首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using [U-14C]phosphatidylinositol as substrate, Ca2+-dependent phospholipase C activity was detected in a group of bovine adrenal medullary proteins that bind to chromaffin granule membranes in the presence of Ca2+ ("chromobindins," Creutz, C. E., Dowling, L. G., Sando, J. J., Villar-Palasi, C., Whipple, J. H., and Zaks, W. J. (1983) J. Biol. Chem. 258, 14664-14674). The activity was maximal at neutral pH and represented an 80- to 240-fold enrichment of adrenal medullary cytosol phospholipase C activity measured at pH 7.3. The stimulation of activity by Ca2+ was complex; no activity was present in the absence of Ca2+, 25% activation occurred at 1 microM Ca2+, and full activation at 5 mM Ca2+. The enzyme bound to chromaffin granule membranes in the presence of 2 mM Ca2+ but was released at 40 microM Ca2+, suggesting that intrinsic enzyme activity may be regulated by [Ca2+] at 1 microM, but additional activation at higher concentrations of Ca2+ is seen in vitro as a result of Ca2+-dependent binding of the active enzyme to substrate-containing membranes. This enzyme may generate diacylglycerol and phosphorylated inositol to act as intracellular messengers in the vicinity of the chromaffin granule membrane during the process of exocytosis.  相似文献   

2.
In the presence of Ca2+ (2.5 mM) and using [14C]arachidonoyl phosphatidylinositol (PI) membrane as substrate, phosphatidylinositol-specific phospholipase C (PI-PLC) (EC 3.1.4.10) in rat brain synaptosomes was activated by deoxycholate but not taurocholate. Calcium stimulated enzymic hydrolysis by both detergents, but the stimulatory effect of taurocholate was less than that of deoxycholate. Peak stimulation for deoxycholate was observed at 1 mg/ml, whereas that for taurocholate was 4 mg/ml. When 1 mM EDTA was added to the taurocholate (4 mg/ml) and Ca2+ (3.5 mM) system, synaptosomal PI-PLC activity was greatly stimulated, to almost the same level as the deoxycholate + Ca2+ system. This system required the presence of all three factors, and EGTA could not effectively replace EDTA in the stimulatory action. The detergent-induced hydrolysis of synaptosomal PI by the deoxycholate + Ca2+ and the taurocholate + Ca2+ + EDTA systems was strongly inhibited by divalent metal ions such as Zn2+, Cu2+, Pb2+, and Fe2+, whereas Mg2+ and Ca2+ were ineffective. Nevertheless, only the deoxycholate + Ca2+ system was responsive to enzyme inhibition by membrane-perturbing agents such as lysophospholipids and free fatty acids. The specific requirement for EDTA in the taurocholate system may be due to the release of a pool of inhibitory divalent metal ions from the membranes.  相似文献   

3.
The hydrolysis of [3H]phosphatidylinositol 4,5-bisphosphate (PIP2) by cytosolic phospholipase C from human platelets was determined. Cytosolic fractions were prepared from platelets that had or had not been preactivated with thrombin. Thrombin pretreatment did not affect cytosolic phospholipase C activity. In both cytosolic fractions, phospholipase C was activated by GTP and GTP gamma S. This action is observed in the presence of 2 mM EGTA. GDP was as effective as GTP in stimulating cytosolic phospholipase C in the presence of Ca2+ or EGTA. Partially purified phospholipase C obtained from platelet cytosol is activated by GTP, but not by GTP gamma S, in the presence of 2 mM EGTA. However, in the presence of 6 microM Ca2+, both GTP and GTP gamma S stimulated the partially purified phospholipase C. Our present information indicates that GTP and GDP have a direct effect on the cytosolic phospholipase C.  相似文献   

4.
Adenylate cyclase of plasma membranes from the nonpregnant rabbit myometrium shows the maximum activity at pH 7.7-7.9, is characterized by apparent Km for ATP amounting to 0.38 +/- 0.09 mM, V--125 +/- 34.4 pmol min/mg protein, is activated at most by 15-20 mM Mg2+ and F-. Adenylate cyclase of plasma membranes from the pregnant rabbit myometrium is characterized by apparent Km for ATP amounting to 0.74 +/- 0.06 mM, V--77.3 +/- 6.0 pmol/min/mg protein, is activated at most by 5-10 mM Mg2+ and 10-15 mM F-; the pH optimum for the adenylate cyclase in this functional state is 7.3. Adenylate cyclase in the state of labour is characterized by apparent Km for ATP amounting to 0.46 +/- 0.11 mM, V--34.8 +/- 4.6 pmol/min/mg protein, is activated at most by 10-15 mM Mg2+ and F-, shows the same activity at pH 7.3-8.5. Adenylate cyclase of myometrium in three investigated states is activated by 2 mM EGTA; 10(-7) M Ca2+ decreases activation caused by EGTA; higher concentrations of Ca2+ decrease the basal activity of the enzyme.  相似文献   

