首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antiviral role of RNA interference (RNAi) in humans remains to be better understood. In RNAi, Ago2 proteins and microRNAs (miRNAs) or small interfering RNAs (siRNAs) form endonucleolytically active complexes which down-regulate expression of target mRNAs. P-bodies, cytoplasmic centers of mRNA decay, are involved in these pathways. Evidence exists that hepatitis C virus (HCV) utilizes host cellular RNAi machinery, including miRNA-122, Ago1-4, and Dicer proteins for replication and viral genome translation in Huh7 cells by, so far, nebulous mechanisms. Conversely, synthetic siRNAs have been used to suppress HCV replication. Here, using a combination of biochemical, transfection, confocal imaging, and digital image analysis approaches, we reveal that replication of HCV RNA depends on recruitment of Ago2 and miRNA-122 to lipid droplets, while suppression of HCV RNA by siRNA and Ago2 involves interaction with P-bodies. Such partitioning of Ago2 proteins into different complexes and separate subcellular domains likely results in modulation of their activity by different reaction partners. We propose a model in which partitioning of host RNAi and viral factors into physically and functionally distinct subcellular compartments emerges as a mechanism regulating the dual interaction of cellular RNAi with HCV RNA.  相似文献   

2.
The JFH-1 strain of hepatitis C virus (HCV) is a genotype 2a strain that can replicate autonomously in Huh7 cells. The J6 strain is also a genotype 2a strain, but its full genomic RNA does not replicate in Huh7 cells. However, chimeric J6/JFH-1 RNA that has J6 structural-protein-coding regions and JFH-1 nonstructural-protein-coding regions can replicate autonomously and produce infectious HCV particles. In order to determine the mechanisms underlying JFH-1 RNA replication, we constructed various J6/JFH-1 chimeras and tested their RNA replication and virus particle production abilities in Huh7 cells. Via subgenomic-RNA-replication assays, we found that both the JFH-1 NS5B-to-3'X (N5BX) and the NS3 helicase (N3H) regions are important for the replication of the J6CF replicon. We applied these results to full-length genomic RNA replication and analyzed replication using Northern blotting. We found that a chimeric J6 clone with JFH-1 N3H and N5BX could replicate autonomously but that a chimeric J6 clone with only JFH-1 N5BX had no replication ability. Finally, we tested the virus production abilities of these clones and found that a chimeric J6 clone with JFH-1 N3H and N5BX could produce infectious HCV particles. In conclusion, the JFH-1 NS3 helicase and NS5B-to-3'X regions are important for efficient replication and virus particle formation of HCV genotype 2a strains.  相似文献   

3.
Lai JN  Wang OY  Lin VH  Liao CF  Tarng DC  Chien EJ 《Steroids》2012,77(10):1017-1024
Progesterone is an endogenous immunomodulator that is able to suppress T cell activation during pregnancy. An increased intracellular free calcium concentration ([Ca(2+)](i)), acidification, and an inhibition of Na(+)/H(+)-exchange 1 (NHE1) are associated with this progesterone rapid non-genomic response that involves plasma membrane sites. Such acidification, when induced by phytohemagglutinin, is calcium dependent in PKC down-regulated T cells. We investigated the relationship between this rapid response involving the [Ca(2+)](i) increase and various membrane progesterone receptors (mPRs). In addition, we explored whether the induction of acidification in T cells by progesterone is a direct result of the [Ca(2+)](i) increase. The results show that the intracellular calcium elevation caused by progesterone is inhibited by SKF96365, U73122, and 2-APB, but not by pertussis toxin or U73343. The elevation is enhanced by the protein tyrosine kinase inhibitor staurosporine and the protein kinase C inhibitors Ro318220 and Go6983. These findings suggest that progesterone does not stimulate the [Ca(2+)](i) increase via the Gi coupled mPR(α). Furthermore, progesterone-induced acidification was found to be dependent on Ca(2+) entry and blocked by the inorganic channel blocker, Ni(2+). However, BAPTA, an intracellular calcium chelator, was found to prevent progesterone-induced acidification but not the inhibition of NHE1. This implies that acidification by progesterone is a direct result of the [Ca(2+)](i) increase and does not directly involve NHE1. Taken together, further investigations are needed to explore whether one or more mPRs or PGRMC1 are involved in bringing about the T cell rapid response that results in the [Ca(2+)](i) increase and inhibition of NHE1.  相似文献   

