首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We demonstrate here the feasibility of antigen-specifically redirecting T cells against autoreactive T lymphocytes and thereby treating a model autoimmune disease. We created and transgenically expressed on T cells a heterodimeric chimeric receptor that genetically links an autoantigenic peptide, its restricting MHC, and the signal transduction domain of the T-cell receptor (TCR) zeta-chain. Engagement of the chimeric receptor by the TCR of autoreactive T cells activated the receptor-modified T cells in vitro and in vivo, inducing proliferation and cytolysis. Adoptively transferred receptor-modified T cells prevented and treated a model autoimmune disease, experimental allergic encephalomyelitis (EAE), even after epitope spreading had diversified the autoantigenic response. Treatment reduced disease severity and increased survival of affected animals, and was durable for >75 days. The receptor-modified cells acted both by strongly attenuating T-cell response to autoantigen as well as by shifting the residual response from an immunopathologic Th1 to a protective Th2 format.  相似文献   

3.
T-cell receptor (TCR) transgenic mice have proven useful for the study of various immune parameters. Despite this, it has been suggested that transferred T cells respond differently to their endogenous counterparts at least in terms of conversion to antigen-experienced populations bearing memory cell markers. Here, we have compared the response of TCR transgenic T cells to endogenous populations within the context of infection with herpes simplex virus. We found that adoptive transfer at numbers approaching those of the endogenous virus-specific subset results in a response with similar kinetics, magnitude and memory subset conversion. This suggests that this form of optimized T-cell transfer remains a useful means of tracking antiviral immune responses.  相似文献   

4.
Engagement of the T-cell receptor (TCR) triggers a series of signaling events that lead to the activation of T cells. HIP-55 (SH3P7 or mAbp1), an actin-binding adaptor protein, interacts with and is tyrosine phosphorylated by ZAP-70, which is a crucial proximal protein tyrosine kinase for TCR signaling. HIP-55 is important for JNK and HPK1 activation induced by TCR signaling. In this study, we report the generation and characterization of HIP-55 knockout mice. We found that HIP-55 knockout mice were viable and fertile but showed decreased body weight and increased occurrence of death within the first 4 weeks after birth. The lymphoid organs in HIP-55 knockout mice showed cellularity and T-cell development comparable to that of the wild-type mice. HIP-55 knockout T cells displayed defective T-cell proliferation, decreased cytokine production, and decreased up-regulation of the activation markers induced by TCR stimulation. TCR internalization was slightly increased in HIP-55 knockout T cells. These phenotypes were accompanied by reduced immune responses, including antigen-specific antibody production and T-cell proliferation in HIP-55 knockout mice. The TCR-induced signaling events, including LAT/phospholipase Cgamma1 phosphorylation and HPK1/JNK activation, were partially defective in HIP-55 knockout T cells. These results demonstrate the importance of HIP-55 as an adaptor protein in the TCR signaling and immune system.  相似文献   

5.
6.
The Src family kinase Lck is essential for T cell Ag receptor-mediated signaling. In this study, we report the effects of acute elimination of Lck in Jurkat TAg and primary T cells using RNA interference mediated by short-interfering RNAs. In cells with Lck knockdown (kd), proximal TCR signaling was strongly suppressed as indicated by reduced zeta-chain phosphorylation and intracellular calcium mobilization. However, we observed sustained and elevated phosphorylation of ERK1/2 in Lck kd cells 30 min to 2 h after stimulation. Downstream effects on immune function as determined by activation of a NFAT-AP-1 reporter, and TCR/CD28-stimulated IL-2 secretion were strongly augmented in Jurkat and primary T cells, respectively. As expected, overexpression of SHP-1 in Jurkat cells inhibited TCR-induced NFAT-AP-1 activation, but this effect could be overcome by simultaneous kd of Lck. Furthermore, acute elimination of Lck also suppressed TCR-mediated activation of SHP-1, suggesting the possible role of SHP-1 in a negative feedback loop originating from Lck. This report underscores Lck as an important mediator of proximal TCR signaling, but also indicates a suppressive role on downstream immune function.  相似文献   

