首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analytical equilibrium ultracentrifugation indicates that Escherichia coli MutS exists as an equilibrating mixture of dimers and tetramers. The association constant for the dimer-to-tetramer transition is 2.1 x 10(7) M-1, indicating that the protein would consist of both dimers and tetramers at physiological concentrations. The carboxyl terminus of MutS is required for tetramer assembly because a previously described 53-amino acid carboxyl-terminal truncation (MutS800) forms a limiting species of a dimer (Obmolova, G., Ban, C., Hsieh, P., and Yang, W. (2000) Nature 407, 703-710; Lamers, M. H., Perrakis, A., Enzlin, J. H., Winterwerp, H. H., de Wind, N., and Sixma, T. K. (2000) Nature 407, 711-717). MutS800 binds a 20-base pair heteroduplex an order of magnitude more weakly than full-length MutS, and at saturating protein concentrations, the heteroduplex-bound mass observed with MutS800 is only half that observed with the full length protein, indicating that the subunit copy number of heteroduplex-bound MutS is twice that of MutS800. Analytical equilibrium ultracentrifugation using a fluorescein-tagged 20-base pair heteroduplex demonstrated that native MutS forms a tetramer on this single site-sized heteroduplex DNA. Equilibrium fluorescence experiments indicated that dimer-to-tetramer assembly promotes mismatch binding by MutS and that the tetramer can bind only a single heteroduplex molecule, implying nonequivalence of the two dimers within the tetramer. Compared with native MutS, the ability of MutS800 to promote MutL-dependent activation of MutH is substantially reduced.  相似文献   

2.
The HIV-1 Integrase protein (IN) mediates the integration of the viral cDNA into the host genome. IN is an emerging target for anti-HIV drug design, and the first IN-inhibitor was recently approved by the FDA. We have developed a new approach for inhibiting IN by "shiftides": peptides derived from its cellular binding protein LEDGF/p75 that inhibit IN by shifting its oligomerization equilibrium from the active dimer to an inactive tetramer. In addition, we described two peptides derived from the HIV-1 Rev protein that interact with IN and inhibit its activity in vitro and in cells. In the current study, we show that the Rev-derived peptides also act as shiftides. Analytical gel filtration and cross-linking experiments showed that IN was dimeric when bound to the viral DNA, but tetrameric in the presence of the Rev-derived peptides. Fluorescence anisotropy studies revealed that the Rev-derived peptides inhibited the DNA binding of IN. The Rev-derived peptides inhibited IN catalytic activity in vitro in a concentration-dependent manner. Inhibition was much more significant when the peptides were added to free IN before it bound the viral DNA than when the peptides were added to a preformed IN-DNA complex. This confirms that the inhibition is due to the ability of the peptides to shift the oligomerization equilibrium of the free IN toward a tetramer that binds much weaker to the viral DNA. We conclude that protein-protein interactions of IN may serve as a general valuable source for shiftide design.  相似文献   

3.
Bjornson KP  Allen DJ  Modrich P 《Biochemistry》2000,39(11):3176-3183
Escherichia coli MutS protein, which is required for mismatch repair, has a slow ATPase activity that obeys Michalelis-Menten kinetics. At 37 degrees C, the steady-state turnover rate for ATP hydrolysis is 1.0 +/- 0.3 min(-1) per monomer equivalent with a K(m) of 33 +/- 6 microM. Hydrolysis is competitively inhibited by the ATP analogues AMPPNP and ATPgammaS, with K(i) values of 4 microM in both cases, and by ADP with a K(i) of 40 microM. The rate of ATP hydrolysis is stimulated 2-5-fold by short hetero- and homoduplex DNAs. The concentration of DNA cofactor that yields half-maximal stimulation is lowest for oligodeoxynucleotide duplexes that contain a mismatched base pair. Pre-steady-state chemical quench analysis has demonstrated a substoichiometric initial burst of ADP formation by free MutS that is governed by a rate constant of 78 min(-1), indicating that the rate-limiting step for the steady-state reaction occurs after hydrolysis. Prebinding of MutS to homoduplex DNA does not alter the burst kinetics or amplitude but only increases the steady-state rate. In contrast, binding of the protein to heteroduplex DNA abolishes the burst of ADP formation, indicating that the rate-limiting step now occurs before hydrolysis. Gel filtration analysis indicates that the MutS dimer assembles into higher order oligomers in a concentration-dependent manner, and that ATP binding shifts this equilibrium to favor assembly. These results, together with kinetic findings, indicate nonequivalence of subunits within a MutS oligomer with respect to ATP hydrolysis and DNA binding.  相似文献   