4.
We have investigated a new mechanism by which epidermal growth factor (EGF) increases intracellular Ca(2+) ([Ca(2+)](i)) in Rat-2 fibroblasts. EGF induced a transient increase of [Ca(2+)](i), and sustained Ca(2+) increase disappeared in the absence of extracellular Ca(2+). However, EGF had no effect on the formation of inositol phosphates. Expression of N17Rac or scrape-loading of C3 transferase blocked the elevation of [Ca(2+)](i) by EGF, but not by lysophosphatidic acid (LPA). EGF increased intracellular H(2)O(2), with a maximal increase at 5 min, which was blocked by catalase, scrape-loading of C3 transferase, or expression of N17Rac. H(2)O(2) scavengers, catalase and N-acetyl-L-cysteine, also blocked the Ca(2+) response to EGF, but not to LPA. In the presence of EGTA, preincubation with EGF completely inhibited subsequent Ca(2+) response to extracellular H(2)O(2) and vice versa. Incubation with EGF or phosphatidic acid abolished subsequent elevation of [Ca(2+)](i) by phosphatidic acid or EGF, respectively. Furthermore, preincubation with LPA inhibited the subsequent Ca(2+) response to EGF, but not vice versa. These results suggested that intracellular H(2)O(2) regulated by Rac and RhoA, but not inositol phosphates, was responsible for the EGF-stimulated elevation of [Ca(2+)](i). It was also suggested that EGF cross talked with LPA in the regulation of [Ca(2+)](i) by producing intracellular H(2)O(2).  相似文献   

5.
Intraneuronal calcium ([Ca(2+)](i)) regulation is altered in aging brain, possibly because of the changes in critical Ca(2+) transporters. We previously reported that the levels of the plasma membrane Ca(2+)-ATPase (PMCA) and the V(max) for enzyme activity are significantly reduced in synaptic membranes in aging rat brain. The goal of these studies was to use RNA(i) techniques to suppress expression of a major neuronal isoform, PMCA2, in neurons in culture to determine the potential functional consequences of a decrease in PMCA activity. Embryonic rat brain neurons and SH-SY5Y neuroblastoma cells were transfected with in vitro--transcribed short interfering RNA or a short hairpin RNA expressing vector, respectively, leading to 80% suppression of PMCA2 expression within 48 h. Fluorescence ratio imaging of free [Ca(2+)](i) revealed that primary neurons with reduced PMCA2 expression had higher basal [Ca(2+)](i), slower recovery from KCl-induced Ca(2+) transients, and incomplete return to pre-stimulation Ca(2+) levels. Primary neurons and SH-SY5Y cells with PMCA2 suppression both exhibited significantly greater vulnerability to the toxicity of various stresses. Our results indicate that a loss of PMCA such as occurs in aging brain likely leads to subtle disruptions in normal Ca(2+) signaling and enhanced susceptibility to stresses that can alter the regulation of Ca(2+) homeostasis.  相似文献   

6.
Hepatitis C virus (HCV) RNA synthesis takes place on a detergent resistant membrane (DRM) structure. To identify potential cellular proteins related to HCV replication complexes (RC), we purified DRMs from HCV subgenomic replicon cells and its parental Huh7 cells. The proteins of DRM fractions were separated by two-dimensional gel electrophoresis and identified by mass spectrometry. Comparing with parental Huh7 cells, 60 proteins were up-regulated while 14 proteins were down-regulated in HCV replicon cells. Ras-GTPase-activating protein binding protein 1 (G3BP1), one of the elevated proteins, was found to be associated with HCV NS5B and knockdown of G3BP1 by siRNA in HCV replicon cells significantly reduced HCV replication, which may indicate it a potential component of HCV RC. These results suggest that HCV viral gene and proteins may regulate the presence of host cellular proteins in DRM, ensure appropriate concentrations of replication components, and hence control the rates or efficiencies of HCV replication.  相似文献   