7.
Ren F  Chen X  Hesketh J  Gan F  Huang K 《PloS one》2012,7(4):e35375
There is controversy in the literature over whether the selenium (Se) influences cellular immune responses, and the mechanisms possibly underlying these effects are unclear. In this study, the effects of Se on T-cell proliferation and IL-2 production were studied in primary porcine splenocytes. Splenocytes were treated with different mitogens in the presence of 0.5-4 μmol/L sodium selenite. Se significantly promoted T-cell receptor (TCR) or concanavalin A (ConA)-induced T-cell proliferation and IL-2 production but failed to regulate T-cell response to phytohemagglutinin (PHA). In addition, Se significantly increased the levels of cytosolic glutathione peroxidase (GPx1) and thioredoxin reductase 1 (TR1) mRNA, the activity of GPx1 and the concentration of reduced glutathione (GSH) in the unstimulated, or activated splenocytes. These results indicated that Se improved the redox status in all splenocytes, including unstimulated, TCR, ConA and PHA -stimulated, but only TCR and ConA-induced T-cell activation was affected by the redox status. N-acetylcysteine (NAC), a pharmacological antioxidant, increased T-cell proliferation and IL-2 production by TCR and ConA stimulated splenocytes but had no effect on the response to PHA in primary porcine splenocytes confirming that PHA-induced T-cell activation is insensitive to the redox status. We conclude that Se promotes GPx1 and TR1 expression and increases antioxidative capacity in porcine splenocytes, which enhances TCR or ConA -induced T-cell activation but not PHA-induced T-cell activation. The different susceptibilities to Se between the TCR, ConA and PHA -induced T-cell activation may help to explain the controversy in the literature over whether or not Se boosts immune responses.  相似文献   

8.
T-cell receptor (TCR) engagement initiates intracellular signalling cascades that lead to T-cell proliferation, cytokine production and differentiation into effector cells. These cascades comprise an array of protein-tyrosine kinases, phosphatases, GTP-binding proteins and adaptor proteins that regulate generic and specialised functions. The integration of these signals is essential for the normal development, homeostasis and function of T cells. Defects in a single mediator can produce T cells that are unable to participate fully in an immune response and/or that mount an inappropriate response, which leads to immunodeficiency, autoimmunity or leukaemia/lymphomas. This review highlights some of the key players in T-cell signalling and their involvement in the development of various clinical disease states. Some of these immune-specific signalling proteins are attractive potential targets in the development of therapies to augment T-cell responses to antigen or tumours, and to treat immune cell disorders.  相似文献   

9.
An effort was made to understand the role of the 57 kDa major antigenic fraction of Shigella outer membrane protein (OMP) in the presence of T-cell antigen receptor in activation of adaptive immune responses of the cell mediated immune (CMI) restored patients. The expression of HLA-DR/CD4 out of CD3+ T-cells was significantly dominant over the HLA-DR/CD8 and comparable to unstimulated cells of infected or healthy controls. CD4+ T-cell activation together with HLA-DR is associated with the expression of CD25+ (IL2Rα) for IL-2 growth factors with decreased IL-4 levels, required for maintaining the homeostasis of CD4+ T cell. Furthermore, the positive expression of the CD45 antigen is possibly required for acquiring the memory for CD4+ cells signals and facilitates the interaction with CD54 antigen. As a result, antigen-specific secondary signal is generated for B-cell activation to produce IgG2a and IgG2b. This suggests that antibody mediated-adaptive immune responses are generated due to anti-CD3 induced helper T-cell activity. The above mentioned findings reflect that the antigen alone might not exacerbate the selective T-cell responses. But these antigens in the presence of anti-CD3 antibody might help to elicit adaptive immune response via T-cell receptor (TCR) activation.  相似文献   

10.
11.
The molecular interactions between the T-cell receptor (TCR) and peptide-MHC (pMHC) have been elucidated in recent years. Nevertheless, the fact that binding of only slightly different ligands by a TCR, or ligation of the same pMHC at different developmental stages of the T cell, can have opposing consequences, continues to pose intellectual challenges. Kinetic proofreading models, which have at their core the dissociation rates of pMHC from the TCR, are best suited to account for these observations. However, T cells can be triggered by peptides with often minimal homology to the primary immunogenic peptide. This cross-reactivity of the TCR is manifest at several levels, from positive selection of immature thymocytes to homeostasis and antigen-cross- reactive immune responses of mature peripheral T cells. The implications of the high cross-reactivity of T-cell antigen recognition for self-tolerance and T-cell memory are discussed.  相似文献   

12.
We have performed a screen aimed at identifying human herpesvirus 6 (HHV-6)-encoded proteins that modulate immune recognition. Here we show that the U24 protein encoded by HHV-6 variant A downregulates cell surface expression of the T-cell receptor (TCR)/CD3 complex, a complex essential to T-cell activation and the generation of an immune adaptive response. In the presence of U24, the TCR/CD3 complex is endocytosed but is not recycled back to the plasma membrane. Instead, it accumulates in early and late endosomes. Interestingly, whereas CD3 downregulation from the cell surface is normally associated with T-cell activation, U24 downregulates CD3 independently of T-cell activation. Moreover, we found that U24-expressing T cells are resistant to activation by antigen-presenting cells. HHV-6 has evolved a unique mechanism of inhibition of T-cell activation that may impair the establishment of an adaptive immune response. Furthermore, lymphocyte activation creates an environment favorable to the reactivation and replication of lymphotropic herpesviruses. Thus, by inhibiting T-cell activation, HHV-6 might limit its reactivation and thus minimize immune recognition.  相似文献   

