首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Active anterior rhinomanometry was used to observe nasal airflow in five men and four women (ages 18–30). Measurements were obtained for each nasal passage every 5 min throughout an uninterrupted 8-hr session. Facial skin temperature from the left and right side of the face was recorded simultaneously from thermocouples. Observations were made during the months of May and June; subjects were allowed to maintain their routine diurnally active schedules prior to observation. Airflow in the two passages showed a significant negative correlation (i.e. Was reciprocal) in 44% of subjects (N= 9). Autocorrelation and spectral analysis of the airflow data found evidence of periodicity in 39% of individual nostrils and 56% of subjects. Mean estimated period was 4.5 ± 1.0 hr (range 3.5–6.0 hr). Only 22% of subjects showed statistical evidence of periodicity in both nostrils (i.e. a “nasal cycle”). Left- and right-side facial skin temperatures changed in parallel rather than reciprocally, but showed evidence of periodicity in 50% of hemifacial time series (56% of subjects), with an estimated period of 3.8 ± 1.0 hr (range 2.3–5.0).  相似文献   

2.
The periodic congestion and decongestion of nasal venous sinuses and the alternation of airflow from one side of the nose to the other are referred to as a 'nasal cycle' in the literature. The aim of this study was to detect the nasal cycle during sleep in normal subjects and describe existing time periods and their sequence and patterns. We studied 58 records of the nasal cycle over 6-9 hours of sleep in six healthy volunteers and revealed that the cycle could be described as a combination of 1 to 4 discrete ultradian periods with various length: 1.0-1.5 h (mean 78.6min), 2.5-3.0 h (168.3 min), 4.0-4.5 h (260.3 min) or 5.5-6.0 h (347.5 min). The distribution of the discrete time periods was multi-modal and the mean lengths of periods were 'multiples' of a basic period of 85.4 min (~1.5 h) which was very close to the mean length of the sleep cycle (~1.5 h). In all subjects, during any of the REM stages of the sleep, an alternation of the airflow through the nostrils was observed. In about 75% of all cases, the switch of the flow between the nostrils occurred during the second or following REM stages of the sleep thus shaping a nasal cycle that contained mainly periods of 3.0 or 4.5 hours. We suggest a novel classification of the nocturnal nasal cyclicity and hypothesis that there is a relationship between the nasal cycle and the sleep cycle which, like other cyclic physiological phenomena with ultradian rhythmicity, expresses a pattern of 'lateralisation' that is synchronous with changes in the sleep cycle.  相似文献   

3.
The periodic congestion and decongestion of nasal venous sinuses and the alternation of airflow from one side of the nose to the other are referred to as a ‘nasal cycle’ in the literature. The aim of this study was to detect the nasal cycle during sleep in normal subjects and describe existing time periods and their sequence and patterns. We studied 58 records of the nasal cycle over 6–9 hours of sleep in six healthy volunteers and revealed that the cycle could be described as a combination of 1 to 4 discrete ultradian periods with various length: 1.0–1.5 h (mean 78.6min), 2.5–3.0 h (168.3 min), 4.0–4.5 h (260.3 min) or 5.5–6.0 h (347.5 min). The distribution of the discrete time periods was multi-modal and the mean lengths of periods were ‘multiples’ of a basic period of 85.4 min (?1.5 h) which was very close to the mean length of the sleep cycle (?1.5 h). In all subjects, during any of the REM stages of the sleep, an alternation of the airflow through the nostrils was observed. In about 75% of all cases, the switch of the flow between the nostrils occurred during the second or following REM stages of the sleep thus shaping a nasal cycle that contained mainly periods of 3.0 or 4.5 hours. We suggest a novel classification of the nocturnal nasal cyclicity and hypothesis that there is a relationship between the nasal cycle and the sleep cycle which, like other cyclic physiological phenomena with ultradian rhythmicity, expresses a pattern of ‘lateralisation’ that is synchronous with changes in the sleep cycle.  相似文献   