7.
Calcium ions (Ca(2+)) play an important role in mediating an array of structural and functional responses in cells. In hippocampal neurons, elevated glucocorticoid (GC) levels, as seen during stress, perturb calcium homeostasis and result in altered neuronal excitability and viability. Ligand- and voltage-gated calcium channels have been the presumed targets of hormonal regulation; however, circumstantial evidence has suggested the possibility that calcium extrusion might be an important target of GC regulation. Here we demonstrate that GC-induced repression of the plasma membrane Ca(2+)-ATPase-1 (PMCA1) is an essential determinant of intracellular Ca(2+) levels ([Ca(2+)](i)) in cultured hippocampal H19-7 cells. In particular, GC treatment caused a prolongation of agonist-evoked elevation of [Ca(2+)](i) that was prevented by the expression of exogenous PMCA1. Furthermore, selective inhibition of PMCA1 using the RNA interference technique caused prolongation of Ca(2+) transients in the absence of GC treatment. Taken together, these observations suggest that GC-mediated repression of PMCA1 is both necessary and sufficient to increase agonist-evoked Ca(2+) transients by down-regulating Ca(2+) extrusion mechanisms in the absence of effects on calcium channels. Prolonged exposure to GCs, resulting in concomitant accumulation of [Ca(2+)](i), is likely to compromise neuronal function and viability.  相似文献   

8.
Reactive oxygen species (ROS) contribute to cell damage during reperfusion of the heart. ROS may exert their effects partly by interfering with Ca(2+) homeostasis of the myocardium. The purpose of this study was to investigate the effects of hydrogen peroxide (H(2)O(2)) on Ca(2+) accumulation during reoxygenation of isolated adult rat cardiomyocytes exposed to 1 h of hypoxia and to relate the effects to possible changes in release of lactate dehydrogenase (LDH), free intracellular Ca(2+) ([Ca(2+)](i)) and Mg(2+)([Mg(2+)](i)), and mitochondrial membrane potential (Deltapsim). Cell Ca(2+) was determined by (45)Ca(2+) uptake. Free [Mg(2+)](i) and [Ca(2+)](i) and Deltapsim were measured by flow cytometry. Reoxygenation-induced Ca(2+) accumulation was attenuated by 23 and 34% by 10 and 25 microM H(2)O(2), respectively, added at reoxygenation. H(2)O(2) at 100 and 250 microM increased cell Ca(2+) by 50 and 83%, respectively, whereas 500 microM H(2)O(2) decreased cell Ca(2+) by 20%. H(2)O(2) at (25 microM) reduced LDH release and [Mg(2+)](i) and increased Deltapsim, indicating cell protection, whereas 250 microM H(2)O(2) increased LDH release and [Mg(2+)](i) and decreased Deltapsim, indicating cell damage. Clonazepam (100 microM) attenuated the increase in Ca(2+) accumulation, the elevation of [Ca(2+)](i), and the decrease in Deltapsim induced by 100 and 250 microM H(2)O(2) during reoxygenation. We report for the first time that 25 microM H(2)O(2) attenuates Ca(2+) accumulation, LDH release, and dissipation of Deltapsim during reoxygenation of hypoxic cardiomyocytes, indicating cell protection.  相似文献   

9.
10.
Hydrogen sulfide (H(2)S), an endogenous gaseous mediator, has been shown to exert protective effects against damage to different organs in the human body caused by various stimuli. However, the potential effects of H(2)S on hypoxia-induced neuronal apoptosis and its mechanisms remain unclear. Here, we exposed mouse hippocampal neurons to hypoxic conditions (2% O(2), 5% CO(2) and 93% N(2) at 37°C) to establish a hypoxic cell model. We found that 4-h hypoxia treatment significantly increased intracellular reactive oxygen species (ROS) levels, and pretreatment with NaHS (a source of H(2)S) for 30min suppressed hypoxia-induced intracellular ROS elevation. The hypoxia treatment significantly increased cytosolic calcium ([Ca(2+)](i)), and pretreatment with NaHS prevented the increase in [Ca(2+)](i). Additionally, polyethylene glycol (PEG)-catalase (a H(2)O(2) scavenger) but not PEG-SOD (an O(2)(-) scavenger) conferred an inhibitory effect similar to H(2)S on the hypoxia-induced increase in [Ca(2+)](i). Furthermore, we found that pretreatment with NaHS could significantly inhibit hypoxia-induced neuronal apoptosis, which was also inhibited by PEG-catalase or the inositol 1,4,5-triphosphate (IP(3)) receptor blocker xestospongin C. Taken together, these findings suggest that H(2)S inhibits hypoxia-induced apoptosis through inhibition of a ROS (mainly H(2)O(2))-activated Ca(2+) signaling pathway in mouse hippocampal neurons.  相似文献   