13.
The balance between positive and negative signals plays a key role in determining T cell function. CTL-associated Ag-4 is a surface receptor that can inhibit T cell responses induced upon stimulation of the TCR and its CD28 coreceptor. Little is known regarding the signaling mechanisms elicited by CTLA-4. In this study we analyzed CTLA-4-mediated inhibition of TCR signaling in primary resting human CD4(+) T cells displaying low, but detectable, CTLA-4 cell surface expression. CTLA-4 coligation with the TCR resulted in reduced downstream protein tyrosine phosphorylation of signaling effectors and a striking inhibition of extracellular signal-regulated kinase 1/2 activation. Analysis of proximal TCR signaling revealed that TCR zeta-chain phosphorylation and subsequent zeta-associated protein of 70 kDa (ZAP-70) tyrosine kinase recruitment were not significantly affected by CTLA-4 engagement. However, the association of p56(lck) with ZAP-70 was inhibited following CTLA-4 ligation, correlating with reduced actions of p56(lck) in the ZAP-70 immunocomplex. Moreover, CTLA-4 ligation caused the selective inhibition of CD3-mediated phosphorylation of the positive regulatory ZAP-70 Y319 site. In addition, we demonstrate protein tyrosine phosphatase activity associated with the phosphorylated CTLA-4 cytoplasmic tail. The major phosphatase activity was attributed to Src homology protein 2 domain-containing tyrosine phosphatase 1, a protein tyrosine phosphatase that has been shown to be a negative regulator of multiple signaling pathways in hemopoietic cells. Collectively, our findings suggest that CTLA-4 can act early during the immune response to regulate the threshold of T cell activation.  相似文献   

14.
The TCR complex signals through a set of 10 intracytoplasmic motifs, termed immunoreceptor tyrosine-based activation motifs (ITAMs), contained within the gamma-, delta-, epsilon-, and zeta-chains. The need for this number of ITAMs is uncertain. Limited and contradictory studies have examined the ability of subsets of the TCR's ITAMs to signal into postthymic primary T lymphocytes. To study signaling by a restricted set of ITAMs, we expressed in transgenic mice a chimeric construct containing the IAs class II MHC extracellular and transmembrane domains linked to the cytoplasmic domain of the TCR zeta-chain. Tyrosine phosphorylation and receptor cocapping studies indicate that this chimeric receptor signals T cells independently of the remainder of the TCR. We show that CD4+ and CD8+ primary T cells, as well as naive and memory T cells, are fully responsive to stimulation through the IAs-zeta receptor. Further, IAs-zeta stimulation can induce primary T cell differentiation into CTL, Th1, and Th2 type cells. These results show that the zeta-chain ITAMs, in the absence of the gamma, delta, and epsilon ITAMs, are sufficient for the activation and functional maturation of primary T lymphocytes. It also supports the isolated use of the zeta-chain ITAMs in the development of surrogate TCRs for therapeutic purposes.  相似文献   

15.
Mice immunized with respiratory syncytial virus (RSV) G glycoprotein or with formalin-inactivated RSV (FI-RSV) exhibit severe disease following RSV challenge. This results in type 2 cytokine production and pulmonary eosinophilia, both hallmarks of vaccine-enhanced disease. RSV G-induced T-cell responses were shown to be restricted to CD4(+) T cells expressing Vbeta14 in the T-cell receptor (TCR), and the deletion of these T cells resulted in less severe disease. We therefore examined the role of Vbeta14(+) T cells in FI-RSV-induced disease. BALB/c mice were immunized with vaccinia virus expressing secreted RSV G (vvGs) or with FI-RSV. At the time of challenge with live RSV, mice were injected with antibody to the Vbeta14 component of the TCR. vvGs-immunized mice treated with anti-Vbeta14 had reduced cytokine levels in the lung. Eosinophil recruitment to the lung was also significantly reduced. In contrast, depletion of Vbeta14(+) T cells in FI-RSV-immunized mice had little impact on cytokine production or pulmonary eosinophilia. An analysis of TCR Vbeta chain usage confirmed a bias toward Vbeta14 expression on CD4(+) T cells from vvGs-immunized mice, whereas the CD4(+) T cells in FI-RSV-immunized mice expressed a diverse array of Vbeta chains. These data show that although FI-RSV and vvGs induce responses resulting in similar immunopathology, the T-cell repertoire mediating the response is different for each immunogen and suggest that the immune responses elicited by RSV G are not the basis for FI-RSV vaccine-enhanced disease.  相似文献   

