首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Despite its key position in central metabolism, L-serine does not support the growth of Corynebacterium glutamicum. Nevertheless, during growth on glucose, L-serine is consumed at rates up to 19.4 +/- 4.0 nmol min(-1) (mg [dry weight])(-1), resulting in the complete consumption of 100 mM L-serine in the presence of 100 mM glucose and an increased growth yield of about 20%. Use of 13C-labeled L-serine and analysis of cellularly derived metabolites by nuclear magnetic resonance spectroscopy revealed that the carbon skeleton of L-serine is mainly converted to pyruvate-derived metabolites such as L-alanine. The sdaA gene was identified in the genome of C. glutamicum, and overexpression of sdaA resulted in (i) functional L-serine dehydratase (L-SerDH) activity, and therefore conversion of L-serine to pyruvate, and (ii) growth of the recombinant strain on L-serine as the single substrate. In contrast, deletion of sdaA decreased the L-serine cometabolism rate with glucose by 47% but still resulted in degradation of L-serine to pyruvate. Cystathionine beta-lyase was additionally found to convert L-serine to pyruvate, and the respective metC gene was induced 2.4-fold under high internal L-serine concentrations. Upon sdaA overexpression, the growth rate on glucose is reduced 36% from that of the wild type, illustrating that even with glucose as a single substrate, intracellular L-serine conversion to pyruvate might occur, although probably the weak affinity of L-SerDH (apparent Km, 11 mM) prevents substantial L-serine degradation.  相似文献   

2.
The utilization of amino acids and other compounds as carbon and energy sources by Legionella pneumophila was examined. Based on the stimulation of oxygen consumption in washed-cell suspensions, glutamate, serine, threonine, and tyrosine were the only amino acids which were utilized as energy sources. Other stimulators of oxygen uptake were lactate, pyruvate, acetate, fumarate, and succinate. Citrate was a good stimulator only when the bacteria were grown in the presence of the substrate. Radiolabeling studies showed that [14C]glutamate was rapidly metabolized, with the label distributed evenly in all cell fractions. [14C]pyruvate and [14C]acetate were incorporated into the lipid-containing cell fraction, whereas glucose and glycerol were found in both the lipid- and polysaccharide-containing cell fractions. Radiorespirometry of differentially labeled [14C]glucose indicated that this compound was metabolized primarily by the pentose phosphate and Entner-Doudoroff pathways rather than by the glycolytic pathway.  相似文献   

3.
Summary. Intracerebroventricular (i.c.v.) injection of L-serine was shown to have sedative and hypnotic effects on neonatal chicks under acute stressful conditions. To clarify the central mechanism of these effects of L-serine, two experiments were done. First, we focused on the glycogenic pathway in which L-serine is converted into pyruvate and finally glucose. I.c.v. administration of pyruvate (0.84 μmol) did not induce any behavioral and endocrinological changes, while L-serine and glucose triggered sedative and hypnotic effects. Secondly, the relationship between the sedation by L-serine and the metabolism into other amino acids which have sedative effects was investigated in the telencephalon and diencephalon. In both brain areas, a dose-dependent increase was seen in L-serine, although other amino acids were not changed. In the present study, it was concluded that the sedative action of L-serine was not due to the action of its metabolite pyruvate, or to the action of other amino acids. Authors’ address: M. Furuse, PhD, Laboratory of Advanced Animal and Marine Bioresources, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan  相似文献   

4.
Growth of Pseudomonas cepacia (P. multivorans) on serine depended upon induction of a previously undescribed L-serine deaminase distinct from threonine deaminase. Formation of the enzyme was induced during growth on serine, glycine, or threonine. The induction pattern reflected a role of the enzyme in catabolism of these three amino acids. Both threonine and glycine supported growth of serine auxotrophs and were presumably converted to serine and pyruvate in the course of their degradation. Mutant strains deficient in serine deaminase, or unable to use pyruvate as a carbon source, failed to utilize serine or glycine and grew poorly with threonine, whereas strains deficient in threonine dehydrogenase or alpha-amino beta-ketobutyrate:coenzyme A ligase (which together convert threonine to glycine and acetyl coenzyme A) failed to utilize threonine or derepress serine deaminase in the presence of this amino acid. The results confirm for the first time the role of alpha-amin beta-ketobutyrate:coenzyme A ligase in threonine degradation and indicate that threonine does not mimic serine as an inducer of serine deaminase.  相似文献   