4.
Tissues were fixed at 20° C for 1 hr in 1% OsO4, buffered at pH 7.4 with veronal-acetate (Palade's fixative), soaked 5 min in the same buffer without OsO4, then dehydrated in buffer-acetone mixtures of 30, 50, 75 and 90% acetone content, and finally in anhydrous acetone. Infiltration was accomplished through Vestopal-W-acetone mixtures of 1:3, 1:1, 3:1 to undiluted Vestopal. After polymerisation at 60° C for 24 hr, 1-2 μ sections were cut, dried on slides without adhesive, and stained by any of the following methods. (1) Mayer's acid hemalum: Flood the slides with the staining solution and allow to stand at 20°C for 2-3 hr while the water of the solution evaporates; wash in distilled water, 2 min; differentiate in 1% HCl; rinse 1-2 sec in 10% NH,OH. (2) Iron-trioxyhematein (of Hansen): Apply the staining solution as in method 1; wash 3-5 min in 5% acetic acid; restain for 1-12 hr by flooding with a mixture consisting of staining solution, 2 parts, and 1 part of a 1:1 mixture of 2% acetic acid and 2% H2SO4 (observe under microscope for staining intensity); wash 2 min in distilled water and 1 hr in tap water. (3) Iron-hematoxylin (Heidenhain): Mordant 6 hr in 2.5% iron-alum solution; wash 1 min in distilled water; stain in 1% or 0.5% ripened hematoxylin for 3-12 br; differentiate 8 min in 2.5%, and 15 min in 1% iron-alum solution; wash 1 hr in tap water. (4) Aceto-carmine (Schneider): Stain 12-24 hr; wash 0.5-1.0 min in distilled water. (5) Picrofuchsin: Stain 24-48 hr in 1% acid fuchsin dissolved in saturated aqueous picric acid; differentiate for only 1-2 sec in 96% ethanol. (6) Modified Giemsa: Mix 640 ml of a solution of 9.08 gm KH2PO4 in 1000 ml of distilled water and 360 ml of a solution of 11.88 gm Na2HPO4-2H2O in 1000 ml of distilled water. Soak sections in this buffer, 12 hr. Dissolve 1.0 gm of azur I in 125 ml of boiling distilled water; add 0.5 gm of methylene blue; filter and add hot distilled water until a volume of 250 ml is reached (solution “AM”). Dissolve 1.5 gm of eosin, yellowish, in 250 ml of hot distilled water; filter (solution “E”). Mix 1.5 ml of “AM” in 100 ml of buffer with 3 ml of “E” in 100 ml of buffer. Stain 12-24 hr. Differentiate 3 sec in 25 ml methyl benzoate in 75 ml dioxane; 3 sec in 35 ml methyl benzoate in 65 ml acetone; 3 sec in 30 ml acetone in 70 ml methyl benzoate; and 3 sec in 5 ml acetone in 95 ml methyl benzoate. Dehydrated sections may be covered in a neutral synthetic resin (Caedax was used).  相似文献   

5.
The nose may help protect the lower respiratory tract from the effects of ambient ozone by scrubbing ozone from inspired air. Reductions in both nasal resistance and nitric oxide production with exercise may influence the efficiency of ozone uptake in the nose. Nasal ozone uptake was measured in 10 healthy volunteers before and after 15 min of moderate bicycle exercise. Ozone (0.2 parts/million) was pulled through both nostrils and out of the mouth at a constant flow while the subjects closed their epiglottises. Nasal uptake of ozone was determined by comparing the ozone concentration entering the nostrils to that exiting the mouth. Average preexercise uptake of ozone was 56 +/- 7.8 and 37 +/- 4.9% at 10 and 20 l/min, respectively. These averages did not significantly differ from those immediately postexercise (55 and 37%). Nasal ozone uptake increased significantly (P < 0.001) with decreasing flow rate, but intersubject variability in uptake could not be predicted by nasal volume or cross-sectional areas (as measured by acoustic rhinometry) or endogenous nitric oxide production. However, the percent change in ozone uptake after exercise, within an individual, was correlated with both 1) percent change in nasal volume (r = 0.70 at 10 l/min) and 2) percent change in the rate of volumetric expansion between the nasal valve and turbinates (r = 0.82 at 10 l/min). These results may be useful for assessing human risk associated with ozone exposure during exercise.  相似文献   

6.
Two groups of subjects (total N = 6) were studied in an isolation chamber for a period of 3 weeks whilst living on a 22.8 hr “day”. Regular samples of urine were taken when the subjects were awake, deep body temperature was recorded continuously and polygraphic EEG recordings were made of alternate sleeps. The excretion in the urine of potassium, sodium, phosphate, calcium and a metabolite of melatonin were estimated.

