首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Filamentous hemagglutinin (FHA) is a critically important virulence factor produced by Bordetella species that cause respiratory infections in humans and other animals. It is also a prototypical member of the widespread two partner secretion (TPS) pathway family of proteins. First synthesized as a ~370 kDa protein called FhaB, its C‐terminal ~1,200 amino acid ‘prodomain’ is removed during translocation to the cell surface via the outer membrane channel FhaC. Here, we identify CtpA as a periplasmic protease that is responsible for the regulated degradation of the prodomain and for creation of an intermediate polypeptide that is cleaved by the autotransporter protease SphB1 to generate FHA. We show that the central prodomain region is required to initiate degradation of the prodomain and that CtpA degrades the prodomain after a third, unidentified protease (P3) first removes the extreme C‐terminus of the prodomain. Stepwise proteolysis by P3, CtpA and SphB1 is required for maturation of FhaB, release of FHA into the extracellular milieu, and full function in vivo. These data support a substantially updated model for the mechanism of secretion, maturation and function of this model TPS protein.  相似文献   

2.
Two‐partner secretion (TPS) systems use β‐barrel proteins of the Omp85‐TpsB superfamily to transport large exoproteins across the outer membranes of Gram‐negative bacteria. The Bordetella FHA/FhaC proteins are prototypical of TPS systems in which the exoprotein contains a large C‐terminal prodomain that is removed during translocation. Although it is known that the FhaB prodomain is required for FHA function in vivo, its role in FHA maturation has remained mysterious. We show here that the FhaB prodomain is required for the extracellularly located mature C‐terminal domain (MCD) of FHA to achieve its proper conformation. We show that the C‐terminus of the prodomain is retained intracellularly and that sequences within the N‐terminus of the prodomain are required for this intracellular localization. We also identify sequences at the C‐terminus of the MCD that are required for release of mature FHA from the cell surface. Our data support a model in which the intracellularly located prodomain affects the final conformation of the extracellularly located MCD. We hypothesize that maturation triggers cleavage and degradation of the prodomain.  相似文献   

3.
The major adhesin of Bordetella pertussis , filamentous haemagglutinin (FHA), is produced and secreted at high levels by the bacterium. Mature FHA derives from a large precursor, FhaB, that undergoes several post-translational maturations. In this work, we demonstrate by site-directed mutagenesis that the N-terminal signal peptide of FHA is composed of 71 amino acids, including a 22-residue-long 'N-terminal extension' sequence. This sequence, although highly conserved in various other secretory proteins, does not appear to play an essential part in FHA secretion, as shown by deletion mutagenesis. The entire N-terminal signal region of FhaB is removed in the course of secretion by proteolytic cleavage at a site that corresponds to a Lep signal peptidase recognition sequence. After this maturation, the N-terminal glutamine residue is modified to a pyroglutamate residue. This modification is not crucial for heparin binding, haemagglutination or secretion. Interestingly, however, the modification is absent from Escherichia coli secreted FHA derivatives. In addition, it is dependent in B. pertussis on the presence of all three cysteines contained in the signal peptide of FhaB. These observations suggest that it does not occur spontaneously but perhaps requires a specific enzymatic machinery.  相似文献   

4.
Sorting of proteins destined to the surface or the extracellular milieu is mediated by specific machineries, which guide the protein substrates towards the proper route of secretion and determine the compartment in which folding occurs. In Gram-negative bacteria, the two-partner secretion (TPS) pathway is dedicated to the secretion of large proteins rich in β-helical structure. The secretion of the filamentous haemagglutinin (FHA), a 230 kDa adhesin of Bordetella pertussis , represents a model TPS system. FHA is exported by the Sec machinery and transits through the periplasm in an extended conformation. From there it is translocated across the outer membrane by its dedicated transporter FhaC to finally fold into a long β-helix at the cell surface in a progressive manner. In this work, we show that B. pertussis lacking the periplasmic chaperone/protease DegP has a strong growth defect at 37°C, and the integrity of its outer membrane is compromised. While both phenotypes are significantly aggravated by the presence of FHA, the chaperone activity of DegP markedly alleviates the periplasmic stress. In vitro , DegP binds to non-native FHA with high affinity. We propose that DegP chaperones the extended FHA polypeptide in the periplasm and is thus involved in the TPS pathway.  相似文献   