11.
The liver-specific microRNA miR-122 has been shown to be required for the replication of hepatitis C virus (HCV) in the hepatoma cell line Huh7. The aim of this study was to test if HCV replication can be modulated by exogenously expressed miR-122 in human embryonic kidney epithelial cells (HEK-293). Our results demonstrate that miR-122 enhances the colony formation efficiency of the HCV replicon and increases the steady-state level of HCV RNA in HEK-293 cells. Therefore, we conclude that although miR-122 is not absolutely required, it greatly enhances HCV replication in nonhepatic cells.  相似文献   

12.
The Na(+)/Ca(2+) exchanger (NCX) in plasma membranes either moves Ca(2+) out of (forward mode) or into (reverse mode) cells depending on the electrochemical gradient of these ions across the membrane. In this report, we characterize the sources responsible for the elevation in [Ca(2+)](i) elicited by reverse mode NCX activity. The elevation in [Ca(2+)](i) elicited by reverse mode NCX activity was significantly diminished by thapsigargin. KB-R7943 could only partially suppress the [Ca(2+)](i) change. Measurement of the [Ca(2+)](i) concurrent with reverse mode NCX current by perforated whole-cell patch showed that elevation in [Ca(2+)](i), but not the current, was inhibited by thapsigargin. The change in [Ca(2+)](i) response elicited by nicotinic acetylcholine receptor agonist was inhibited by thapsigargin. These suggest the importance of intracellular Ca(2+) stores in facilitating the [Ca(2+)](i) elevation elicited by reverse mode NCX activity under physiological condition.  相似文献   

13.
C J Jen  S J Jhiang  H I Chen 《Journal of applied physiology》2000,89(4):1657-62; discussion 1656
To study the effects of flow on in situ endothelial intracellular calcium concentration ([Ca(2+)](i)) signaling, rat aortic rings were loaded with fura 2, mounted on a tissue flow chamber, and divided into control and flow-pretreated groups. The latter was perfused with buffer at a shear stress of 50 dyns/cm(2) for 1 h. Endothelial [Ca(2+)](i) responses to ACh or shear stresses were determined by ratio image analysis. Moreover, ACh-induced [Ca(2+)](i) elevation responses were measured in a calcium-free buffer, or in the presence of SKF-96365, to elucidate the role of calcium influx in the flow effects. Our results showed that 1) ACh increased endothelial [Ca(2+)](i) in a dose-dependent manner, and these responses were incremented by flow-pretreatment; 2) the differences in ACh-induced [Ca(2+)](i) elevation between control and flow-pretreated groups were abolished by SKF-96365 or by Ca(2+)-free buffer; and 3) in the presence of 10(-5) M ATP, shear stress induced dose-dependent [Ca(2+)](i) elevation responses that were not altered by flow-pretreatment. In conclusion, flow-pretreatment augments the ACh-induced endothelial calcium influx in rat aortas ex vivo.  相似文献   

14.
The parotid glands are highly active secretory systems subjected to continuous stress, which in turn, can lead to several pathophysiological conditions. Damage of the parotid glands are caused by radical oxygen species (ROS) as by-products of oxygen metabolism. This study investigated the effect of hydrogen peroxide (H(2)O(2)) on Carbachol (CCh)-evoked secretory responses and caspase-3 activity in the isolated rat parotid gland to understand the role of oxidative stress on the function of the gland. Amylase secretion, cytosolic calcium concentration ([Ca(2+)](i)) and caspase-3 activity in parotid gland tissue were measured using fluorimetric methods. H(2)O(2) had little or no effect on amylase secretion compared to basal level. Combining H(2)O(2) with CCh resulted in an attenuation of the CCh-evoked amylase secretion compared to the effect of CCh alone. CCh can evoke a large increase in [Ca(2+)](i) comprising an initial peak followed by a plateau. In a Ca(2+)-free medium containing 1 mM EGTA, CCh evoked only the initial peak of [Ca(2+)](i). H(2)O(2) alone evoked a gradual and dose-dependent increase in [Ca(2+)](i). Combining H(2)O(2) with CCh resulted in a decrease in [Ca(2+)](i) compared to the effect of CCh alone. In a Ca(2+)-free medium, H(2)O(2) still evoked a small increase in [Ca(2+)](i), but this response was less compared to the results obtained with H(2)O(2) in normal [Ca(2+)](0). Combining H(2)O(2) with CCh resulted in only a small transient increase in [Ca(2+)](i). Following CCh stimulation, H(2)O(2) application resulted in a large increase in [Ca(2+)](i) in normal [Ca(2+)](0). This effect of H(2)O(2) was partially abolished in a nominally free Calcium medium containing EGTA. H(2)O(2) can stimulate caspase-3 activity in parotid gland tissue. Similar response was obtained with betulinic acid and thapsigargin (TPS) on caspase-3 activity compared to basal. The results have demonstrated that like CCh, H(2)O(2) can also mobilise Ca(2+) from intracellular stores and facilitate its influx into the cell from extracellular medium. This effect of H(2)O(2) may be due to its activity to induce apoptosis in the parotid gland, since H(2)O(2) can stimulate the activity of caspase-3, a marker of cellular apoptosis.  相似文献   