Measurements of the quantity and quality of sleep were made together with assessments of the temperature profiles associated with sleep. In addition, cosinor analysis of circadian rhythmicity in urinary variables and temperature was performed.

The 22.8 hr “days” affected variables and subjects differently. These differences were interpreted as indicating that the endogenous component of half the subjects adjusted to the 22.8 hr “days” but that, for the other three, adjustment did not occur. When the behaviour of different variables was considered then some (including urinary potassium and melatonin, sleep length and REM sleep) appeared to possess a larger endogenous component than others (for example, urinary sodium, phosphate and calcium), with rectal temperature behaving in an intermediate manner. In addition, a comparison between different rhythms in any subject enabled inferences to be drawn regarding any links (or lack of them) that might exist between the rhythms. In this respect also, there was a considerable range in the results and no links between any of the rhythms appeared to exist in the group of subjects as a whole.

Two further groups (total N=8) were treated similarly except that the chamber clock ran at the correct rate. In these subjects, circadian rhythms of urinary excretion and deep body temperature (sleep stages and urinary melatonin were not measured) gave no evidence for deterioration. We conclude, therefore, that the results on the 22.8 hr “day” were directly due to the abnormal “day” length rather than to a prolonged stay in the isolation chamber.  相似文献   

7.
Five different physiological functions of the rabbit (hard faeces and urine excretion, food and water intake and locomotor activity) were registered during LD 12:12 and during continuous light conditions (LL).

(1) In LD 12:12 a strong synchronization of the five parameters existed. The minima of all functions consistently occurred during the hours of light. The nocturnal percentage of overall 24-hr events was increased significantly in 'hard faeces excretion' (66±8 (S.D.) %), 'water intake' (64±15 (S.D.) %) and 'urine excretion' (58±10 (S.D.) %). The nocturnal percentage of locomotor activity was significantly increased during the dark-hours in 9 out of 14 animals. In the other five individuals prominent peaks were present even during the photoperiod. On the average of all 14 animals 5S±13 (S.D.) % of the 24 hr events of locomotor activity occurred during the night. Despite a trough during the cessation of hard faeces excretion the events of food intake were not elevated significantly during the dark hours.

(2) During LL the synchronization of the five functions within each animal persisted during the complete 90-day LL period. A free-running circadian rhythm with-: = 24.8±0.5 (S.D.) hr was present in the four rabbits kept in LL conditions within 5-16 days after the withdrawal of the zeitgeber.

(3) In addition to the circadian period the power spectrum analysis of data obtained during LD 12:12 revealed significant ultradian periods of an average period length of 11,6 hr (hard faeces and urine excretion), 8 hr (food and water intake, locomotor activity) and 4 hr (food intake, locomotor activity). During the free-run ultradian periods of 8 and 3.2-4.2 hr were significant in almost all parameters.

(4) During LL the level of locomotor activity was reduced for 13±16 (S.D.) %, the events of food intake were increased for 17±12 (S.D.) %.

(5) The reinserted LD 12:12 zeitgeber re-entrained the circadian rhythms within 25-45 days.

