首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the dendritic patterns of rapid Golgi-impregnated, highly similar multipolar neurons from two functionally different thalamic regions of the rat brain: two dorsal nuclei (the nucleus laterodorsalis thalami, pars dorsomedialis and the nucleus laterodorsalis thalami, pars ventrolateralis), and two ventral nuclei (the nucleus ventrolateralis thalami and the nucleus ventromedialis thalami). The analysis involved conventional morphometric parameters (height and size) and a new parameter derived from graph theory, the relative imbalance (RI), derived from the branching patterns of the dendrites, which permits quantitative characterization of the dendritic arborization of a neuron. On this basis, neurons can be grouped into three fundamentally different types: type A, or highly-polarized (imbalanced) neurons (RI values close to 1); type B, or medium-polarized neurons (RI values around 0.5); and type C, or balanced neurons with low polarization (RI values close to 0). The orientations of the dendritic arbor, and thus the receptive fields, of the dorsal and ventral thalamic neurons, were mutually perpendicular. The H and S values indicated that the neurons in the dorsal and ventral thalamic nuclei differed significantly. However, their RI values demonstrated that they were similar neurons of type B. Our data reveal that 1 ) the dendritic arbor cannot be reliably characterized purely on the basis of height and size, and 2) RI is a valuable morphometric parameter that identifies the true nature of the dendritic arborization.  相似文献   

2.
Neurons in the anterior ventral (AV) thalamic nucleus of human adults were impregnated by Golgi-Kopsch impregnation method. Results showed that at least three morphological types of neurons could be recognized in the human AV thalamic nucleus. Type I neurons were medium to large with rich dendritic arborization. Both tufted and radiating dendritic branching patterns were seen in almost every neuron of this type. Only the initial axonal segments of these cells were impregnated suggesting that these axons were heavily myelinated. Type II neurons were medium in size with poor to moderate dendritic arborization. Many of these cells possess a few dendritic grape-like appendages. Long segments (up to 300 μm) of their axons were impregnated suggesting that these axons were either unmyelinated or thinly myelinated. These axons change their direction and form loops very often. No local branches were seen for these axons suggesting that they could be projection axons. Type III neurons were small with only one or two dendrites with poor arborization. No axons for these cells were seen in this study. The three neuronal types in the human AV thalamic nucleus were compared with neuronal types already described in other thalamic nuclei of human and non-human species. The results of this study might provide a morphological basis for further electrophysiological and / or pathological studies.  相似文献   

3.
Summary Neurons displaying a thalamo-cortical projection were marked by means of the retrograde transport of horseradish peroxidase (HRP), and the labeled elements were compared with neurons impregnated by the Golgi technique. Injections of HRP into the posterior area of the limbic cortex resulted in its uptake by various anterior thalamic nuclei, especially the anteroventral nucleus. HRP-positive cells are characterized by their position, dendritic orientation, and the shape and size of their somata. On the basis of the combined HRP- and Golgi-analysis three different types of thalamo-cortical relay neurons can be distinguished.  相似文献   

4.
The intracellular activity of pyramidal tract neurons was studied during electrical stimulation of ventrolateral and ventroposterolateral thalamic nuclei in acute experiments on cats immobilized by myorelaxants. Somatic action potentials were observed and spontaneous spikes were also produced by single and rhythmic stimulation of the thalamic nuclei at the rate of 8–14 Hz, by iontophoretic application of strychnine, and by intracellular depolarizing current pulses. These potentials had a relatively low and variable amplitude of 5–60 mV and are presumed to be dendritic action potentials. It is postulated that these variable potentials arise in the dendrites of pyramidal neurons with multiple zones generating such activity. No interaction was observed where somatic and dendritic action potentials occur simultaneously. The possible functional role of dendritic action potentials is discussed.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 435–443, July–August, 1986.  相似文献   