16.
Structural determinants of T-cell receptor bias in immunity   总被引:1,自引:0,他引:1  
Antigen-specific T-cell responses induced by infection, transplantation, autoimmunity or hypersensitivity are characterized by cells expressing biased profiles of T-cell receptors (TCRs) that are selected from a diverse, naive repertoire. Here, we review the evidence for these TCR biases, focusing on crystallographic analysis of the structural constraints that determine the binding of a TCR to its ligand and the persistence of certain TCRs in an immune repertoire. We discuss the ways in which diversity in a selected TCR repertoire can contribute to protective immunity and the implications of this for vaccine design and immunotherapy.  相似文献   

17.
18.

Background

T cell migration is essential for immune responses and inflammation. Activation of the T-cell receptor (TCR) triggers a migration stop signal to facilitate interaction with antigen-presenting cells and cell retention at inflammatory sites, but the mechanisms responsible for this effect are not known.

Methodology/Principal Findings

Migrating T cells are polarized with a lamellipodium at the front and uropod at the rear. Here we show that transient TCR activation induces prolonged inhibition of T-cell migration. TCR pre-activation leads to cells with multiple lamellipodia and lacking a uropod even after removal of the TCR signal. A similar phenotype is induced by expression of constitutively active Rac1, and TCR signaling activates Rac1. TCR signaling acts via Rac to reduce phosphorylation of ezrin/radixin/moesin proteins, which are required for uropod formation, and to increase stathmin phosphorylation, which regulates microtubule stability. T cell polarity and migration is partially restored by inhibiting Rac or by expressing constitutively active moesin.

Conclusions/Significance

We propose that transient TCR signaling induces sustained inhibition of T cell migration via Rac1, increased stathmin phosphorylation and reduced ERM phosphorylation which act together to inhibit T-cell migratory polarity.  相似文献   

19.
After initiation of antiretroviral therapy (ART), HIV loads and frequencies of HIV epitope-specific immune responses decrease. A diverse virus-specific T cell receptor (TCR) repertoire allows the host to respond to viral epitope diversity, but the effect of antigen reduction as a result of ART on the TCR repertoire of epitope-specific CD8(+) T cell populations has not been well defined. We determined the TCR repertoires of 14 HIV-specific CD8(+) T cell responses from 8 HIV-positive individuals before and after initiation of ART. We used multiparameter flow cytometry to measure the distribution of memory T cell subsets and the surface expression of PD-1 on T cell populations and T cell clonotypes within epitope-specific responses from these individuals. Post-ART, we noted decreases in the frequency of circulating epitope-specific T cells (P = 0.02), decreases in the number of T-cell clonotypes found within epitope-specific T cell receptor repertoires (P = 0.024), and an overall reduction in the amino acid diversity within these responses (P < 0.0001). Despite this narrowing of the T cell response to HIV, the overall hierarchy of dominant T cell receptor clonotypes remained stable compared to that pre-ART. CD8(+) T cells underwent redistributions in memory phenotypes and a reduction in CD38 and PD-1 expression post-ART. Despite extensive remodeling at the structural and phenotypic levels, PD-1 was expressed at higher levels on dominant clonotypes within epitope-specific responses before and after initiation of ART. These data suggest that the antigen burden may maintain TCR diversity and that dominant clonotypes are sensitive to antigen even after dramatic reductions after initiation of ART.  相似文献   

20.
恒定自然杀伤T细胞(iNKT)是T淋巴细胞的一个独特亚群,兼具自然杀伤(NK)细胞和T细胞特征,同时表达T细胞受体(TCR)和NK细胞表面标志。iNKT细胞被激活后,通过分泌细胞因子,活化其它免疫细胞参与先天性免疫和获得性免疫,在抗肿瘤免疫过程中发挥调节作用。在多种癌症患者体内,发现外周血中iNKT细胞的数量降低、功能减弱,进而导致临床治疗效果不佳。近年来,基础研究和早期临床试验结果表明,注射抗原递呈细胞或/和体外培养并活化的iNKT细胞,抗肿瘤免疫治疗效果显著。本文就iNKT细胞的分类及生物学特性,在肿瘤免疫治疗中的作用与其机制,以及其临床应用等进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号