(6) These results provided evidence of a predominant nocturnality of the rabbits under investigation.  相似文献   

8.
Increased nasal air flow during exercise was examined as a possible heat loss avenue contributing to selective brain cooling in hyperthermic humans. On 2 separate days, eight subjects [mean (SE) age, 26.4 (1.2) years] exercised on a cycle ergometer in a warm room [28 (0.2)°C; 28 (5)% relative humidity] to induce a moderate level of hyperthermia. In one session the nostrils were physically dilatated [average dilatation 1.55 (0.17) times] and in the other they were not (control). Both sessions started with a 5-min resting period; then subjects pedaled at 60 W for 5 min, 100 W for 15 min, and 150 W for 20 min. During dilatation both tympanic temperature (T ty) and forehead skin blood flow, estimated by laser doppler velocimetry, were significantly lower than during the control exercise of 150 W. Rates of increase of (T ty) during the 100-W exercise were the same in both conditions; however, during the 150-W exercise with dilatated nostrils (T ty) increased at a rate significantly lower than during control [1.1 (0.3)°C·h–1 vs 1.5 (0.4)°C·h–1]. The change in the rate of increase of T ty between conditions was significantly correlated to the degree of nostril dilatation (r = –0.77, P = 0.02), suggesting that the lower (T ty) observed was due to nostril dilatation. Facial skin temperature was not significantly different between sessions. The results suggest that the nasal cavity may act as a heat exchanger in selective brain cooling of exercising humans.  相似文献   

9.

Objective

Nasal obstruction is a common problem in continuous positive airway pressure (CPAP) therapy for obstructive sleep apnea and limits treatment compliance. The purpose of this study is to model the effects of nasal obstruction on airflow parameters under CPAP using computational fluid dynamics (CFD), and to clarify quantitatively the relation between airflow velocity and pressure loss coefficient in subjects with and without nasal obstruction.

Methods

We conducted an observational cross-sectional study of 16 Japanese adult subjects, of whom 9 had nasal obstruction and 7 did not (control group). Three-dimensional reconstructed models of the nasal cavity and nasopharynx with a CPAP mask fitted to the nostrils were created from each subject’s CT scans. The digital models were meshed with tetrahedral cells and stereolithography formats were created. CPAP airflow simulations were conducted using CFD software. Airflow streamlines and velocity contours in the nasal cavities and nasopharynx were compared between groups. Simulation models were confirmed to agree with actual measurements of nasal flow rate and with pressure and flow rate in the CPAP machine.

Results

Under 10 cmH2O CPAP, average maximum airflow velocity during inspiration was 17.6 ± 5.6 m/s in the nasal obstruction group but only 11.8 ± 1.4 m/s in the control group. The average pressure drop in the nasopharynx relative to inlet static pressure was 2.44 ± 1.41 cmH2O in the nasal obstruction group but only 1.17 ± 0.29 cmH2O in the control group. The nasal obstruction and control groups were clearly separated by a velocity threshold of 13.5 m/s, and pressure loss coefficient threshold of approximately 10.0. In contrast, there was no significant difference in expiratory pressure in the nasopharynx between the groups.

Conclusion

This is the first CFD analysis of the effect of nasal obstruction on CPAP treatment. A strong correlation between the inspiratory pressure loss coefficient and maximum airflow velocity was found.  相似文献   

10.
The focus of the reported work is investigation of disopyramide chronopharmacokinetics in the mouse. Different groups of male NMRI mice maintained under controlled environmental conditions (LD: 0600-1800) received a single intraperitoneal injection of disopyramide (30mg per kg of body weight) at one of four different fixed time points of a 24-h period, i.e. 1000, 1600, 2200 or 0400. Blood samples were taken 0.5,1,2,3,4 and 6 hr after drug administration and total and free plasma levels of disopyramide were measured by an immunoenzymatic method.

Our data showed statistically significant circadian rhythms in the following pharmacokinetic parameters: highest volume of distribution = 3.91 ± 0.211kg-1 at 2200 (circadian amplitude, half the peak-to-trough difference relative to the 24-hr mean multiplied by 100, is 34%); highest area under concentration curves = 16.06 ± 1.03μgml-1hr-1 at 0400 (circadian amplitude = 43%) and highest clearance = 3.04 ± 0.191hr“kg”1 at 2200 (circadian amplitude = 21%). Protein binding of the drug was shown to he circadian time dependent. Alpha and beta phase elimination half-lives were not found to be significantly circadian phase-dependent. Thus circadian changes in disopyramide clearance may represent circadian changes in the drug's volume of distribution.  相似文献   