5.
Neuronal and glial enriched fractions were incubated in a medium with 10mM pyruvate, 5mM fumarate and 0.9mM 5'-AMP and the effect of increased external K+ concentrations was studied upon oxygen uptake. A concentration of 65 mM K+ had a different effect on the oxygen consumption of glial and neuronal perikarya. The rate of oxygen uptake by glia was stimulated by 52.81% whilst an insignificant decrease of 15.79% occurred in the neurones. The highest rate of oxygen uptake by incubated cells was estimated in the presence of the substrate system containing pyruvate, fumarate and 5'-AMP. The significance of components in the substrate system for a high rate of oxygen uptake by cells was also tested with 6.2 mM K+ and 65 mM K+.  相似文献   

6.
Escherichia coli K-12 strain CU1008 cannot use L-serine as the sole carbon source, but it could use L-serine as an auxiliary carbon source with glucose, L-alanine, or pyruvate and could derive energy from L-serine to support oxygen uptake. CU1008 grew with L-serine if it was also provided with glycine and leucine. These may act by increasing the available activity of L-serine deaminase; other explanations are also explored.  相似文献   

7.
L-Serine metabolism in rat liver was investigated, focusing on the relative contributions of the three pathways, one initiated by L-serine dehydratase (SDH), another by serine:pyruvate/alanine:glyoxylate aminotransferase (SPT/AGT), and the other involving serine hydroxymethyltransferase and the mitochondrial glycine cleavage enzyme system (GCS). Because serine hydroxymethyltransferase is responsible for the interconversion between serine and glycine, SDH, SPT/AGT, and GCS were considered to be the metabolic exits of the serine-glycine pool. In vitro, flux through SDH was predominant in both 24-h starved and glucagon-treated rats. Flux through SPT/AGT was enhanced by glucagon administration, but even after the induction, its contribution under quasi-physiological conditions (1 mM L-serine and 0.25 mM pyruvate) was about (1)/(10) of that through SDH. Flux through GCS accounted for only several percent of the amount of L-serine metabolized. Relative contributions of SDH and SPT/AGT to gluconeogenesis from L-serine were evaluated in vivo based on the principle that 3H at the 3 position of L-serine is mostly removed in the SDH pathway, whereas it is largely retained in the SPT/AGT pathway. The results showed that SPT/AGT contributed only 10-20% even after the enhancement of its activity by glucagon. These results suggested that SDH is the major metabolic exit of L-serine in rat liver.  相似文献   

8.
Measurements of total body oxygen consumption, visceral and hepatic blood flow, oxygen consumption, exchanges of amino acids, lactate, pyruvate and glucose were made on sheep fed 3--6 h or 21 h before the experiment and exposed for 3 h to a neutral environment (15 degrees C) or a cold environment (0.5 to 4 degrees C with clipped coat and wind speed 2 m.s-1). Recent feeding significantly increasedd the total oxygen consumption and the oxygen consumption of the viscera and liver. No general release of amino acids from the viscera or uptake by the liver after feeding was detected although the arterial plasma concentration of essential amino acids did increase significantly after feeding. The plasma concentration of most non-essential amino acids also increased except that of glycine, which decreased significantly. Cold exposure increased the total oxygen consumption and reduced the respiratory quotient significantly. Release of amino acids from the viscera was stimulated by cold exposure. There was a variable increase in the hepatic uptake of lactate and alanine when the sheep were fasted and cold-exposed. The liver's glucose output doubled and the blood (arterial) glucose concentration significantly increased in the cold.  相似文献   

