首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Several strains of the protein-secreting, Gram negative bacterium Myxococcus xanthus were immobilized in carrageenan beads and the production of extracellular proteins was followed.The extracellular proteolytic activity was enhanced and concentrated in the beads. In contrast, the amount of total protein secreted by the cells was not modified by immobilization, but it was also retained and concentrated in the beads, the more, the harder the gel. The amount of slime produced by the cells did not seem to influence protein retention.Foreign proteins expressed from genes cloned in Myxococcus xanthus chromosome can be secreted into the medium by immobilized recombinant strains. A polygalacturonate lyase, expressed from the pelC gene from Erwinia chrysanthemi was only detectable outside of the beads. The pH 2.5 acid phosphatase expressed from the appA gene from Escherichia coli was secreted by immobilized cells at the same rate than did the free cells. It was predominantly found in the medium outside of the beads which represented a first purification and facilitated the continuous production of this protein by immobilized recombinant cells packed in a reactor.  相似文献   

2.
Summary Serratia marcescens and Myxococcus xanthus cells were immobilized in calcium alginate gel beads. Immobilization under various conditions had no effect on the extracellular proteolytic activity of S. marcescens cells. Protease production seemed rather to depend on the free cells in the medium. However, the stability over time of enzyme production was enhanced, as immobilization increased protease production half-life from 5 to 12 days. On the other hand, Myxococcus xanthus produced proteases inside the gel beads which could diffuse into the medium. The proteolytic activity increased as a function of the initial cell content of the beads and of the bead inoculum. Compared to free cells, immobilized cells of Myxococcus xanthus could produce 8 times more proteolytic activity, with a very low free-cell concentration in the medium.  相似文献   

3.
The purpose of this work was to investigate the biodegradation of Sodium dodecylsulphate, a common surfactant used in commercial detergent formulations, by immobilized cells of the surfactant-degrading bacterium Pseudomonas C12B. Cells were immobilized by adsorption on porous glass beads with either unmodified or silanized surface. Data showed a direct relation between the SDS concentration in the medium and formation of the biofilm on glass beads. Bioreactors with Pseudomonas C12B cells immobilized on both types of porous glass beads were prepared. Both types showed equivalent efficiency to remove SDS. This biocatalyst was also effective to remove anionic surfactants from commercial dishwashing liquid (Jar) and shampoo (Clear) under continuous operation.  相似文献   

4.
A method of protecting immobilized cells against inhibitory substances in the fermentation medium was investigated with the aim of developing a process for fermentation under unsterile conditions. It was found that yeast cells could be protected against the inhibitory effects of p-hydroxybenzoic acid esters by co-immobilizing the cells with vegetable oils. In such a system, the cells grow only in the water phase of the gel beads where most components of the fermentation medium are retained. On the other hand, the p-hydroxybenzoate that diffuses into the gel beads is retained mainly in the oil phase of the beads. Consequently, the p-hydroxybenzoate concentration in the water phase remains too low to inhibit the metabolic activities of the immobilized cells. The effectiveness of a vegetable oil in protecting the immobilized cells against an inhibitory substance depends on the partition coefficient of the substance between the oil and water, the concentration of the oil and the initial cell concentration.  相似文献   

5.
Summary Glucoamylase production by Aureobasidium pollulans A-124 was compared in free-living cells, cells immobilized in calcium alginate gel beads aerated on a rotary shaker (agitation rate 150 rpm), and immobilized cells aerated in an air bubble column reactor. Fermentation conditions in the bioreactor were established for bead concentration, substrate (starch) concentration, calcium chloride addition to the fermentation medium, and rate of aeration. Production of glucoamylase was optimized at approximately 1.5 units of enzyme activity/ml medium in the bioreactor under the following conditions: aeration rate, 2.0 vol air per working volume of the bioreactor (280 ml) per minute; gel bead concentration, 30% of the working volume; substrate (starch) concentration, at 0.3% (w/v); addition of calcium chloride to the medium at a final concentration of 0.01 M. Productivity levels were stabilized through the equivalent of ten batches of medium with the original inoculum of immobilized beads. Offprint requests to: M. Petruccioli  相似文献   