5.
The 220 kDa filamentous haemagglutinin (FHA) is a major adhesin of Bordetella pertussis and is produced from a large precursor designated FhaB. Although partly surface associated, it is also very efficiently secreted into the extracellular milieu. Its secretion depends on the outer membrane accessory protein FhaC. An 80 kDa N-terminal derivative of FHA, named Fha44, can also be very efficiently secreted in a FhaC-dependent manner, indicating that all necessary secre tion signals are localized in the N-terminal region of FhaB. A comparison of predicted and apparent sizes of FHA derivatives, in addition to immunoblot analyses of cell-associated and secreted FHA polypeptides, indicated that FhaB undergoes N-terminal maturation by the cleavage of an 8–9 kDa segment. However, phenotypic analyses of translational lacZ and phoA fusions showed that this segment does not function as a typical signal peptide. Co-expression of the Fha44-encoding gene with fhaC also did not allow for secretion of Fha44 in Escherichia coli. High levels of secretion could, however, be observed when the OmpA signal peptide was fused to the N-terminal end of Fha44. Regardless of the OmpA signal peptide-Fha44 fusion point, the E. coli-secreted Fha44 had the same Mr as that secreted by B. pertussis, indicating that the N-terminal proteolytic maturation does not require a B. perfussis-specific factor. Similar to FHA, the B. pertussis-secreted Fha44 contains an as yet uncharacterized modification at its N-terminus. This modification did not occur in E. coli and is therefore not required for secretion. The N-terminus of Fha44 secreted by E. coli was determined and found to correspond to the 72nd residue after the first in-frame methionine of FhaB. The N-terminal modification was also found not to be required for haemagglutination or interaction with sulphated glycoconjugates.  相似文献   

6.
FhaC is an outer membrane transporter from Bordetella pertussis belonging to the t wo‐ p artner s ecretion (TPS) pathway with its primary role being the secretion of the virulence factor f ilamentous h aem a gglutinin (FHA). FhaC serves as a model transporter of the TPS pathway and significant work has been done to characterize the role of FhaC in FHA secretion. Recent studies characterized interactions between FHA and the POTRA domains of FhaC, suggesting that secretion may involve a successive translocation mechanism mediated by β‐augmentation and/or electrostatic interactions. Moreover, it was also shown that reconstituted FhaC is necessary and sufficient to transport FHA into proteoliposomes. While the crystal structure of FhaC clearly suggests a role in transport, the putative transport pore is plugged by an N‐terminal α‐helix (H1 helix) that occludes access by FHA. Therefore, it has been proposed that the H1 helix must be expelled from the pore in order for secretion of FHA to occur. However, this has yet to be shown experimentally. Guérin et al. (2014) report the first direct experimental evidence to show that the FhaC H1 helix is quite dynamic and exchanges between closed and open states upon interaction with FHA.  相似文献   

7.
Widespread in Gram-negative bacteria, the two-partner secretion (TPS) pathway mediates the secretion of large, β-helical 'TpsA' proteins with various functions. TpsA proteins harbour a conserved, N-proximal TPS domain essential for secretion. TpsB transporters specifically recognize their TpsA partners in the periplasm and mediate their translocation across the outer membrane through a hydrophilic channel. The FHA/FhaC pair of Bordetella pertussis represents a model TPS system. FhaC is composed of a β barrel preceded by two periplasmic POTRA domains in tandem. Here we show that both POTRAs are involved in FHA recognition. Surface plasmon resonance analyses indicated an interaction of micromolar affinity between the POTRAs and the TPS domain with fast association and dissociation steps, consistent with the transient character of this interaction in vivo. Major interaction sites in POTRAs correspond to hydrophobic grooves formed by a β sheet edge and the flanking α helix, well-suited to accommodate extended, amphipathic strands of the substrate and consistent with β augmentation. The initial recruitment of the TPS domain to POTRAs appears to be facilitated by electrostatic attractions. A domain corresponding to the first part of the repeat-rich central region of FHA is also recognized by the POTRAs, suggesting successive interactions in the course of secretion.  相似文献   

8.
The sorting of proteins to their proper subcellular compartment requires specific addressing signals that mediate interactions with ad hoc transport machineries. In Gram-negative bacteria, the widespread two-partner secretion (TPS) pathway is dedicated to the secretion of large, mostly virulence-related proteins. The secreted TpsA proteins carry a characteristic 250-residue-long N-terminal 'TPS domain' essential for secretion, while their TpsB transporters are pore-forming proteins that specifically recognize their respective TpsA partners and mediate their translocation across the outer membrane. However, the nature of the secretion signal has not been elucidated yet. The whooping cough agent Bordetella pertussis secretes its major adhesin filamentous haemagglutinin (FHA) via the TpsB transporter FhaC. In this work, we show specific interactions between an N-terminal fragment of FHA containing the TPS domain and FhaC by using two different techniques, an overlay assay and a pull-down of the complex. FhaC recognizes only non-native conformations of the TPS domain, corroborating the model that in vivo, periplasmic FHA is not yet folded. By generating single amino acid substitutions, we have identified interaction determinants forming the secretion signal. They are found unexpectedly far into the TPS domain and include both conserved and variable residues, which most likely explains the specificity of the TpsA-TpsB interaction. The N-terminal domain of FhaC is involved in the FHA-FhaC interaction, in agreement with its proposed function and periplasmic localization.  相似文献   