9.
Metabolism of pyruvate and malate by isolated fat-cell mitochondria   总被引:7,自引:7,他引:0       下载免费PDF全文
1. Metabolism of pyruvate and malate by isolated fat-cell mitochondria incubated in the presence of ADP and phosphate has been studied by measuring rates of pyruvate uptake, malate utilization or production, citrate production and oxygen consumption. From these measurements calculations of the flow rates through pyruvate carboxylase, pyruvate dehydrogenase and citrate cycle have been made under various conditions. 2. In the presence of bicarbonate, pyruvate was largely converted into citrate and malate and only about 10% was oxidized by the citrate cycle; citrate and malate outputs were linear after lag periods of 6-9min and 3min respectively, and no other end products of pyruvate metabolism were detected. On the further addition of malate or hydroxymalonate, the lag in the rate of citrate output was less marked but no net malate disappearance was detected. If, however, bicarbonate was omitted then net malate uptake was observed. Addition of butyl malonate was found to greatly inhibit the metabolism of pyruvate to citrate and malate in the presence of bicarbonate. 3. These results are in agreement with earlier conclusions that in adipose tissue acetyl units for fatty acid synthesis are transferred to the cytoplasm as citrate and that this transfer requires malate presumably for counter transport. They also support the view that oxaloacetate for citrate synthesis is preferentially formed from pyruvate through pyruvate carboxylase rather than malate through malate dehydrogenase and that the mitochondrial metabolism of citrate in fat-cells is restricted. The possible consequences of these conclusions are discussed. 4. Studies on the effects of additions of adenine nucleotides to pyruvate metabolism by isolated fat-cell mitochondria are consistent with inhibition of pyruvate carboxylase in the presence of ADP and pyruvate dehydrogenase in the presence of ATP.  相似文献   

10.
L-Serine metabolism in rabbit, dog, and human livers was investigated, focusing on the relative contributions of the three pathways, one initiated by serine dehydratase, another by serine:pyruvate/alanine:glyoxylate aminotransferase (SPT/AGT), and the other involving serine hydroxymethyltransferase and the mitochondrial glycine cleavage enzyme system (GCS). Under quasi-physiological in vitro conditions (1 mM L-serine and 0.25 mM pyruvate), flux through serine dehydratase accounted for only traces, and that through SPT/AGT substantially contributed no matter whether the enzyme was located in peroxisomes (rabbit and human) or largely in mitochondria (dog). As for flux through serine hydroxymethyltransferase and GCS, the conversion of serine to glycine occurred fairly rapidly, followed by GCS-mediated slow decarboxylation of the accumulated glycine. The flux through GCS was relatively high in the dog and low in the rabbit, and only in the dog was it comparable with that through SPT/AGT. An in vivo experiment with L-[3-3H,14C]serine as the substrate indicated that in rabbit liver, gluconeogenesis from L-serine proceeds mainly via hydroxypyruvate. Because an important role in the conversion of glyoxylate to glycine has been assigned to peroxisomal SPT/AGT from the studies on primary hyperoxaluria type 1, these results suggest that SPT/AGT in this organelle plays dual roles in the metabolism of glyoxylate and serine.  相似文献   

11.
We studied the physiological response of Escherichia coli central metabolism to the expression of heterologous pyruvate carboxylase (PYC) in the presence and absence of pyruvate oxidase (POX). These studies were complemented with expression analysis of central and intermediary metabolic genes and conventional in vitro enzyme assays to evaluate glucose metabolism at steady-state growth conditions (chemostats). The absence of POX activity reduced nongrowth-related energy metabolism (maintenance coefficient) and increased the maximum specific rate of oxygen consumption. The presence of PYC activity (i.e., with POX activity) increased the biomass yield coefficient and reduced the maximum specific oxygen consumption rate compared to the wildtype. The presence of PYC in a poxB mutant resulted in a 42% lower maintenance coefficient and a 42% greater biomass yield compared to the wildtype. Providing E. coli with PYC or removing POX increased the threshold specific growth rate at which acetate accumulation began, with an 80% reduction in acetate accumulation observed at a specific growth rate of 0.4 h-1 in the poxB-pyc+ strain. Gene expression analysis suggests utilization of energetically less favorable glucose metabolism via glucokinase and the Entner-Doudoroff pathway in the absence of functional POX, while the upregulation of the phosphotransferase glucose uptake system and several amino acid biosynthetic pathways occurs in the presence of PYC. The physiological and expression changes resulting from these genetic perturbations demonstrate the importance of the pyruvate node in respiration and its impact on acetate overflow during aerobic growth.  相似文献   