6.
To preserve the characteristics of the marine diatom Haslea ostrearia during long term storage, particularly size and shape, the algal cells were immobilized in alginate beads and stored at 4 C at reduced irradiance up to 4 months. Two clones of different size (Ho34, 63 μm and Ho40, 78 μm) were studied. With Ho34, a 10.4% decrease of the size was shown after 120 days, by using the conventional storage management, while it did not exceed 2.2% with immobilized cells. Consequently, H. ostrearia would have auxosporulated after 9 months compared to 52 months. At the same time, the rate of distortion (aberrant valve structure) free Ho34 cells reached 86% while no distorted immobilized cells were observed. Chorophyll content in cells showed that all the cells were alive up to 60 days and after this time cells immobilized in the core of the beads most probably suffered from the poor light diffusion. Culturability of the immobilized cells was tested immediately after their immobilization and after 60 and 120 days of storage. The delay (at least 5) before immobilized cells released from the beads decreased with the time of storage, because of the embrittlement of the beads during the storage. Once in fresh medium, the cells actively multiplied. We concluded that immobilization strongly slowed down the decrease in frustule size with time and allowed the storage of concentrated and calibrated inocula which could be inoculated directly in liquid culture medium without needing to dissolve the beads.  相似文献   

7.
Summary Growing cells ofLactobacillus casei were entrapped in-carrageenan/locust bean gum (LBG) (2:1 or 2.75%:0.25% w/w respectively) mixed gel beads (two ranges of diameter: 0.5–1.0 and 1.0–2.0 mm) to fermentLactobacillus Selection (LBS) medium and produce biomass. The results showed significant influence of initial cell loading of the beads and bead size on the fermentation rate. The highest cell release rates were obtained with 2.75%:0.25%-carrageenan/LBG small diameter gel beads. However, 17 h fermentation of LBS medium with immobilized cells resulted in substantial softening of the gel matrix, prohibiting reuse of immobilized biocatalysts as inoculum in subsequent batch fermentation. A dynamic shear rheological study showed that the gel weakness was related to chemical interactions with the medium. Results indicated that part of the matrix-stabilizing K+ ions diffused back to the medium. Stabilization of the gel was obtained by adding potassium ions to the LBS medium;L. casei growth was not altered by this supplementation. Fermentation of LBS medium supplemented with KCl byL. casei showed higher cell counts in the broth medium with immobilized cells than with free cells, reaching 1010 cells/ml after about 10 h with entrapped cells in 0.5–1.0 mm diameter beads and 17 h with free cells. Counts in the gel beads after fermentation were higher than 1011 cells/ml and bead integrity was maintained throughout fermentation.  相似文献   

8.
Possibilities of using immobilized bacterial cells for waste water treatment in a continuous process was determined. Cells ofComamonas terrigena strain N3H immobilized in calcium alginate beads were successful by used in packed bead-type reactor for continuous biotransformation of the anion-active surfactant dihexyl sulfosuccinate. Absence of calcium ions from the treated medium led to the disruption of alginate beads within 8 d of usage. When the medium was supplemented with Ca2+ ions the beads were stable for at least one month in the continuous process. During the whole time period the transformation effectivity was in the range of 80–100% even at the highest, flow rate of 14 mL/min. Presented at the 4th Mini-Symposium on Biosorption and Microbial Degradation, Prague, Czech Republic, November 26–29, 1996.  相似文献   