5.
Evoked potentials arising in the motor cortex in response to its direct stimulation (dendritic and slow negative potentials), to stimulation of the ventrolateral (primary response) and intralaminar (nonspecific response) thalamic nuclei, and to stimulation of the pyramidal tracts (antidromic response), and also postsynaptic responses of neurons corresponding to them were studied in acute experiments on curarized cats. Evoked potentials arising in response to direct cortical stimulation and also to stimulation of the specific and nonspecific thalamic nuclei and pyramidal tracts were recorded from the same point of the motor cortex, and the corresponding intracellular responses were recorded from the same neuron. Slow negative potentials arising under these conditions of stimulation and the IPSPs corresponding to them were shown to have an identical time course. The results show that slow negative potentials are a reflection of hyperpolarization of pyramidal neurons. It is suggested that the individual components of responses evoked by direct stimulation of the cortex and thalamic nuclei have a common genesis.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 115–121, March–April, 1982.  相似文献   

6.
A comparative analysis of monosynaptic afferent and efferent connections of callosal neurons and target neurons of transcallosal fibers with neurons of the specific ipsilateral thalamic nuclei (ventral posterolateral, ventral posteromedial, ventral lateral, and anteroventral) was undertaken on the sensomotor cortex of unanesthetized rabbits, using an electrophysiological method. Differences were demonstrated between callosal neurons and target neurons of transcallosal fibers with respect to monosynaptic inputs from the thalamic nuclei and pathways proceeding toward these structures and (or) entering the pyramidal tract. Among target neurons, compared with callosal neurons, more cells had descending projections (54 and 14%, respectively). Monosynaptic action potentials arose in 22% of target neurons in response to stimulation of specific thalamic nuclei, whereas no such responses occurred in callosal neurons. Projections of target neurons into thalamic nuclei were shown to be formed both by independent fibers and by axon collaterals of the pyramidal tract. It is postulated that the distinctive properties thus discovered indicate significantly greater convergence of influence of thalamic relay neurons on the target neurons; this determines differences known to exist in characteristics of receptive fields and spontaneous and evoked activity of callosal neurons, on the one hand, and of neurons excited synaptically by transcallosal stimulation, on the other hand.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 305–314, May–June, 1985.  相似文献   

7.
The physiological and pharmacological properties of thalamocortical neurons, identified by electrical antidromic stimulation of the frontoparietal cortex, were studied in the ventrobasal and ventrolateral thalamic nuclei in urethane anaesthetized rats. The spontaneous activity and conduction velocity of these neurons were similar in both nuclei. At both sites, thalamocortical neurons could be excited through iontophoretic application of acetylcholine and muscarinic or nicotinic agonists. Despite the known differences in thalamic organization of the two species, these properties are quite similar to those described in cat by other authors.  相似文献   

8.
Distribution of immunoreactivity (IR) to Ca-binding proteins (CaBPr) (calbindin, Calb, parvalbumin, Parv., and calretinin, Calr) was studied in the thalamus of the Central Asian terrestrial turtles (Testudo horsfieldi) and fresh water turtles (Emys orbicularis). There has been established a wide spread of these proteins, which combines overlapping and a relative alternation of distribution of different CaBPr in individual nuclei. A comparison of IR was made in two relay nuclei of the visual system, GLd and Rot. Both nuclei had IR to all CaBPr, but with different degree of intensity. In the terrestrial turtles, the amounts of Calb-, Parv-, and Calr-IR neurons in the cellular plate of the GLd were close. In this plate and in the neuropil part of this nucleus there was observed CaBPr-innervation of various density. Calr-IR neurons in the GLd of the fresh water turtles dominated over Parv- and Calb-IR neurons, whose detection varied significantly. In Rot, a clear predominance of Calb-IR neurons was shown over Parv- and Calr-IR cells by constancy of their detection, the number (1.5–2-fold higher), and intensity of the immune label, as well as the highest density of Calb and Parv innervation. The character of IR in the Rot was similar in the both turtle species. In the auditory and somatic relay thalamic nuclei and in the non-sensory anterior thalamic nuclei (Dma, Dla) there were present neurons and terminals with IR to all CaBPr without any predominance of Parv-IR in the relay nuclei and Calb-IR in the anterior thalamic nuclei. The constant and characteristic feature of Enta in the turtles of both species is a dense population of Parv-IR neurons, whose topography and cellular composition coincide with those of population of GABA-IR neurons in this nucleus. The data obtained have shown that the alternative presence of different CaBPr in the relay sensory and non-sensory thalamic nuclei, which has been established as a characteristic feature of the mammalian thalamus, is not characteristic at all of turtles. It seems that in the course of evolution there occurred a reorganization of distribution of different CaBPr in thalamic nuclei of amniotes due to changes of their functional loading. The reptilian thalamic sensory relay nuclei are likely to be represented mainly by less specific parts comparable with Calb-IR matrix of specific nuclei in the higher amniotes (mammals), while their more specialized (core) Parv-IR regions are formed later in evolution. Therefore, the distribution of Parv- and Calb-IR neurons in the turtle thalamic nuclei cannot be a criterion at evaluation of homology of thalamic nuclei in amniotes, but permits judging about the degree of their specialization.  相似文献   