4.
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) protein is an emerging target for the development of anti-HIV drugs. We recently described a new approach for inhibiting IN by “shiftides”—peptides that inhibit the protein by shifting its oligomerization equilibrium from the active dimer to the inactive tetramer. In this study, we used the yeast two-hybrid system with the HIV-1 IN as a bait and a combinatorial peptide aptamer library as a prey to select peptides of 20 amino acids that specifically bind IN. Five non-homologous peptides, designated as IN-1 to IN-5, were selected. ELISA studies confirmed that IN binds the free peptides. All the five peptides interact with IN with comparable affinity (Kd≈10 μM), as was revealed by fluorescence anisotropy studies. Only one peptide, IN-1, inhibited the enzymatic activity of IN in vitro and the HIV-1 replication in cultured cells. In correlation, fluorescence anisotropy binding experiments revealed that of the five peptides, only the inhibitory IN-1 inhibited the DNA binding of IN. Analytical gel filtration experiments revealed that only the IN-1 and not the four other peptides shifted the oligomerization equilibrium of IN towards the tetramer. Thus, the results show a distinct correlation between the ability of the selected peptides to inhibit IN activity and that to shift its oligomerization equilibrium.  相似文献   

5.
MutS protein binds to DNA and specifically recognizes mismatched or small looped out heteroduplex DNA. In order to elucidate its structure-function relationships, the domain structure of Thermus thermophilus MutS protein was studied by performing denaturation experiments and limited proteolysis. The former suggested that T. thermophilus MutS consists of at least three domains with estimated stabilities of 12.3, 22.9 and 30.7 kcal/mol and the latter revealed that it consists of four domains: A1 (N-terminus to residue 130), A2 (131-274), B (275-570) and C (571 to C-terminus). A gel retardation assay indicated that T.thermophilus MutS interacts non-specifically with double-stranded (ds), but not single-stranded DNA. Among the proteolytic fragments, the B domain bound to dsDNA. On the basis of these results we have proposed the domain organization of T. thermophilus MutS and putative roles of these domains.  相似文献   

6.
Nag N  Krishnamoorthy G  Rao BJ 《The FEBS journal》2005,272(24):6228-6243
Changes in the oligomeric status of MutS protein was probed in solution by dynamic light scattering (DLS), and corroborated by sedimentation analyses. In the absence of any nucleotide cofactor, free MutS protein [hydrodynamic radius (Rh) of 10-12 nm] shows a small increment in size (Rh 14 nm) following the addition of homoduplex DNA (121 bp), whereas the same increases to about 18-20 nm with heteroduplex DNA containing a mismatch. MutS forms large aggregates (Rh > 500 nm) with ATP, but not in the presence of a poorly hydrolysable analogue of ATP (ATPgammaS). Addition of either homo- or heteroduplex DNA attenuates the same, due to protein recruitment to DNA. However, the same protein/DNA complexes, at high concentration of ATP (10 mm), manifest an interesting property where the presence of a single mismatch provokes a much larger oligomerization of MutS on DNA (Rh > 500 nm in the presence of MutL) as compared to the normal homoduplex (Rh approximately 100-200 nm) and such mismatch induced MutS aggregation is entirely sustained by the ongoing hydrolysis of ATP in the reaction. We speculate that the surprising property of a single mismatch, in nucleating a massive aggregation of MutS encompassing the bound DNA might play an important role in mismatch repair system.  相似文献   