9.
Summary The green alga Scenedesmus obliquus was immobilized in Ca-alginate beads. The cell growth after immobilization was studied by cell counting. The nitrite uptake was not affected by immobilization, except that a longer lag phase was observed in immobilized cells than in free ones. That result could be due to a barrier effect of the matrix against nitrite diffusion inside the beads. The treatment of cells by glycerol prior to their immobilization in a batch reactor induced an increase of nitrite uptake by the cells. This effect disappeared after a few runs. The glycerol effect on specific rates seemed also to decrease when the number of immobilized cells increased. This decrease can be related to the decrease of light efficiency as well as substrate accessibility when a high cell concentration was used. Several alternating runs of Tris-HCl buffer containing nitrite growth medium depleted in combined nitrogen were tested. Cellular growth occurred inside the beads up to a maximum followed by a decrease of cell number in the beads.  相似文献   

10.
Thermomucor indicae-seudaticae was immobilized in alginate, κ-carrageenan, agarose, agar, polyacrylamide and loofah (Luffa cylindrica) sponge (as such or coated with alginate/starch/Emerson YpSs agar), and used for the production of glucoamylase in submerged fermentation. The mycelium developed from alginate-immobilized sporangiospores secreted higher glucoamylase titres (22.7 U ml−1) than those immobilized in other gel matrices and the freely growing mycelial pellets (18.5 U ml−1). Loofah network provided a good support for mycelial growth, but the enzyme production was lower than that attained with alginate beads. Glucoamylase production increased with inoculum density and the optimum levels were achieved when 40 calcium alginate beads (∼5 × 106 immobilized spores) were used to inoculate 50 ml production medium. The alginate bead inoculum displayed high storage stability at 4°C and produced comparable enzyme titres up to 120 days. The glucoamylase production by hyphae emerged from the immobilized sporangiospores was almost stable over eight batches of repeated fermentation. Scanning electron micrographs of alginate beads, after batch fermentation, revealed extensive mycelial growth inside and around the beads.  相似文献   

11.
The naphthalenesulfonate-oxidizing bacterium Sphingomonas sp. BN6 was immobilized in calcium alginate. These beads were incubated under aerobic conditions in a medium with the sulfonated azo dye, Mordant Yellow 3 (MY3), and glucose. The immobilized cells converted MY3, but only a marginal turnover of the dye was found under these conditions with freely suspended cells of Sphingomonas sp. BN6. Under anaerobic conditions, suspended cells of Sphingomonas sp. BN6 reductively cleaved the azo bond of MY3 to 6-aminonaphthalene-2-sulfonate (6A2NS) and 5-aminosalicylate. The turnover of MY3 by the immobilized cells under aerobic conditions resulted in the formation of more than equimolar amounts of 5-aminosalicylate, but almost no (6A2NS) was detected. Cells of Sphingomonas sp. BN6 aerobically oxidize 6A2NS to 5-aminosalicylate. It was therefore concluded that the cells in the anaerobic center of the alginate beads reduced MY3 to 6A2NS and 5-aminosalicylate and that 6A2NS was oxidized to 5-aminosalicylate by those cells that were immobilized in the outer aerobic zones of the alginate beads. The presence of oxygen gradients within the alginate beads was verified by using oxygen micro-electrodes. A coimmobilisate of Sphingomonas sp. BN6 with a 5-aminosalicylate degrading bacterium completely degraded MY3. The immobilized cells also converted the sulfonated azo dyes Amaranth and Acid Red␣1. Received: 6 May 1996 / Received revision: 6 August 1996 / Accepted: 12 August 1996  相似文献   

12.
The marine microalga Isochrysisgalbana was cultivated and entrapped inalginate beads for long-term storage. Theentrapped cells were alive and maintainedtheir physiological activities after oneyear of storage in absolute darkness at4 °C without a liquid medium. Thenumber of cells in the beads increased morethan 32 times when they were subsequentlyre-cultured in an aqueous medium for fiveweeks, showing that they had remained aliveduring storage. TEM observations showedthat the entrapped cells reduced their cellcovering and pyrenoid size compared withthe normal free-living cells afterlong-term storage. The algal beads werealso applied to feed and water qualitycontrol in clam cultures' leading to amarked decrease in ammonium concentrations.Algal cells escaped from the beads provideda food source for the clams. This mightreduce the cost of clam culture compared totraditional culture methods. Therefore,immobilized I. galbana can be usedfor long-term preservation of algal stockin the laboratory and applied practicallyto clam cultures.  相似文献   

