment cessation, the disease rapidly recurred. This recurrence was effectively prevented by combination treatment with a CD3 antibody leading to the restoration of self-tolerance. In conclusion, treatment with a selective S1P1 modulator in combination with CD3 antibody represents a promising therapeutic approach for the treatment of autoimmune diabetes.  相似文献   

20.
In type 1 diabetes, cytokine action on beta cells potentially contributes to beta cell destruction by direct cytotoxicity, inducing Fas expression, and up-regulating class I MHC and chemokine expression to increase immune recognition. To simultaneously block beta cell responsiveness to multiple cytokines, we overexpressed suppressor of cytokine signaling-1 (SOCS-1). This completely prevented progression to diabetes in CD8(+) TCR transgenic nonobese diabetic (NOD) 8.3 mice without affecting pancreas infiltration and partially prevented diabetes in nontransgenic NOD mice. SOCS-1 appeared to protect at least in part by inhibiting TNF- and IFN-gamma-induced Fas expression on beta cells. Fas expression was up-regulated on beta cells in vivo in prediabetic NOD8.3 mice, and this was inhibited by SOCS-1. Additionally, IFN-gamma-induced class I MHC up-regulation and TNF- and IFN-gamma-induced IL-15 expression by beta cells were inhibited by SOCS-1, which correlated with suppressed 8.3 T cell proliferation in vitro. Despite this, 8.3 T cell priming in vivo appeared unaffected. Therefore, blocking beta cell responses to cytokines impairs recognition by CD8(+) T cells and blocks multiple mechanisms of beta cell destruction, but does not prevent T cell priming and recruitment to the islets. Our findings suggest that increasing SOCS-1 expression may be useful as a strategy to block CD8(+) T cell-mediated type 1 diabetes as well as to more generally prevent cytokine-dependent tissue destruction in inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号