9.
The reactions of 288 neurons of the orbitofrontal cortex (OFC) to stimulation of the posteroventral (VP), ventral anterior (VA), and reticular (R) nuclei, as well as the median center (CM) of the thalamus, were investigated in acute experiments on cats. OFC neurons can be divided into four groups by their reactions to stimulation of thalamic nuclei: 1) those which respond with an increase in the frequency of the discharges to single and serial stimuli with a frequency of up to 20/sec; 2) those which respond doubtfully to single stimuli with a frequency of 4–12/sec; 3) those which respond with inhibition of the background impulses; 4) those which do not respond to stimulation of the nuclei. Stimulation of the thalamic nuclei evoked responses of OFC neurons with a large scatter of the latent period duration. The responses of neurons to stimulation of the VP (mean latent period 19.1±6.1 msec) had the shortest latent period (sometimes less than 3–4 msec). Reactions with a longer latent period developed upon stimulation of the VA (23.8±7.4 msec) and CM (42.8±12.8 msec). The uniqueness of the links of the OFC with the various optic thalamic nuclei is shown in an analysis of the material obtained and possible methods of the activation of the neurons of this region from thalamic structures are discussed.State Medical Institute, Kemerovo. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 350–358, July–August, 1971.  相似文献   

10.
It was shown that the rabbit sensorimotor cortex received afferent fibers from neurons located in the specific, nonspecific, and association thalamic nuclei using the retrograde axonal transport technique. The distribution, dimensions, and shape of the somata of relay neurons spread through the thalamic nuclei were analyzed. The total number of neurons sending out thalamo-sensorimotor-cortical fibers was calculated and the coordinates of loci with the highest density of these cells in each thalamic nucleus were identified. Multipolar and stellate cells with somata measuring 12–20 µm and 10–15 µm in diameter, respectively, prevailed amongst relay neurons. Amongst the specific nuclei, the majority of afferent fibers are sent out by the ventrolateral, ventral anterior, and anterior ventral nuclei. A comparable number of afferent fibers are sent out by the mediodorsal and paracentral nuclei; these split up among the association nuclei and paracentral nuclei, respectively. It is suggested that afferents from many different groups of thalamic nuclei are essential for the sensorimotor cortex to participate in thalamocortical interaction.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 87–94, January–February, 1987.  相似文献   