5.
Islet cell plasma membranes contain a calcium-stimulated and magnesium-dependent ATPase (Ca2+ + Mg2+)-ATPase) which requires calmodulin for maximum enzyme activity (Kotagal, N., Patke, C., Landt, M., McDonald, J., Colca, J., Lacy, P., and McDaniel, M. (1982) FEBS Lett. 137, 249-252). Investigations indicated that exogenously added calmodulin increases the velocity and decreases the Km for Ca2+ of the high affinity (Ca2+ + Mg2+)-ATPase. These studies routinely employed the chelator ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) to maintain Ca2+ concentrations in the submicromolar range. During the course of these investigations, it was found unexpectedly that increasing the concentrations of EGTA (0.1-4 mM) and total calcium in the media, while maintaining constant free Ca2+ levels, increased the velocity of the high affinity (Ca2+ + Mg2+)-ATPase. The free calcium concentrations under these conditions were verified by a calcium-sensitive electrode. The (Ca2+ + Mg2+)-ATPase maximally activated by 2-4 mM EGTA was not further stimulated by calmodulin, whereas camodulin stimulation increased as the concentration of EGTA in the media was decreased. A similar enhancement by Ca-EGTA was observed on active calcium transport by the plasma membrane-enriched fraction. Moreover, Ca-EGTA had a negligible effect on both active calcium transport as well as Ca2+-stimulated ATPase activity by the islet cell endoplasmic reticulum, processes which are not stimulated by calmodulin. The results indicate that stimulation by Ca-EGTA may be used to differentiate calcium transport systems by these subcellular organelles. Furthermore, the concentration of EGTA routinely employed to maintain free Ca2+ levels may itself obscure effects of calmodulin and other physiological agents on calcium-dependent activities.  相似文献   

6.
The activity of Ca-pump in inside-out oriented vesicles obtained from erythrocyte membranes after their 30 min treatment with EGTA at 20 degrees C (membranes A) and 37 degrees C (membranes B) was investigated. It was shown that in membranes A placed into an incubation medium containing 0.1 mM EGTA (pH 7.4) the overall effect of exogenous calmodulin is due to the increase in the maximal activity of the enzyme, its affinity for Ca2+ being unaffected thereby. In membranes B placed into the same medium (pH 6.75) the activation of the Ca-pump by calmodulin is due to the increased affinity for Ca2+ at a constant maximal activity of the enzyme. The dependencies of the value of the calmodulin-stimulated component of membranes A and the Ca2+-binding capacity of calmodulin measured by the intensity of N-phenyl-1-naphthylamine fluorescence on the concentration of free Ca2+ are coincident. In the case of membranes B, the stimulation of Ca-pump by calmodulin occurs at much lower Ca2+ concentrations than the Ca2+ binding-induced conformational shifts in calmodulin. The experimental results suggest that the affinity of the Ca-pump for Ca2+ may affect calmodulin existing in a Ca2+-independent state. The hydrophobic interactions between the Ca-calmodulin complex and the Ca-ATPase molecule are apparently essential for the regulation of the maximal enzyme activity.  相似文献   

7.
Phospholipase A2 activity in sonicates and acid extracts of ejaculated, washed human sperm was measured using [1-14C] oleate-labeled autoclaved E. coli and 1-[1-14C] stearoyl-2-acyl-3-sn- glycerophosphorylethanolamine as substrates. Phospholipase A was optimally active at pH 7.5, was calcium-dependent, and exclusively catalyzed the release of fatty acid from the 2-position of phospholipids. The activity was membrane-associated, and was solubilized by extraction with 0.18 N H2SO4. Acid extracts of human sperm had the highest specific activity (1709 nmols /h per mg), followed by mouse, rabbit and bull, which were 105, 36 and 1.7 nmols /h per mg, respectively. para-bromophenacyl bromide inhibited human sperm phospholipase A2 activity, but mepacrine was without effect. In the presence of 1.0 mM added CaCl2, phospholipase A2 activity was inhibited by Zn2+ and Mn2+; whereas Cu2+, Cd2+, Mg2+, or Sr2+ had no effect. Zn2+ stimulated activity at low concentrations (10(-6) to 10(-8) M), and inhibited activity in a dose-dependent manner at concentrations of 10(-5) M. The extent of stimulation by low concentrations of Zn2+ was dependent on Ca2+ concentration; at 10(-7) M, Zn2+ activity was stimulated 160% with 0.5 mM CaCl2, and only 120% with 1.0 mM CaCl2. At low concentrations (10(-5) to 10(-7) M), methoxyverapamil (D600) and trifluoperazine stimulated human sperm phospholipase A2 activity, and trifluoperazine but not D600 produced almost complete inhibition between 10(-5) and 10(-4) M of the drug. The significance of human sperm phospholipase A2 activity and its modulation by Ca2+, Zn2+ and Mn2+ in the sperm acrosome reaction is discussed.  相似文献   