12.
Genome-scale flux analysis of Escherichia coli DH5alpha growth in a complex medium was performed to investigate the relationship between the uptake of various nutrients and their metabolic outcomes. During the exponential growth phase, we observed a sequential consumption order of serine, aspartate and glutamate in the complex medium as well as the complete consumption of key carbohydrate nutrients, glucose and trehalose. Based on the consumption and production rates of the measured metabolites, constraints-based flux analysis of a genome-scale E. coli model was then conducted to elucidate their utilization in the metabolism. The in silico analysis revealed that the cell exploited biosynthetic precursors taken up directly from the complex medium, through growth-related anabolic pathways. This suggests that the cell could be functioning in an energetically more efficient manner by reducing the energy needed to produce amino acids. The in silico simulation also allowed us to explain the observed rapid consumption of serine: excessively consumed external serine from the complex medium was mainly converted into pyruvate and glycine, which in turn, led to the acetate accumulation. The present work demonstrates the application of an in silico modeling approach to characterizing microbial metabolism under complex medium condition. This work further illustrates the use of in silico genome-scale analysis for developing better strategies related to improving microbial growth and enhancing the productivity of desirable metabolites.  相似文献   

13.
A cDNA encoding a homolog of mammalian serine racemase, a unique enzyme in eukaryotes, was isolated from Arabidopsis thaliana and expressed in Escherichia coli cells. The gene product, of which the amino acid residues for binding pyridoxal 5'-phosphate (PLP) are conserved in this as well as mammalian serine racemases, catalyzes not only serine racemization but also dehydration of serine to pyruvate. The enzyme is a homodimer and requires PLP and divalent cations, Ca2+, Mg2+, Mn2+, Fe2+, or Ni2+, at alkaline pH for both activities. The racemization process is highly specific toward L-serine, whereas L-alanine, L-arginine, and L-glutamine were poor substrates. The Vmax/Km values for racemase activity of L- and D-serine are 2.0 and 1.4 nmol/mg/min/mM, respectively, and those values for L- and D-serine on dehydratase activity are 13 and 5.3 nmol/mg/min/mM, i.e. consistent with the theory of racemization reaction and the specificity of dehydration toward L-serine. Hybridization analysis showed that the serine racemase gene was expressed in various organs of A. thaliana.  相似文献   

14.
Summary Light-microscopic autoradiography was used to localize the cellular sites for neutral amino acid uptake in submandibular and sublingual salivary gland epithelia. The vasculature of isolated glands was perfused for 3–5 min with either L-(3-3H)serine or L-(4-3H)phenylalanine and then fixed by perfusion with buffered glutaraldehyde. In the submandibular gland the small neutral amino acid L-serine and the aromatic amino acid L-phenylalanine were localized to central acinar cells, demilunar cells and ductal cells. In the sublingual gland silver grains associated with each of these tritiated amino acids were localized to central acinar and ductal cells. Perfusion of both submandibular and sublingual glands with unlabelled L-serine (25 mM) or L-phenylalanine (30 mM) resulted in a significant decrease in the silver grain density associated with each labelled amino acid. The absence of silver grains in the lumina of acinar and ductal cells and the presence of tight junctions near the apical surface of the epithelium strongly suggest that the initial uptake of these amino acids was mediated by basolateral plasma membrane carriers.  相似文献   