15.
We recently reported that Hepatitis C virus (HCV) RNA replication requires one or more geranylgeranylated host proteins. Using a combination of [(3)H]mevalonate labeling, coimmunoprecipitation, and bioinformatic search, we identified a geranylgeranylated host protein required for HCV RNA replication. This protein, FBL2, contains an F box domain and a CAAX motif (CVIL). It forms a stable immunoprecipitable complex with the HCV nonstructural protein 5A (NS5A). The association of FBL2 with NS5A requires the CAAX motif of FBL2, but not the F box. Deletion of the F box created a dominant-negative protein that inhibited replication of HCV RNA when overexpressed in Huh7-K2040 cells; this inhibition was overcome by coexpression of NS5A. siRNA-mediated knockdown of FBL2 mRNA by 70% in Huh7-HP cells reduced HCV RNA by 65%; this reduction was overcome by expression of a cDNA encoding a wobble mutant of FBL2. The current data indicate that geranylgeranylated FBL2 binds to NS5A in a reaction crucial for HCV RNA replication.  相似文献   

16.
Specific inhibition of hepatitis C virus replication by cyclosporin A   总被引:13,自引:0,他引:13  
The difficulty in eradicating hepatitis C virus (HCV) infection is attributable to the limited treatment options against the virus. Recently, cyclosporin A (CsA), a widely used immunosuppressive drug, has been reported to be effective against HCV infection [J. Gastroenterol. 38 (2003) 567], although little is understood about the mechanism of its action against HCV. In this study, we investigated the anti-viral effects of CsA using an HCV replicon system. Human hepatoma Huh7 cells were transfected with an HCV replicon expressing a chimeric gene encoding a luciferase reporter and neomycin phosphotransferase (Huh7/Rep-Feo). Treatment of the Huh7/Rep-Feo cells with CsA resulted in suppression of the replication of the HCV replicon in a dose-dependent manner, with an IC50 of approximately 0.5 microg/ml. There were no changes in the rate of cell growth or viability, suggesting that the effect of CsA against HCV is specific and not due to cytotoxicity. In contrast, FK506, another immunosuppressive drug, did not suppress HCV replication. CsA did not activate interferon-stimulated gene responses, suggesting that its action is independent of that of interferon. In conclusion, CsA inhibits HCV replication in vitro specifically at clinical concentrations. Further defining its mode of action against HCV replication potentially may be important for identifying novel molecular targets to treat HCV infection.  相似文献   

17.
Genetic interactions between hepatitis C virus replicons   总被引:1,自引:0,他引:1       下载免费PDF全文
Evans MJ  Rice CM  Goff SP 《Journal of virology》2004,78(21):12085-12089
To investigate interactions between hepatitis C virus (HCV) RNA replication complexes, a system was developed to simultaneously select different HCV subgenomic replicons within the same cell. Transcomplementation of defective replicons was not observed, suggesting an isolated and independent nature of the HCV RNA replication complex. In contrast, a high level of competition between replicons was observed, such that the presence and increased fitness of one replicon reduced the capacity of a second one to stably replicate. These results suggest that at least one factor in Huh7 cells required for HCV RNA replication is limiting and saturable.  相似文献   