11.
For staining in toto, planarians are fixed in a mixture of 10 ml of commercial formalin, 45 ml of 95% ethanol and 2 ml of glacial acetic acid. After treatment with 70% ethanol 3-10 days, they are washed in distilled water and immersed in 10% CuSO4. 5H2O for 3 hr at 50° C, transferred without washing to 1% AgNO3 for 1.0-1.5 hr at 50° C; and then developed in: 10 ml of 1% pyrogallol, 100 ml of 56% ethanol and 1 ml of 0.2% nitric acid. Gold toning, 5% Na2S2O3 and dehydration follow as usual. For staining sections, material is fixed in the same fixative, embedded in paraffin and sectioned at 10 μ. After bringing sections to water, they are immersed in 20% CuSO4. 5H2O for 48 hr at 37° C; then rinsed briefly in distilled water and placed in 7% AgNO3 for 24 hr at 37° C. They are washed briefly in distilled water and reduced in: hydroquincne, 1 gm; Na2SO3, 5 gm and distilled water 100 ml. Gold toning, followed by 5% Na2S2O3 and dehydration completes the process. Any counterstaining may follow.  相似文献   

12.
Neuropeptide Y (NPY) is a neurotransmitter in sympathetic nerve fibers in human nasal mucosa. Like norepinephrine, NPY acts as a vasoconstrictor. An established method of nasal provocation was used to determine the effects of topically applied NPY on nasal resistance to airflow measured by anterior rhinomanometry, the protein content of nasal secretions, and the protein content of bradykinin-induced secretions. NPY (2.3 nmol) reduced the resistance to inspiratory airflow by 57 +/- 18% (P < 0.001) in 10 normal subjects and by 50 +/- 17% (P < 0.05) in 12 subjects with perennial rhinitis. In nasal provocations, NPY in doses of 0.1-10 nmol had no effect on vascular (albumin), glandular (lysozyme, glycoconjugate), or total proteins present in lavaged nasal secretions. Because the vasoconstrictor properties of NPY may only be apparent in the presence of increased vascular permeability and albumin exudation, bradykinin (BK) nasal provocation was performed. BK (500 nmol) significantly increase total protein (10- to 20-fold), albumin (10- to 30-fold), and glycoconjugate (2- to 5-fold) in lavage fluid. NPY (2.3 nmol) reduced BK-induced total protein by 59 +/- 15% (P < 0.05) and albumin by 63 +/- 17% (P < 0.02) but had no significant effect on glandular secretion. Therefore exogenous administration of NPY to the human nasal mucosa reduced nasal airflow resistance and albumin exudation without affecting submucosal gland secretion. NPY agonists may be useful for the treatment of mucosal diseases characterized by vasodilation, vascular permeability, and plasma exudation.  相似文献   

13.

1. 1.The forearm of 5 female subjects ws thermally stimulated by 2 sets of interposed servo-thermodes that respectively drove skin temperature at ±0.1°C.s−1 for 25 s and then held it constant. Mean skin temperature remained constant. The sequence was repeated at adapting temperatures between 22.5 and 37.5°C.

2. 2.Thermal sensations, continuously reported by the position of a dial, were warmer for heterogeneous thermal stimuli than for homogeneous stimuli when mean skin temperature was greater than 30°C and cooler when less than 27.5°C.

3. 3.This phenomenon is inconsistent with a single additive contribution of “warm” and “cold” information to thermal sensations.