7.
The role of MutS ATPase in mismatch repair is controversial. To clarify further the function of this activity, we have examined adenine nucleotide effects on interactions of Escherichia coli MutS with homoduplex and heteroduplex DNAs. In contrast to previous results with human MutS alpha, we find that a physical block at one end of a linear heteroduplex is sufficient to support stable MutS complex formation in the presence of ATP.Mg(2+). Surface plasmon resonance analysis at low ionic strength indicates that the lifetime of MutS complexes with heteroduplex DNA depends on the nature of the nucleotide present when MutS binds. Whereas complexes prepared in the absence of nucleotide or in the presence of ADP undergo rapid dissociation upon challenge with ATP x Mg(2+), complexes produced in the presence of ATP x Mg(2+), adenosine 5'-(beta,gamma-imino)triphosphate (AMPPNP) x Mg(2+), or ATP (no Mg(2+)) are resistant to dissociation upon ATP challenge. AMPPNP x Mg(2+) and ATP (no Mg(2+)) reduce MutS affinity for heteroduplex but have little effect on homoduplex affinity, resulting in abolition of specificity for mispaired DNA at physiological salt concentrations. Conversely, the highest mismatch specificity is observed in the absence of nucleotide or in the presence of ADP. ADP has only a limited effect on heteroduplex affinity but reduces MutS affinity for homoduplex DNA.  相似文献   

8.
Miguel V  Monti MR  Argaraña CE 《DNA Repair》2008,7(11):1799-1808
The Escherichia coli DNA Mismatch Repair (MMR) protein MutS exist as dimers and tetramers in solution, and the identification of its functional oligomeric state has been matter of extensive study. In the present work, we have analyzed the oligomerization state of MutS from Pseudomonas aeruginosa a bacterial species devoid of Dam methylation and MutH homologue. By analyzing native MutS and different mutated versions of the protein, we determined that P. aeruginosa MutS is mainly tetrameric in solution and that its oligomerization capacity is conducted as in E. coli, by the C-terminal region of the protein. The analysis of mismatch oligonucleotide binding activity showed that wild-type MutS binds to DNA as tetramer. The DNA binding activity decreased when the C-terminal region was deleted (MutSDelta798) or when a full-length MutS with tetramerization defects (MutSR842E) was tested. The ATPase activity of MutSDelta798 was similar to MutSR842E and diminished respect to the wild-type protein. Experiments carried out on a P. aeruginosa mutS strain to test the proficiency of different oligomeric versions of MutS to function in vivo showed that MutSDelta798 is not functional and that full-length dimeric version MutSR842E, is not capable of completely restoring the MMR activity of the mutant strain. Additional experiments carried out in conditions of high mutation rate induced by the base analogue 2-AP confirm that the dimeric version of MutS is not as efficient as the tetrameric wild-type protein to prevent mutations. Therefore, it is concluded that although dimeric MutS is sufficient for MMR activity, optimal activity is obtained with the tetrameric version of the protein and therefore it should be considered as the active form of MutS in P. aeruginosa.  相似文献   

9.
The mutS gene from the thermophilic bacterium Thermus thermophilus was PCR amplified, cloned, and expressed in Escherichia coli. The recombinant MutS protein containing an oligohistidine domain at the N-terminus was purified in a single step by Ni(2+) affinity chromatography to apparent homogeneity. The mismatch recognition properties of the his(6)-tagged MutS protein were confirmed by DNA protection against exonuclease digestion and retardation assays. The results of analytical gel filtration indicate that the predominant form of T. thermophilus MutS at micromolar concentrations is a tetramer.  相似文献   