13.
Summary The gram-negative soil bacterium Myxococcus xanthus was immobilized by entrapping into carrageenan gel beads. Unexpectedly, the growth rate was hardly increased, and the released free cell concentration remained low. However, extracellular proteolytic and bacteriolytic activities produced in the medium or inside the beads was greatly increased and (or) stabilized as compared to the control. These properties might be quite useful in view of using Myxococcus xanthus as a cloning vehicle for secretion of foreign proteins.  相似文献   

14.
Bacteria isolated from infant feces were immobilized in polysaccharide gel beads (2.5% gellan gum, 0.25% xanthan gum) using a two-phase dispersion process. A 52-day continuous culture was carried out in a single-stage chemostat containing precolonized beads and fed with a medium formulated to approximate the composition of infant chyme. Different dilution rates and pH conditions were tested to simulate the proximal (PCS), transverse (TCS), and distal (DCS) colons. Immobilization preserved all nine bacterial groups tested with survival rates between 3 and 56%. After 1 week fermentation, beads were highly colonized with all populations tested (excepted Staphylococcus spp. present in low numbers), which remained stable throughout the 7.5 weeks of fermentation, with variations below 1 log unit. However, free-cell populations in the circulating liquid medium, produced by immobilized cell growth, cell-release activity from gel beads, and free-cell growth, were altered considerably by culture conditions. Compared to the stabilization period, PCS was characterized by a considerable and rapid increase in Bifidobacterium spp. concentrations (7.4 to 9.6 log CFU/mL), whereas Bifidobacterium spp., Lactobacillus spp., and Clostridium spp. concentrations decreased and Staphylococcus spp. and coliforms increased during TCS and DCS. Under pseudo-steady-state conditions, the community structure developed in the chemostat reflected the relative proportions of viable bacterial numbers and metabolites generally encountered in infant feces. This work showed that a complex microbiota such as infant fecal bacteria can be immobilized and used in a continuous in vitro intestinal fermentation model to reproduce the high bacterial concentration and bacterial diversity of the feces inoculum, at least at the genera level, with a high stability during long-term experiment.  相似文献   

15.
Amino acid modified chitosan beads (CBs) for immobilization of lipases from Candida rugosa were prepared by activation of a chitosan backbone with epichlorohydrin followed by amino acid coupling. The beads were analyzed by elemental analysis and solid state NMR with coupling yields of the amino acids ranging from 15 to 60%. The immobilized lipase on unmodified chitosan beads showed the highest immobilization yield (92.7%), but its activity was relatively low (10.4%). However, in spite of low immobilization yields (15–50%), the immobilized lipases on the amino acid modified chitosan beads showed activities higher than that of the unmodified chitosan beads, especially on Ala or Leu modified chitosan beads (Ala-CB or Leu-CB) with 49% activity for Ala-CB and 51% for Leu-CB. The immobilized lipases on Ala-CB improved thermal stability at 55 °C, compared to free and immobilized lipases on unmodified chitosan beads and the immobilized lipase on Ala-CB retained 93% of the initial activity when stored at 4 °C for 4 weeks. In addition, the activity of the immobilized lipase on Ala-CB retained 77% of its high initial activity after 10 times of reuse. The kinetic data (kcat/Km) supports that the immobilized lipase on Ala-CB can give better substrate specificity than the unmodified chitosan beads.  相似文献   