Author Keywords: Man; thermal sensation; skin temperature  相似文献   


14.
Surgeries to correct nasal airway obstruction (NAO) often have less than desirable outcomes, partly due to the absence of an objective tool to select the most appropriate surgical approach for each patient. Computational fluid dynamics (CFD) models can be used to investigate nasal airflow, but variables need to be identified that can detect surgical changes and correlate with patient symptoms. CFD models were constructed from pre- and post-surgery computed tomography scans for 10 NAO patients showing no evidence of nasal cycling. Steady-state inspiratory airflow, nasal resistance, wall shear stress, and heat flux were computed for the main nasal cavity from nostrils to posterior nasal septum both bilaterally and unilaterally. Paired t-tests indicated that all CFD variables were significantly changed by surgery when calculated on the most obstructed side, and that airflow, nasal resistance, and heat flux were significantly changed bilaterally as well. Moderate linear correlations with patient-reported symptoms were found for airflow, heat flux, unilateral allocation of airflow, and unilateral nasal resistance as a fraction of bilateral nasal resistance when calculated on the most obstructed nasal side, suggesting that these variables may be useful for evaluating the efficacy of nasal surgery objectively. Similarity in the strengths of these correlations suggests that patient-reported symptoms may represent a constellation of effects and that these variables should be tracked concurrently during future virtual surgery planning.  相似文献   

15.
Previous studies have raised the question of whether pentane is a normal constituent of human breath, since its concentrations in inspired room air and expired breath are often similar. Using a highly sensitive assay for volatile organic compounds, we studied 37 normal subjects in order to determine the alveolar gradient of pentane in their breath (i.e. concentration in alveolar breath minus concentration in the inspired air). The chemical identity of pentane was confirmed by mass spectroscopy. The alveolar gradient of pentane was zero ± 0.175 nmol/1 in 54.1 % of subjects, and distributed in an approximately bell-shaped curve. Determination of the alveolar gradient divided the normal subjects into three groups: the “passive equilibrators” who did not appear to excrete pentane in the breath (the majority), “metabolizers” who actively catabolized inhaled pentane, and “manufacturers” who excreted more pentane than they inhaled.  相似文献   

16.
1. The present study examined the effect of the thermal state of the body (as reflected by rectal temperature) on cheek skin temperature and thermal resistance in active and inactive subjects.

2. Active subjects were exposed to a 30 min conditioning period (CP) (0 °C air with a 2 m/s wind), followed immediately by a 30 min experimental period (EP) (0 °C with a 5 m/s wind). Inactive subjects were exposed to a 30 min CP (22 °C air with no wind), followed immediately by a 45 min EP (0 °C air with a 4.5 m/s wind). The CP period was used to establish a core temperature difference between the active and inactive subjects prior to the start of EP. The 0 °C exposure was replaced with a −10 °C ambient air exposure and the experiment was repeated on a separate day. Subjects were comfortably dressed for each ambient condition.

3. Cheek skin temperature was not significantly higher in active subjects when compared to inactive subjects, but thermal resistance was higher in active subjects.

4. Cheek skin temperature and thermal resistance both decreased as ambient temperature decreased from 0 to −10 °C. The lower cheek thermal resistance at −10 °C may have been due to a greater cheek blood flow as a result of cold-induced vasodilation.

Keywords: Core temperature; Face skin temperature; Cheek thermal resistance; Cold exposure; Exercise  相似文献   


17.
Oronasal partitioning of ventilation during exercise in humans   总被引:1,自引:0,他引:1  
The partitioning of oronasal breathing was studied in five normal subjects during progressive exercise. Subjects performed three to five identical runs, each consisting of four 1-min work periods at increments of 50 W. Nasal and oral airflow were measured simultaneously using a partitioned face mask both during and for 4 min after exercise. Total mean flows were the sum of nasal and oral flows. At a total mean inspiratory flow of 2 l/s, the nasal fraction of total flow was 0.36 +/- 0.04 (SE) and decreased by 6 +/- 3% between total flows of 1.5 and 2.5 l/s. Throughout exercise, the nasal fraction of total mean inspiratory flow did not differ from that of total expiratory flow and was similar to that of total mean inspiratory flow during the postexercise period at a corresponding total mean flow (both P greater than 0.02). The results show that oronasal flow partitioning is not directly due to the exercise itself but is related to the level of ventilation and is uninfluenced by the direction of upper airway flow (i.e., inspiratory vs. expiratory). These findings suggest tightly controlled modulation of the relative resistances of the oral and/or nasal pathways.  相似文献   