11.
Summary The cells of origin of afferent and efferent pathways of the lateral forebrain bundle were studied with the aid of the cobalt-filling technique. Ascending afferents originated from the lateral thalamic nucleus, central thalamic nucleus, posterior tuberculum and the cerebellar nucleus. They terminated in the anterior entopeduncular nucleus, amygdala and the striatum. Telencephalic projection neurons, which are related to the lateral forebrain bundle, were located mainly in the ventral striatum and the anterior entopeduncular nucleus, but were not so numerous in the dorsal striatum. Irrespective of their location, most of the neurons projecting axons into the lateral forebrain bundle had piriform or pyramidal perikarya. Long apical dendrites usually arborized in a narrow space, whereas widely arborizing secondary dendrites originated from short dendritic trunks. The other neurons that contributed to the lateral forebrain bundle were fusiform or multipolar cells. Striatal efferents terminated in the pretectal area and in the anterodorsal, anteroventral and posteroventral tegmental nuclei.  相似文献   

12.
New data on neural organization of the human thalamic parafascicular (CM-Pf) complex were revealed with microelectrode technique during 11 stereotaxic operations in alert diskinetic patients suffering from the tonic forms of spasmodic torticollis. The data were obtained as follows: the functional heterogeneity in cellular organization of the human CM-Pf thalamic nuclei and the existence of three (A, B and C) different types of neurons in these thalamic nuclei: with the irregular discharges (A-type, 18%); with short (10-20 ms) bursts characterised by unstable rhythmic 2-5 Hz pattern and by the low threshold Ca2+ dependent K+ conductance (B-type, 77%); with long-lasting (0.1-2.0 s) bursts of high-frequency trains and constant interburst intervals (C-type, 5%). The functional cerebral changes after motor test performances were shown to be accompanied by appearance of transient modifications of the background unit activity pattern and by tendency towards an increase of neural activity local synchronisation with some stabilising of oscillatory rhythm of discharging B-type neurons. For the first time, a direct relationship between functional characteristics of the human thalamic CM-Pf units and the motor deviations was found in spasmodic torticollis patients.  相似文献   

13.
1. Golgi-Kopsch preparations of the oral ventral nuclei of human thalamus were analyzed in an attempt to classify the neuronal types. 2. Three types of neurons are described for the first time in humans. Type I neurons are large or medium in size and bear dendrites with protrusions, spines, and short hair-like appendages. Some have a radiate dendritic arbor and others have dendrites grouped in tufts. The dendritic trees of these neurons are dense. 3. Type II neurons are medium or small in size with less dense dendritic trees. These cells have somatic as well as dendritic appendages of different forms. 4. Relatively rare is a type of very small neurons, type III, with few and sparsely branching dendrites.  相似文献   

14.
Structures in the limbic system are commonly thought to be similar in form and function in all mammalian brains. In the study reported here, two thalamic limbic nuclei, N. anterior principles and N. lateralis dorsalis, were compared among a group of extant of extant hominoids. The nuclear volumes, neuronal densities, number of neurons per nucleus, and volumes of neuronal perikarya were measured. Humans have much larger nuclei but the nuclei constitute a similar proportion of the whole thalamus as found in the other hominoids. Whereas the human limbic nuclei were observed to have a decrease in the densities of nerve cells compared with those of the other hominoids, this difference is less than that found in most other thalamic nuclei. Consequently the estimated number of neurons is much higher for humans. The total number of neurons best separates the human limbic nuclei from those of the other hominoids. This preliminary study suggests that during hominid evolution neurons were preferentially added to the limbic nuclei of the thalamus.  相似文献   