10.
The Escherichia coli DNA mismatch repair (MMR) protein MutS is essential for the correction of DNA replication errors. In vitro, MutS exists in a dimer/tetramer equilibrium that is converted into a monomer/dimer equilibrium upon deletion of the C-terminal 53 amino acids. In vivo and in vitro data have shown that this C-terminal domain (CTD, residues 801–853) is critical for tetramerization and the function of MutS in MMR and anti-recombination. We report the expression, purification and analysis of the E.coli MutS-CTD. Secondary structure prediction and circular dichroism suggest that the CTD is folded, with an α-helical content of 30%. Based on sedimentation equilibrium and velocity analyses, MutS-CTD forms a tetramer of asymmetric shape. A single point mutation (D835R) abolishes tetramerization but not dimerization of both MutS-CTD and full-length MutS. Interestingly, the in vivo and in vitro MMR activity of MutSCF/D835R is diminished to a similar extent as a truncated MutS variant (MutS800, residues 1–800), which lacks the CTD. Moreover, the dimer-forming MutSCF/D835R has comparable DNA binding affinity with the tetramer-forming MutS, but is impaired in mismatch-dependent activation of MutH. Our data support the hypothesis that tetramerization of MutS is important but not essential for MutS function in MMR.  相似文献   

11.
The trp repressor of Escherichia coli (TR), although generally considered to be dimeric, has been shown by fluorescence anisotropy of extrinsically labeled protein to undergo oligomerization in solution at protein concentrations in the micromolar range (Fernando, T., and C. A. Royer 1992. Biochemistry. 31:3429-3441). Providing evidence that oligomerization is an intrinsic property of TR, the present studies using chemical cross-linking, analytical ultracentrifugation, and molecular sieve chromatography demonstrate that unmodified TR dimers form higher order aggregates. Tetramers and higher order species were observed in chemical cross-linking experiments at concentrations between 1 and 40 microM. Results from analytical ultracentrifugation and gel filtration chromatography were consistent with average molecular weight values between tetramer and dimer, although no plateaus in the association were evident over the concentration ranges studied, indicating that higher order species are populated. Analytical ultracentrifugation data in presence of corepressor imply that corepressor binding destabilizes the higher order aggregates, an observation that is consistent with the earlier fluorescence work. Through the investigation of the salt and pH dependence of oligomerization, the present studies have revealed an electrostatic component to the interactions between TR dimers.  相似文献   

12.
The roles of ATP binding and hydrolysis by MutS in mismatch repair are poorly understood. MutS E694A, in which Glu-694 of the Walker B motif is substituted with alanine, is defective in hydrolysis of bound ATP and has been reported to support MutL-dependent activation of the MutH d(GATC) endonuclease in a trans DNA activation assay (Junop, M. S., Obmolova, G., Rausch, K., Hsieh, P., and Yang, W. (2001) Mol. Cell 7, 1-12). Because the MutH trans activation assay used in these previous studies was characterized by high background and low efficiency, we have re-evaluated the activities of MutS E694A. In contrast to native MutS, which can be isolated in a nucleotide-free form, purified MutS E694A contains 1.0 mol of bound ATP per dimer equivalent, and substoichiometric levels of bound ADP (0.08-0.58 mol/dimer), consistent with the suggestion that the ADP.MutS.ATP complex comprises a significant fraction of the protein in solution (Bjornson, K. P. and Modrich, P. (2003) J. Biol. Chem. 278, 18557-18562). In the presence of Mg2+, endogenous ATP is hydrolyzed with a rate constant of 0.12 min-1 at 30 degrees C, and hydrolysis yields a protein that displays increased specificity for heteroduplex DNA. As observed with wild type MutS, ATP can promote release of MutS E694A from a mismatch. However, the mutant protein is defective in the methyl-directed, mismatch- and MutL-dependent cis activation of MutH endonuclease on a 6.4-kilobase pair heteroduplex, displaying only 1 to 2% of the activity of wild type MutS. The mutant protein also fails to support normal assembly of the MutS.MutL.DNA ternary complex. Although a putative ternary complex can be observed in the presence of MutS E694A, assembly of this structure displays little if any dependence on a mismatched base pair.  相似文献   