15.
In mammalian cell culture technology glutamine is required for biomass synthesis and as a major energy source together with glucose. Different pathways for glutamine metabolism are possible, resulting in different energy output and ammonia release. The accumulation of ammonia in the medium can limit cell growth and product formation. Therefore, numerous ideas to reduce ammonia concentration in cultivation broths have been developed. Here we present new aspects on the energy metabolism of mammalian cells. The replacement of glutamine (2 mM) by pyruvate (10 mM) supported cell growth without adaptation for at least 19 passages without reduction in growth rate of different adherent commercial cell lines (MDCK, BHK21, CHO-K1) in serum-containing and serum-free media. The changes in metabolism of MDCK cells due to pyruvate uptake instead of glutamine were investigated in detail (on the amino acid level) for an influenza vaccine production process in large-scale microcarrier culture. In addition, metabolite profiles from variations of this new medium formulation (1-10 mM pyruvate) were compared for MDCK cell growth in roller bottles. Even at very low levels of pyruvate (1 mM) MDCK cells grew to confluency without glutamine and accumulation of ammonia. Also glucose uptake was reduced, which resulted in lower lactate production. However, pyruvate and glutamine were both metabolized when present together. Amino acid profiles from the cell growth phase for pyruvate medium showed a reduced uptake of serine, cysteine, and methionine, an increased uptake of leucine and isoleucine and a higher release of glycine compared to glutamine medium. After virus infection completely different profiles were found for essential and nonessential amino acids.  相似文献   

16.
Fifteen-fold overexpression of phosphoenolpyruvate synthase (Pps) (EC 2.7.9.2) in Escherichia coli stimulated oxygen consumption in glucose minimal medium. A further increase in Pps overexpression to 30-fold stimulated glucose consumption by approximately 2-fold and resulted in an increased excretion of pyruvate and acetate. Insertion of two codons at the PvuII site in the pps gene abolished the enzymatic activity and eliminated the above-described effects. Both the active and the inactive proteins were detected at the predicted molecular weight by polyacrylamide gel electrophoresis. Therefore, the observed physiological changes were due to the activity of Pps. The higher specific rates of consumption of oxygen and glucose indicate a potential futile cycle between phosphoenolpyruvate (PEP) and pyruvate. A model for the stimulation of glucose uptake is presented; it involves an increased PEP/pyruvate ratio caused by the overexpressed Pps activity, leading to a stimulation of the PEP:sugar phosphotransferase system.  相似文献   

17.
Basolateral amino acid transport systems have been characterized in the perfused exocrine pancreas using a high-resolution paired-tracer dilution technique. Significant epithelial uptakes were measured for L-alanine, L-serine, alpha-methylaminoisobutyric acid, glycine, methionine, leucine, phenylalanine, tyrosine and L-arginine, whereas L-tryptophan and L-aspartate had low uptakes. alpha-Methylaminoisobutyric acid transport was highly sodium dependent (81 +/- 3%), while uptake of L-serine, L-leucine and L-phenylalanine was relatively insensitive to perfusion with a sodium-free solution. Cross-inhibition experiments of L-alanine and L-phenylalanine transport by twelve unlabelled amino acids indicated overlapping specificities. Unidirectional L-phenylalanine transport was saturable (Kt = 16 +/- 1 mM, Vmax = 12.3 +/- 0.4 mumol/min per g), and weighted non-linear regression analysis indicated that influx was best described by a single Michaelis-Menten equation. The Vmax/Kt ratio (0.75) for L-phenylalanine remained unchanged in the presence of 10 mM L-serine. Although extremely difficult to fit, L-serine transport appeared to be mediated by two saturable carriers (Kt1 = 5.2 mM, Vmax1 = 7.56 mumol/min per g; Kt2 = 32.8 mM, Vmax2 = 22.9 mumol/min per g). In the presence of 10 mM L-phenylalanine the Vmax/Kt ratio for the two L-serine carriers was reduced, respectively, by 79% and 50%. Efflux of transported L-[3H]phenylalanine or L-[3H]serine was accelerated by increasing perfusate concentrations of, respectively, L-phenylalanine and L-serine, and trans-stimulated by other amino acids. In the pancreas neutral amino acid transport appears to be mediated by Na+-dependent Systems A and ASC, the classical Na+-independent System L and another Na+-independent System asc recently identified in erythrocytes. The interactions in amino acid influx and efflux may provide one of the mechanisms by which the supply of extracellular amino acids for pancreatic protein synthesis is regulated.  相似文献   