15.
Wang  B.  Gonzalo-Ruiz  A.  Sanz  J.M.  Campbell  G.  Lieberman  A.R. 《Brain Cell Biology》2002,30(5):427-441
The ultrastructural characteristics, distribution and synaptic relationships of identified, glutamate-enriched thalamocortical axon terminals and cell bodies in the retrosplenial granular cortex of adult rats is described and compared with GABA-containing terminals and cell bodies, using postembedding immunogold immunohistochemistry and transmission electron microscopy in animals with injections of cholera toxin- horseradish peroxidase (CT-HRP) into the anterior thalamic nuclei. Anterogradely labelled terminals, identified by semi-crystalline deposits of HRP reaction product, were approximately 1 μm in diameter, contained round, clear synaptic vesicles, and established asymmetric (Gray type I) synaptic contacts with dendritic spines and small dendrites, some containing HRP reaction product, identifying them as dendrites of corticothalamic projection neurons. The highest densities of immunogold particles following glutamate immunostaining were found over such axon terminals and over similar axon terminals devoid of HRP reaction product. In serial sections immunoreacted for GABA, these axon terminals were unlabelled, whereas other axon terminals, establishing symmetric (Gray type II) synapses were heavily labelled. Cell bodies of putative pyramidal neurons, containing retrograde HRP label, were numerous in layers V–VI; some were also present in layers I–III. Most were overlain by high densities of gold particles in glutamate but not in GABA immunoreacted sections. These findings provide evidence that the terminals of projection neurons make synaptic contact with dendrites and dendritic spines in the ipsilateral retrosplenial granular cortex and that their targets include the dendrites of presumptive glutamatergic corticothalamic projection neurons.  相似文献   

16.
17.
M Gioia  R Bianchi 《Acta anatomica》1992,144(2):127-134
A morphoquantitative analysis was carried out to clarify the cytoarchitectural organization of the paramedian pontine reticular formation (PPRF) which is considered to be an important site in the control of eye movements. The study was carried out on the cat, using the Golgi staining method. The topographic position and detailed structure of the neurons were demonstrated using morphoquantitative methods. On the basis of their neuronal arborization, fusiform neurons and two types of multipolar cells were identified. Fusiform neurons show dendrites which are given off from the two poles of the small- to medium-sized cell body. The arborization generally runs caudorostrally, ending inside the PPRF. These neurons are ubiquitous. Type 1 multipolar neurons, the most frequent elements of the neuronal population (60%), have a small- to large-sized cell body from which 2 or 3 primary spiny dendrites and the axon emerge. Their dendritic field is oval and generally oriented in the vertical plane. These neurons are scattered everywhere in the PPRF. Type 2 multipolar cells are large neurons endowed with numerous primary spiny dendrites constituting a wide round dendritic field and with a thick axon. They are located almost exclusively at the boundaries of the PPRF and preferentially in the caudal region. The characteristics of the neurons suggest that the fusiform cells may play an interneuronal role, while the multipolar neurons could have both a projective function and an important receptive role for the afferent fibers to the PPRF. The lack of homogeneity found among the multipolar neurons is in agreement with the variety of projective elements shown by functional investigations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We have used single-unit recording techniques to map the spatial distribution of the primary somatosensory (SI) cortical influences on thalamic somatosensory relay nuclei in the rat. A total of 193 microelectrode penetrations were made to record single neurons in tracks through the medial and lateral ventroposterior (VPL and VPM), ventrolateral (VL), posterior (Po), and reticular (nRt) thalamic nuclei. Single units were classified according to their (1) location within the nuclei, (2) receptive fields, and (3) response to standardized microstimulation in deep layers of the SI cortical forepaw areas. The SI stimulation produced short-latency (1- to 7-msec) excitatory responses in different percentages of neurons recorded in the following thalamic nuclei: VPL, 42.0%; Po, 25.0%; nRt, 16.4%; VL, 13.6%; and VPM, 9.9%. Within the VPL, the highest proportion of responsive neurons was found in the anterior region. Although most of the VL region was unresponsive, the caudal subregion bordering the rostral VPL showed some responsiveness (13.6% of neurons). In general, the spatial pattern of corticothalamic influences appeared to reciprocate the known thalamocortical connection patterns, but with a heterogeneity that was unpredicted.