13.
Interaction of Escherichia coli MutS and MutL with heteroduplex DNA has been visualized by electron microscopy. In a reaction dependent on ATP hydrolysis, complexes between a MutS dimer and a DNA heteroduplex are converted to protein-stabilized, alpha-shaped loop structures with the mismatch in most cases located within the DNA loop. Loop formation depends on ATP hydrolysis and loop size increases linearly with time at a rate of 370 base pairs/min in phosphate buffer and about 10,000 base pairs/min in the HEPES buffer used for repair assay. These observations suggest a translocation mechanism in which a MutS dimer bound to a mismatch subsequently leaves this site by ATP-dependent tracking or unidimensional movement that is in most cases bidirectional from the mispair. In view of the bidirectional capability of the methyl-directed pathway, this reaction may play a role in determination of heteroduplex orientation. The rate of MutS-mediated DNA loop growth is enhanced by MutL, and when both proteins are present, both are found at the base of alpha-loop structures, and both can remain associated with excision intermediates produced in later stages of the reaction.  相似文献   

14.
15.
The p53 tumor suppressor protein is a dimer of dimers that binds its consensus DNA sequence (containing two half-sites) as a pair of clamps. We show here that after one wild-type dimer of a tetramer binds to a half-site on the DNA, the other (unbound) dimer can be in either the wild-type or the mutant conformation. An equilibrium state between these two conformations exists and can be modulated by two types of regulators. One type modifies p53 biochemically and determines the intrinsic balance of the equilibrium. The other type of regulator binds directly to one or both dimers in a p53 tetramer, trapping each dimer in one or the other conformation. In the wild-type conformation, the second dimer can bind to the second DNA half-site, resulting in drastically enhanced stability of the p53-DNA complex. Importantly, a genotypically mutant p53 can also be in equilibrium with the wild-type conformation, and when trapped in this conformation can bind DNA.  相似文献   

16.
MutS and MutL are both required to activate downstream events in DNA mismatch repair. We examined the rate of dissociation of MutS from a mismatch using linear heteroduplex DNAs or heteroduplexes blocked at one or both ends by four-way DNA junctions in the presence and absence of MutL. In the presence of ATP, dissociation of MutS from linear heteroduplexes or heteroduplexes blocked at only one end occurs within 15 s. When both duplex ends are blocked, MutS remains associated with the DNA in complexes with half-lives of 30 min. DNase I footprinting of MutS complexes is consistent with migration of MutS throughout the DNA duplex region. When MutL is present, it associates with MutS and prevents ATP-dependent migration away from the mismatch in a manner that is dependent on the length of the heteroduplex. The rate and extent of mismatch-provoked cleavage at hemimethylated GATC sites by MutH in the presence of MutS, MutL, and ATP are the same whether the mismatch and GATC sites are in cis or in trans. These results suggest that a MutS-MutL complex in the vicinity of a mismatch is involved in activating MutH.  相似文献   

17.
F factor TraM is essential for efficient bacterial conjugation, but its molecular function is not clear. Because the physical properties of TraM may provide clues to its role in conjugation, we have characterized the TraM oligomerization equilibrium. We show that the reversible unfolding transition is non-two-state, indicating the presence of at least one intermediate. Analytical ultracentrifugation experiments indicate that the first phase of unfolding involves dissociation of the tetramer into folded monomers, which are subsequently unfolded to the denatured state in the second phase. Furthermore, we show that a C-terminal domain isolated by limited proteolysis is tetrameric in solution, like the full-length protein, and that its loss of structure correlates with dissociation of the TraM tetramer. Unfolding of the individual domains indicates that the N- and C-terminal regions act cooperatively to stabilize the full-length protein. Together, these experiments suggest structural overlap of regions important for oligomerization and DNA binding. We propose that modulating the oligomerization equilibrium of TraM may regulate its essential activity in bacterial conjugation.  相似文献   