18.
Abstract Oxygen uptake by Helicobacter pylori cells and membranes was determined. Cells from stirred broth cultures or agar plates, suspended in buffer, possessed a variable and apparently endogenous respiration which could be sustained for several hours. In contrast, oxygen consumption by cells from statically incubated broth cultures, in the absence of added substrate, was transient or undetectable. These latter cells, however, oxidised ethanol, fumarate, glucose, d-lactate, pyruvate and succinate, though glucose-oxidising ability declined rapidly. The K m s for d-lactate, pyruvate and succinate metabolism were low (≤20 μM) and oxygen uptake was approximately 1.5, 2 and 2 mol per mol substrate respectively, indicating metabolism beyond acetate plus CO2 and implying the presence of tricarboxylic acid cycle activity. Cell membranes oxidised fumarate, d-lactate, NADH, NADPH and succinate. NADPH oxidation was six times more rapid than that of NADH. Rates of oxygen uptake by cells suspended in buffer with metabolisable substrate were < 20% of those for cells suspended in a brain heart infusion medium. Uninoculated medium consumed significant quantities of oxygen.  相似文献   

19.
The metabolic effects of sodium valproate (VPA) on rat renal cortical tubules have been examined. When 1 or 5 mM lactate was used as substrate in the incubation medium, VPA decreased markedly the lactate uptake by the tubules. When 1 or 5 mM glutamine was used, the addition of VPA accelerated glutamine uptake, ammoniagenesis, but also stimulated markedly the accumulation of lactate and pyruvate produced from glutamine. VPA had a dose-dependent inhibitory effect on gluconeogenesis from both glutamine and lactate. With 5 mM glutamine, VPA also induced a significant accumulation of glutamate in the medium. The oxygen consumption by the tubules was diminished by 40% following VPA addition. It is concluded that VPA modifies the metabolism of rat cortical tubules by interfering with the oxidation of natural substrates and stimulates in this fashion the production of ammonia by kidney tubules.  相似文献   

20.
MTT, a positively charged tetrazolium salt, is widely used as an indicator of cell viability and metabolism and has potential for histochemical identification of tissue regions of hypermetabolism. In the present study, MTT was infused in the constant-flow perfused rat hindlimb to assess the effect of various agents and particularly vasoconstrictors that increase muscle metabolism. Reduction of MTT to the insoluble formazan in muscles assessed at the end of experiments was linear over a 30 min period and production rates were greater in red fibre types than white fibre types. The vasoconstrictors, norepinephrine (100 nM) and angiotensin (10 nM) decreased MTT formazan production in all muscles but increased hindlimb oxygen uptake and lactate efflux. Veratridine, a Na(+) channel opener that increases hindlimb oxygen uptake and lactate efflux without increases in perfusion pressure, also decreased MTT formazan production. Membrane stabilizing doses (100 microM) of (+/-)-propranolol reversed the inhibitory effects of angiotensin and veratridine on MTT formazan production. Muscle contractions elicited by stimulation of the sciatic nerve, reversed the norepinephrine-mediated inhibitory effects on MTT formazan production, even though oxygen consumption and lactate efflux were further stimulated. Stimulation of hindlimb muscle oxygen uptake by pentachlorophenol, a mitochondrial uncoupler, was not associated with alterations in MTT formazan production. It is concluded that apart from muscle contractions MTT formazan production does not increase with increased muscle metabolism. Since the vasoconstrictors angiotensin and norepinephrine as well as veratridine activate Na(+) channels and the Na(+)/K(+) pump, energy required for Na(+) pumping may be required for MTT reduction. It is unlikely that vasoconstrictors that stimulate oxygen uptake do so by uncoupling respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号