9.
Filamentous haemagglutinin (FHA) is the major adhesin of Bordetella pertussis, the whooping cough agent. FHA is synthesized as a 367-kDa precursor harbouring a remarkably long signal peptide with an N-terminal extension that is conserved among related virulence proteins. FHA is secreted via the two-partner secretion pathway that involves transport across the outer membrane by a cognate transporter protein. Here we have analyzed the mechanism by which FHA is targeted to, and translocated across, the inner membrane. Studies were performed both in vitro using Escherichia coli inside-out inner membrane vesicles and in vivo by pulse-chase labelling of Bordetella pertussis cells. The data collectively indicate that like classical periplasmic and outer membrane proteins, FHA requires SecA and SecB for its export through the SecYEG translocon in the inner membrane. Although short nascent chains of FHA were found to cross-link to signal recognition particle (SRP), we did not obtain indication for an SRP-dependent, co-translational membrane targeting provoked by the FHA signal sequence. Our results rule out that the extended signal peptide of FHA determines a specific mode of membrane targeting but rather suggest that it might influence the export rate at the inner membrane.  相似文献   

10.
Proteins of Gram-negative bacteria destined to the extracellular milieu must cross the two cellular membranes and then fold at the appropriate time and place. The synthesis of a precursor may be a strategy to maintain secretion competence while preventing aggregation or premature folding (especially for large proteins). The secretion of 230 kDa filamentous haemagglutinin (FHA) of Bordetella pertussis requires the synthesis and the maturation of a 367 kDa precursor that undergoes the proteolytic removal of its approximately 130 kDa C-terminal intramolecular chaperone domain. We have identified a specific protease, SphB1, responsible for the timely maturation of the precursor FhaB, which allows for extracellular release of FHA. SphB1 is a large exported protein with a subtilisin-like domain and a C-terminal domain typical of bacterial autotransporters. SphB1 is the first described subtilisin-like protein that serves as a specialized maturation protease in a secretion pathway of Gram-negative bacteria. This is reminiscent of pro-protein convertases of eukaryotic cells.  相似文献   

11.
The cytokine macrophage migration inhibitory factor (MIF) is inducibly secreted by immune cells and certain other cell types to critically participate in the regulation of the host immune response. However, MIF does not contain a N-terminal signal sequence and the mechanism of MIF secretion is unknown. Here we show in a model of endotoxin-stimulated THP-1 monocytes that MIF does not enter the endoplasmatic reticulum and that MIF secretion is not inhibited by monensin or brefeldin A, demonstrating that MIF secretion occurs via a non-classical export route. Glyburide and probenicide but not other typical inhibitors of non-classical protein export strongly block MIF secretion, indicating that the export pathway of MIF involves an ABCA1 transporter.  相似文献   

12.
Gram-negative bacteria contain multiple secretion pathways that facilitate the translocation of proteins across the outer membrane. The two-partner secretion (TPS) system is composed of two essential components, a secreted exoprotein and a pore-forming beta barrel protein that is thought to transport the exoprotein across the outer membrane. A putative TPS system was previously described in the annotation of the genome of Escherichia coli O157:H7 strain EDL933. We found that the two components of this system, which we designate OtpA and OtpB, are not predicted to belong to either of the two major subtypes of TPS systems (hemolysins and adhesins) based on their sequences. Nevertheless, we obtained direct evidence that OtpA and OtpB constitute a bona fide TPS system. We found that secretion of OtpA into the extracellular environment in E. coli O157:H7 requires OtpB and that when OtpA was produced in an E. coli K-12 strain, its secretion was strictly dependent on the production of OtpB. Furthermore, using OtpA/OtpB as a model system, we show that protein secretion via the TPS pathway is extremely rapid.  相似文献   