18.
We previously reported that nucleolin, a representative nucleolar marker, interacts with nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) through two independent regions of NS5B, amino acids 208 to 214 and 500 to 506. We also showed that truncated nucleolin that harbors the NS5B-binding region inhibited the RNA-dependent RNA polymerase activity of NS5B in vitro, suggesting that nucleolin may be involved in HCV replication. To address this question, we focused on NS5B amino acids 208 to 214. We constructed one alanine-substituted clustered mutant (CM) replicon, in which all the amino acids in this region were changed to alanine, as well as seven different point mutant (PM) replicons, each of which harbored an alanine substitution at one of the amino acids in the region. After transfection into Huh7 cells, the CM replicon and the PM replicon containing NS5B W208A could not replicate, whereas the remaining PM replicons were able to replicate. In vivo immunoprecipitation also showed that the W208 residue of NS5B was essential for its interaction with nucleolin, strongly suggesting that this interaction is essential for HCV replication. To gain further insight into the role of nucleolin in HCV replication, we utilized the small interfering RNA (siRNA) technique to investigate the knockdown effect of nucleolin on HCV replication. Cotransfection of replicon RNA and nucleolin siRNA into Huh7 cells moderately inhibited HCV replication, although suppression of nucleolin did not affect cell proliferation. Taken together, our findings strongly suggest that nucleolin is a host component that interacts with HCV NS5B and is indispensable for HCV replication.  相似文献   

19.
Dong JW  Zhu HF  Zhou ZN 《生理学报》2003,55(3):245-250
本文旨在研究Na+/H+交换以及Na+/Ca2 +交换对模拟缺血 /复灌引起的大鼠心肌细胞内游离钙水平变化的调节作用。分别利用模拟缺血液和正常台氏液对大鼠心肌细胞进行缺血 /复灌处理 ,在缺血期间分别应用Na+/H+交换抑制剂阿米洛利 (amiloride)、Na+/Ca2 +交换抑制剂NiCl2 以及无钙液 ,观察它们对细胞内游离Ca2 +浓度变化的影响。利用Zeiss LSM 5 10激光共聚焦显微镜检测、采集细胞内游离Ca2 +的指示剂Fluo 3 AM的荧光信号 ,计算出相对于正常(缺血前 )的相对荧光强度 ,以表示胞内游离Ca2 +浓度的变化。结果显示 ,模拟缺血引起大鼠心肌细胞内游离Ca2 +持续上升 ,缺血前的相对荧光强度值为 10 0 % ,模拟缺血 5min后为 140 3± 13 0 % (P <0 0 5 ) ,复灌 15min后为 142 8±15 5 % (P <0 0 5 )。经 10 0 μmol/Lamiloride、5mmol/LNiCl2 和无钙液分别预处理 ,模拟缺血 5min后的相对荧光强度分别为 10 1 4± 16 3 % (P <0 0 5 )、110 4± 11 1% (P <0 0 5 )和 10 7 1± 10 8(P <0 0 5 ) ;复灌 15min后则分别为 97 8±14 3 % (P <0 0 5 )、10 6 2± 14 5 % (P <0 0 5 )和 10 6 6± 15 7(P <0 0 5 )。另外 ,与对照组细胞相比 ,再灌注期间NiCl2和无钙液处理的细胞钙振荡的产生幅度明显减弱 ,amilorid  相似文献   

20.
A unique hepatitis C virus (HCV) strain JFH-1 has been shown to replicate efficiently in cell culture with production of infectious HCV. We previously developed a DNA expression system containing HCV cDNA flanked by two self-cleaving ribozymes to generate HCV particles in cell culture. In this study, we produced HCV particles of various genotypes, including 1a (H77), 1b (CG1b), and 2a (J6 and JFH-1), in the HCV-ribozyme system. The constructs also contain the secreted alkaline phosphatase gene to control for transfection efficiency and the effects of culture conditions. After transfection into the Huh7-derived cell line Huh7.5.1, continuous HCV replication and secretion were confirmed by the detection of HCV RNA and core antigen in the culture medium. HCV replication levels of strains H77, CG1b, and J6 were comparable, whereas the JFH-1 strain replicates at a substantially higher level than the other strains. To evaluate the infectivity in vitro, the culture medium of JFH-1-transfected cells was inoculated into naive Huh7.5.1 cells. HCV proteins were detected by immunofluorescence 3 days after inoculation. To evaluate the infectivity in vivo, the culture medium from HCV genotype 1b-transfected cells was inoculated into a chimpanzee and caused a typical course of HCV infection. The HCV 1b propagated in vitro and in vivo had sequences identical to those of the HCV genomic cDNA used for cell culture transfection. The development of culture systems for production of various HCV genotypes provides a valuable tool not only to study the replication and pathogenesis of HCV but also to screen for antivirals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号