18.
In collapsible biologic conduits, occlusion and cessation of flow occur when upstream pressure falls below a critical pressure (Pcrit). To examine the relationship between Pcrit and the development of upper airway occlusion, we examined the relationship between maximal inspiratory airflow and nasal pressure in seven normal subjects during sleep. At varying levels of subatmospheric pressure applied to a nasal mask during non-rapid-eye-movement (NREM) sleep, maximal inspiratory airflow decreased in proportion to the level of nasal pressure. When nasal pressure fell below a Pcrit, subjects demonstrated upper airway occlusions terminated by arousals. In these normal subjects, the upper airway Pcrit was found to be -13.3 +/- 3.2 (SD) cmH2O. In four subjects who sustained sleep while nasal pressure remained below the Pcrit, recurrent occlusive apneas were demonstrated. The relationship between maximal inspiratory airflow and nasal pressure in each subject was fit by linear regression and demonstrated upper airway Pcrit at the zero-flow intercept that were not significantly different from those observed experimentally. These data demonstrate that the normal human upper airway during sleep is characterized by a negative Pcrit and that occlusion may be induced when nasal pressure is decreased below this Pcrit.  相似文献   

19.
The influence of nasal airflow, temperature, and pressure on upper airway muscle electromyogram (EMG) was studied during steady-state exercise in five normal subjects. Alae nasi (AN) and genioglossus EMG activity was recorded together with nasal and oral airflows and pressures measured simultaneously by use of a partitioned face mask. At constant ventilations between 30 and 50 l/min, peak inspiratory AN activity during nasal breathing (7.2 +/- 1.4 arbitrary units) was greater than that during oral breathing (1.0 +/- 0.3 arbitrary units; P less than 0.005). In addition, the onset of AN EMG activity preceded inspiratory flow by 0.38 +/- 0.03 s during nasal breathing but by only 0.17 +/- 0.04 s during oral breathing (P less than 0.04). When the subject changed from nasal to oral breathing, both these differences were apparent on the first breath. However, peak AN activity during nasal breathing was uninfluenced by inspiration of hot saturated air (greater than 40 degrees C), by external inspiratory nasal resistance, or by changes in the expiratory route. The genioglossus activity did not differ between nasal and oral breathing (n = 2). Our findings do not support reflex control of AN activity sensitive to nasal flow, temperature, or surface pressure. We propose a centrally controlled feedforward modulation of phasic inspiratory AN activity linked with the tonic drive to the muscles determining upper airway breathing route.  相似文献   

20.
Whether nasal obstruction disturbs sleep and nocturnal breathing is controversial because convenient techniques for measuring nasal resistance during sleep are lacking. Therefore, we developed a technique for unobtrusive, side-selective nasal conductance monitoring. The technique measures left and right nasal airflow and transnasal pressure using nasal cannulas, thin catheters inserted through the cannulas into the nasopharynx, and three pressure transducers. Their processed signals provide conductance as airflow-to-resistive pressure ratio for the left and right side and the sum, total nasal conductance. For validation, total nasal conductance was also determined by a flowmeter attached to a nasal mask and nasopharyngeal pressure that served as reference standard. Methods were compared in five normal subjects during pharmacological interventions and in 12 snorers during sleep. The novel technique accurately tracked total nasal conductance by the reference method at baseline, after nasal application of histamine and xylomethazoline in normal subjects; mean difference (bias) was 1%, and limits of agreement (+/-2 SD of bias) were +/- 22% (75 comparisons). Corresponding values during overnight sleep studies in snorers were 0 +/- 19% (192 comparisons); bias and limits of agreement of changes in nasal conductance were 1 +/- 19% (180 comparisons). Conductance measured once at the beginning of sleep studies differed from subsequent measurements during the night by a mean +/- SD of 26 +/- 20%, P < 0.0001. The novel technique accurately measures side-selective conductance. It is suitable to investigate interactions among nasal obstruction, sleep and nocturnal breathing, and drug effects. One-time measurements at the beginning of sleep studies do not appropriately reflect the highly variable nasal conductance during an entire night.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号