16.
Summary Protoplasts released with high efficiency from vegetative and productive hyphae ofClaviceps purpurea were immobilized in 2% Ca-alginate. The yield of active immobilized protoplasts depended upon the age of the mycelium from which protoplasts were derived and was found to be 25–43% in comparison with native hyphae. During incubation in a modified production medium immobilized protoplasts were stable for at least 10–12 days. No external growth of regenerated hyphae from spherical beads of alginate gel with entrapped protoplasts was observed for 13–15 days of the batchwise incubation.  相似文献   

17.
The semicontinuous production of red pigment by immobilized cells ofBacillus sp. BH-99 was investigated in comparison with free cells. The red pigment produced highest productivity under the conditions of aeration of 0.2 mL/min and 2 mm diameter of gel beads by using 3.0% sodium alginate. Semicontinuous production by immobilized cells showed the highest productivity with replacement of fresh production medium in every 72 h for fourth fermentation cycle following the conditions of red pigment productivity.  相似文献   

18.
固定化乳酸乳球菌连续生产Nisin的研究   总被引:6,自引:0,他引:6  
以海藻酸钙为材料 ,固定乳酸乳球菌 (Lactococcuslactissubsp .lactis)SM5 2 6 ,研究不同条件对Nisin合成的影响。结果表明 ,利用 2 %海藻酸钠在 1 0mmol LCaCl2 条件下 ,得到的固定化细胞颗粒稳定性较好 ,可维持 90h无破裂 ;在发酵过程中SYS3培养基中的无机盐成分尤其磷酸盐对固定化颗粒有破坏作用 ;用mSYS3培养基代替SYS3 ,通过 72h三批次循环的半连续培养 ,Nisin活性为 85 0IU mL ,无明显的细胞渗漏现象。连续化生产 70h ,Nisin活性达 1 1 5 0IU mL ,相当于游离细胞的发酵水平。  相似文献   

19.
Saccharomyces cerevisiae cells were immobilized in calcium alginate beads for use in the continuous production of ethanol. Yeasts were grown in medium supplemented with ethanol to selectively screen for a culture which showed the greatest tolerance to ethanol inhibition. Yeast beads were produced from a yeast slurry containing 1.5% alginate (w/v) which was added as drops to 0.05M CaCl2 solution. To determine their optimum fermentation parameters, ethanol production using glucose as a substrate was monitored in batch systems at varying physiological conditions (temperature, pH, ethanol concentration), cell densities, and gel concentration. The data obtained were compared to optimum free cell ethanol fermentation parameters. The immobilized yeast cells examined in a packed-bed reactor system operated under optimized parameters derived from batch-immobilized yeast cell experiments. Ethanol production rates, as well as residual sugar concentration were monitored at different feedstock flow rates.  相似文献   

20.
Bioprocesses using filamentous fungi immobilized in inert supports present many advantages when compared to conventional free cell processes. However, assessment of the real advantages of the unconventional process demands a rigorous study of the limitations to diffusional mass transfer of the reagents, especially concerning oxygen. In this work, a comparative study was carried out on the cephalosporin C production process in defined medium containing glucose and sucrose as main carbon and energy sources, by free and immobilized cells of Cephalosporium acremonium ATCC 48272 in calcium alginate gel beads containing alumina. The effective diffusivity of oxygen through the gel beads and the effectiveness factors related to the respiration rate of the microorganism were determined experimentally. By applying Monod kinetics, the respiration kinetics parameters were experimentally determined in independent experiments in a complete production medium. The effectiveness factor experimental values presented good agreement with the theoretical values of the approximated zero‐order effectiveness factor, considering the dead core model. Furthermore, experimental results obtained with immobilized cells in a 1.7‐L tower bioreactor were compared with those obtained in 5‐L conventional fermentor with free cells. It could be concluded that it is possible to attain rather high production rates working with relatively large diameter gel beads (ca. 2.5 mm) and sucrose consumption‐based productivity was remarkably higher with immobilized cells, i.e., 0.33 gCPC/kg sucrose/h against 0.24 gCPC/kg sucrose/h in the aerated stirred tank bioreactor process. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 63: 593–600, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号