13.
Many extracytoplasmic proteins undergo proteolytic processing during secretion, which is essential to their maturation. These post-translational modifications are carried out by specific enzymes whose subcellular localization is important for function. We have described a maturation subtilisin in Gram-negative Bordetella pertussis, the autotransporter SphB1. SphB1 catalyses the maturation of the precursor of the adhesin filamentous haemagglutinin (FHA) at the bacterial surface, in addition to the processing of its own precursor. Here, we show that the outer membrane anchor of SphB1 is crucial to its function, as evidenced by the lack of FHA maturation in a strain releasing a variant of SphB1 into the milieu. In contrast, surface association is not required for automaturation of SphB1. The surface retention of mature SphB1 is mediated by lipidation of the protein. The tethered protease appears to be stabilized by unusual Gly- and Pro-rich motifs at the N-terminus of the protein. This represents a new mode of localization for a protease involved in protein secretion.  相似文献   

14.
Many virulence factors of pathogenic microorganisms are presented at the cell surface. However, protein secretion across the outer membrane of Gram-negative bacteria remains poorly understood. Here we used the extremely efficient secretion of the Bordetella pertussis filamentous hemagglutinin (FHA) to decipher this process. FHA secretion requires a single specific accessory protein, FhaC, the prototype of a family of proteins necessary for the extracellular localization of various virulence proteins in Gram-negative bacteria. We show that FhaC is heat-modifiable and localized in the outer membrane. Circular dichroism spectra indicated that FhaC is rich in beta-strands, in agreement with structural predictions for this protein. We further demonstrated that FhaC forms pores in artificial membranes, as evidenced by single-channel conductance measurements through planar lipid bilayers, as well as by liposome swelling assays and patch-clamp experiments using proteoliposomes. Single-channel conductance appeared to fluctuate very fast, suggesting that the FhaC channels frequently assume a closed conformation. We thus propose that FhaC forms a specific beta-barrel channel in the outer membrane for the outward translocation of FHA.  相似文献   

15.
Type III secretion systems are used by many Gram‐negative pathogens to directly deliver effector proteins into the cytoplasm of host cells. To accomplish this, bacteria secrete translocator proteins that form a pore in the host‐cell membrane through which the effector proteins are then introduced into the host cell. Evidence from multiple systems indicates that the pore‐forming translocator proteins are exported before effectors, but how this secretion hierarchy is established is unclear. Here we used the Pseudomonas aeruginosa translocator protein PopD as a model to identify its export signals. The N‐terminal secretion signal and chaperone, PcrH, are required for export under all conditions. Two novel signals in PopD, one proximal to the chaperone binding site and one at the very C‐terminus of the protein, are required for export of PopD before effector proteins. These novel export signals establish the translocator–effector secretion hierarchy, which in turn, is critical for the delivery of effectors into host cells.  相似文献   

16.
Many virulence factors of gram-negative bacteria are secreted by the Type V secretion system via the autotransporter (AT) and two-partner secretion (TPS) pathways. AT proteins effect their own secretion. They comprise three domains: the amino-terminal leader sequence; the secreted passenger domain; and the translocator domain that forms the secretory channel. In the TPS pathway, the passenger and translocator domains are translated as separate proteins. In a previous publication, we proposed a beta-helical structure for the TPS passenger domain of the filamentous hemagglutinin (FHA) of Bordetella pertussis which contains two tracts, R1 and R2, of 19-residue sequence repeats and built molecular models for the R1 and R2 beta-helices. Here, we compare the structure predicted for R1 with the recently determined crystal structure of a fragment containing three R1 repeats and find close agreement, with an RMSD of 1.1A. In the interim, the number of known AT and TPS protein sequences has increased to >1000. To investigate the incidence of beta-helical structures among them, we carried out a sequence-based analysis and conclude that, despite wide diversity in the sizes and sequences of passenger domains, most of them contain beta-solenoids that we classify into thirteen types based on distinctive properties of their beta-coils (repeat length, numbers and lengths of beta-strands and turns, cross-sectional shape, presence of specific residues in certain positions) summarized in a 2D coil template. Some coil types are typical for conventional AT proteins, others, for TPS or trimeric AT proteins. Some beta-solenoids consist of stacked subdomains with coils of different types. To illustrate model-building from a coil template, we modeled a type-T4 beta-solenoid for TibA of Escherichia coli which is predicted to have two conserved polar residues, Thr and Gln, in interior positions.  相似文献   