18.
The Escherichia coli MutL protein regulates the activity of several enzymes, including MutS, MutH, and UvrD, during methyl-directed mismatch repair of DNA. We have investigated the self-association properties of MutL and its binding to DNA using analytical sedimentation velocity and equilibrium. Self-association of MutL is quite sensitive to solution conditions. At 25 °C in Tris at pH 8.3, MutL assembles into a heterogeneous mixture of large multimers. In the presence of potassium phosphate at pH 7.4, MutL forms primarily stable dimers, with the higher-order assembly states suppressed. The weight-average sedimentation coefficient of the MutL dimer in this buffer ( ?s(20,w)) is equal to 5.20 ± 0.08 S, suggesting a highly asymmetric dimer (f/f(o) = 1.58 ± 0.02). Upon binding the nonhydrolyzable ATP analogue, AMPPNP/Mg(2+), the MutL dimer becomes more compact ( ?s(20,w) = 5.71 ± 0.08 S; f/f(o) = 1.45 ± 0.02), probably reflecting reorganization of the N-terminal ATPase domains. A MutL dimer binds to an 18 bp duplex with a 3'-(dT(20)) single-stranded flanking region, with apparent affinity in the micromolar range. AMPPNP binding to MutL increases its affinity for DNA by a factor of ~10. These results indicate that the presence of phosphate minimizes further MutL oligomerization beyond a dimer and that differences in solution conditions likely explain apparent discrepancies in previous studies of MutL assembly.  相似文献   

19.
The DNA mismatch repair protein, MutS, is a dimeric protein that recognizes mismatched bases and has an intrinsic ATPase activity. Here, a series of Taq MutS proteins having C-terminal truncations in the vicinity of a highly conserved helix-u-turn-helix (HuH) motif are assessed for subunit oligomerization, ATPase activity and DNA mismatch binding. Those proteins containing an intact HuH region are dimers; those without the HuH region are predominantly monomers in solution. Steady-state kinetics of truncated but dimeric MutS proteins reveals only modest decreases in their ATPase activity compared to full-length protein. In contrast, disruption of the HuH region results in a greatly attenuated ATPase activity. In addition, only dimeric MutS proteins are proficient for mismatch binding. Finally, an analysis of the mismatch repair competency of truncated Escherichia coli MutS proteins in a rifampicin mutator assay confirms that the HuH region is critical for in vivo function. These findings indicate that dimerization is critical for both the ATPase and DNA mismatch binding activities of MutS, and corroborate several key features of the MutS structure recently deduced from X-ray crystallographic studies.  相似文献   

20.
A fluorescent method was developed for the detection of unpaired and mismatched DNAs using a MutS-fluorophore conjugate. The fluorophore, 2-(4'-(iodoacetoamido)anilino) naphthalene-6-sulfonic acid (IAANS), was site-specifically attached to the 469 position of Thermus aquaticus (Taq.) MutS mutant (C42A/T469C). The fluorophore labeled residue located at the dimer interface of the protein undergoes a drastic conformational change upon binding with mismatched DNA. The close proximity of the two identical fluorescent molecules presumably causes the self-quenching of the fluorophore, since fluorescence emission of the biosensor decreases with increasing concentrations of mismatched DNA. The order of binding affinity for each unpaired and mismatched DNA obtained by this method was DeltaT (Kd=52 nM)>GT (62 nM)>DeltaC (130 nM)>CT (160 nM)>DeltaG (170 nM)>DeltaA (250 nM)>CC (720 nM)>AT (950 nM). This order is comparable to the previous results of the gel mobility shift assay. Thus, this method can be a simple, useful tool for elucidating the mechanism of DNA mismatch repair as well as a novel probe for detecting of genetic mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号