The same parameters of SI cortical stimulation were used in studies of corticofugal modulation of afferent transmission through the VPL thalamus. A condition—test (C-T) paradigm was implemented in which the cortical stimulation (C) was delivered at a range of time intervals before test (T) mechanical vibratory stimulation was applied to digit 4 of the contralateral forepaw. The time course of cortical effects was analyzed by measuring the averaged evoked unit responses of thalamic neurons to the T stimuli, and plotting them as a function of C-T intervals from 5 to 50 msec. Of the 20 VPL neurons tested during SI stimulation, the average response to T stimulation was decreased a mean of 36%, with the suppression peaking (at 49% inhibition of the afferent response) about 15 msec after the C stimulus. Considerable rostrocaudal variation was observed, however. Whereas neurons in the rostral VPL (near VL) were strongly inhibited (-69%), neurons in the middle and caudal VPL exhibited facilitations at long and short C-T intervals, respectively. This study establishes a specific projection system from the forepaw region of SI cortex to different subregions of the VPL thalamus, producing specific temporal patterns of sensory modulation.  相似文献   

19.
Govindaiah  Cox CL 《Neuron》2004,41(4):611-623
Information gating through the thalamus is dependent on the output of thalamic relay neurons. These relay neurons receive convergent innervation from a number of sources, including GABA-containing interneurons that provide feed-forward inhibition. These interneurons are unique in that they have two distinct outputs: axonal and dendritic. In addition to conventional axonal outputs, these interneurons have presynaptic dendrites that may provide localized inhibitory influences. Our study indicates that synaptic activation of metabotropic glutamate receptors (mGluRs) increases inhibitory activity in relay neurons by increasing output of presynaptic dendrites of interneurons. Optic tract stimulation increases inhibitory activity in thalamic relay neurons in a frequency- and intensity-dependent manner and is attenuated by mGluR antagonists. Our data suggest that synaptic activation of mGluRs selectively alters dendritic output but not axonal output of thalamic interneurons. This mechanism could serve an important role in focal, feed-forward information processing in addition to dynamic information processing in thalamocortical circuits.  相似文献   

20.
We have used single-unit recording techniques to map the spatial distribution of the primary somatosensory (SI) cortical influences on thalamic somatosensory relay nuclei in the rat. A total of 193 microelectrode penetrations were made to record single neurons in tracks through the medial and lateral ventroposterior (VPL and VPM), ventrolateral (VL), posterior (Po), and reticular (nRt) thalamic nuclei. Single units were classified according to their (1) location within the nuclei, (2) receptive fields, and (3) response to standardized microstimulation in deep layers of the SI cortical forepaw areas. The SI stimulation produced short-latency (1- to 7-msec) excitatory responses in different percentages of neurons recorded in the following thalamic nuclei: VPL, 42.0%; Po, 25.0%; nRt, 16.4%; VL, 13.6%; and VPM, 9.9%. Within the VPL, the highest proportion of responsive neurons was found in the anterior region. Although most of the VL region was unresponsive, the caudal subregion bordering the rostral VPL showed some responsiveness (13.6% of neurons). In general, the spatial pattern of corticothalamic influences appeared to reciprocate the known thalamocortical connection patterns, but with a heterogeneity that was unpredicted. The same parameters of SI cortical stimulation were used in studies of corticofugal modulation of afferent transmission through the VPL thalamus. A condition-test (C-T) paradigm was implemented in which the cortical stimulation (C) was delivered at a range of time intervals before test (T) mechanical vibratory stimulation was applied to digit 4 of the contralateral forepaw. The time course of cortical effects was analyzed by measuring the averaged evoked unit responses of thalamic neurons to the T stimuli, and plotting them as a function of C-T intervals from 5 to 50 msec. Of the 20 VPL neurons tested during SI stimulation, the average response to T stimulation was decreased a mean of 36%, with the suppression peaking (at 49% inhibition of the afferent response) about 15 msec after the C stimulus. Considerable rostrocaudal variation was observed, however. Whereas neurons in the rostral VPL (near VL) were strongly inhibited (-69%), neurons in the middle and caudal VPL exhibited facilitations at long and short C-T intervals, respectively. This study establishes a specific projection system from the forepaw region of SI cortex to different subregions of the VPL thalamus, producing specific temporal patterns of sensory modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号