17.
Pseudomonas aeruginosa uses a type III secretion system to inject protein effectors into a targeted host cell. Effector secretion is triggered by host cell contact. How effector secretion is prevented prior to cell contact is not well understood. In all secretion systems studied to date, the needle tip protein is required for controlling effector secretion, but the mechanism by which needle tip proteins control effector secretion is unclear. Here we present data that the P. aeruginosa needle tip protein, PcrV, controls effector secretion by assembling into a functional needle tip complex. PcrV likely does not simply obstruct the secretion channel because the pore‐forming translocator proteins can still be secreted while effector secretion is repressed. This finding suggests that PcrV controls effector secretion by affecting the conformation of the apparatus, shifting it from the default, effector secretion ‘on’ conformation, to the effector secretion ‘off’ conformation. We also present evidence that PcrG, which can bind to PcrV and is also involved in controlling effector export, is cytoplasmic and that the interaction between PcrG and PcrV is not required for effector secretion control by either protein. Taken together, these data allow us to propose a working model for control of effector secretion by PcrG and PcrV.  相似文献   

18.
Secreted proteins are crucial to the arsenal of bacterial pathogens. Although optimal activity of these proteins is likely to require precise regulation of release, the signalling events that trigger secretion are poorly understood. Here, we identify a threonine phosphorylation event that post-translationally regulates the Hcp secretion island-I-encoded type VI secretion system of Pseudomonas aeruginosa (H-T6SS). We show that a serine-threonine kinase, PpkA, is required for assembly of the H-T6SS and for secretion of Hcp1. PpkA activity is antagonized by PppA, a Ser-Thr phosphatase. These proteins exhibit reciprocal effects on the H-T6SS by acting on an FHA domain-containing protein, termed Fha1. Colocalization experiments with the T6S AAA+ family protein, ClpV1, indicate that Fha1 is a core scaffolding protein of the H-T6SS. Mutations affecting this H-T6S regulatory pathway provide a molecular explanation for the variation in Hcp1 secretion among clinical P. aeruginosa isolates. This mechanism of triggering secretion may be general, as many T6SSs contain orthologues of these proteins. Post-translational regulation of protein secretion by Thr phosphorylation is unprecedented in bacteria, and is likely to reflect the requirement for T6S to respond rapidly and reversibly to its environment.  相似文献   

19.
Streptococcus pneumoniae is a major causative agent of otitis media, pneumonia, bacteremia, and meningitis. Pneumolysin (Ply), a member of the cholesterol-dependent cytolysins (CDCs), is produced by virtually all clinical isolates of S. pneumoniae, and ply mutant strains are severely attenuated in mouse models of colonization and infection. In contrast to all other known members of the CDC family, Ply lacks a signal peptide for export outside the cell. Instead, Ply has been hypothesized to be released upon autolysis or, alternatively, via a nonautolytic mechanism that remains undefined. We show that an exogenously added signal sequence is not sufficient for Sec-dependent Ply secretion in S. pneumoniae but is sufficient in the surrogate host Bacillus subtilis. Previously, we showed that Ply is localized primarily to the cell wall compartment in the absence of detectable cell lysis. Here we show that Ply released by autolysis cannot reassociate with intact cells, suggesting that there is a Ply export mechanism that is coupled to cell wall localization of the protein. This putative export mechanism is capable of secreting a related CDC without its signal sequence. We show that B. subtilis can export Ply, suggesting that the export pathway is conserved. Finally, through truncation and domain swapping analyses, we show that export is dependent on domain 2 of Ply.  相似文献   

20.
A collection of large virulence exoproteins, including Ca2+-independent cytolysins, an iron acquisition protein and several adhesins, are secreted by the two-partner secretion (TPS) pathway in various Gram-negative bacteria. The hallmarks of the TPS pathway are the presence of an N-proximal module called the 'secretion domain' in the exoproteins that we have named the TpsA family, and the channel-forming beta-barrel transporter proteins we refer to as the TpsB family. The genes for cognate exoprotein and transporter protein are usually organized in an operon. Specific secretion signals are present in a highly conserved region of the secretion domain of TpsAs. TpsBs probably serve as specific receptors of the TpsA secretion signals and as channels for the translocation of the exoproteins across the outer membrane. A subfamily of transporters also mediates activation of their cognate cytolysins upon secretion. The exoproteins are synthesized as precursors with an N-terminal cleavable signal peptide, and a subset of them carries an extended signal peptide of unknown function. According to our current model, the exoproteins are probably translocated across the cytoplasmic membrane in a Sec-dependent fashion, and their signal peptide is probably processed by a LepB-type signal peptidase. The N-proximal secretion domain directs the exoproteins towards their transporters early, so that translocation across both membranes is coupled. The exoproteins transit through the periplasm in an extended conformation and fold progressively at the cell surface before eventually being released into the extracellular milieu. Several adhesins also undergo extensive proteolytic processing upon secretion. The genes of many new TpsAs and TpsBs are found in recently sequenced genomes, suggesting that the TPS pathway is widespread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号