8.
G protein regulation of human platelet membrane phospholipase A2 activity was investigated at pH 8.0 and 9.0 by studying the effects of the nonhydrolyzable GTP analogue, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), and of F-/Al3+ ions on arachidonic acid (AA) release. The membrane acted as the source of the enzyme, the substrate, and the G protein. At pH 8.0, 10 and 100 microM GTP gamma S stimulated AA mobilization at least 6-fold. Optimum AA release conditions required 1 mM Ca2+ and 5 mM Mg2+. Nonspecific nucleotide effect was excluded since similar stimulatory effects on AA release were not observed by ATP, GTP, ADP, and NADP. Although at pH 9.0 the GTP gamma S-stimulated AA release was greater than at pH 8.0, it constituted only 26% of the total. At both pH values the effect of F- (10 mM) in the presence of Al3+ (2 microM) was similar to that of GTP gamma S. The G protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), inhibited the GTP gamma S-stimulated AA release by about 80% at pH 8.0 and by 100% at pH 9.0. To determine a possible contribution to AA mobilization by the phospholipase C and diacylglycerol lipase pathway, the effects of neomycin, a phospholipase C inhibitor, were investigated. 100 microM neomycin did not inhibit the GTP gamma S-stimulated AA release at pH 8.0 and only slightly so (17%) at pH 9.0. At pH 8.0 in the presence of Ca2+ the released fatty acids consisted mainly of arachidonic and docosahexaenoic acids (80 and 8%, respectively). GTP gamma S had no effect on the fatty acid profile but only on their quantity. These results provide evidence of G protein regulation of phospholipase A2 activity in isolated platelet membranes.  相似文献   

9.
Phospholipase A2 and acyltransferase activities were identified in membranes associated with purified pancreatic zymogen granules. In homogenate and granule membranes, phospholipase activity was linearly related to protein concentration and was Ca2(+)-dependent with an alkaline pH optimum. The Ca2+ sensitivity was observed over the range of concentrations through which intracellular ionic Ca2+ is elevated by physiological stimuli in intact cells. Intact zymogen granules and granule membranes also demonstrated reacylating activity in the presence and absence of an exogenous acceptor. Reacylating activity was related to the concentration of lyosphospholipid added and was optimally activated at alkaline pH. A more rapid rate of reacylation was observed when [14C]arachidonoyl CoA was employed as the donor molecule rather than [3H]arachidonate (plus coenzyme A); this suggests the absence of acyl-CoA synthetase in the purified granule membranes. We conclude that granule membrane phospholipase A2 and acyltransferases may be involved in arachidonic acid turnover in exocrine pancreas and perhaps in membrane fusion events associated with exocytosis.  相似文献   

10.
The hamster islet B cell line HIT retains the ability to secret insulin in response to glucose and several receptor agonists. We used HIT cells to study the initial signaling events in glucose or receptor agonist-stimulated insulin secretion. Glucose stimulated insulin release from HIT cells in a dose-dependent manner with a half-maximal effect seen already at 1 mM. Insulin release was also stimulated by carbachol in a glucose-dependent manner. Glucose depolarized the HIT cell membrane potential as assessed with the fluorescent probe bisoxonol and raised intracellular Ca2+ as revealed by fura-2 measurements. Using a Mn2+ fura-2 quenching technique, we could show that the rise in intracellular Ca2+ was due to Ca2+ influx following opening of voltage-gated Ca2+ channels. Glucose is thought to increase the diacylglycerol (DAG) content of insulin-secreting cells. However, although HIT cells respond to glucose in terms of insulin secretion, membrane depolarization, and Ca2+ rise, the hexose was unable to increase the proportion of protein kinase C activity associated with membranes. In contrast, the membrane-associated protein kinase C activity increased in HIT cells exposed to the two receptor agonists carbachol and bombesin. Bombesin was shown to generate DAG with the expected fatty acid composition of activators of phospholipase C. Glucose, in contrast, only caused minor increases in DAG containing myristic and palmitic acid without affecting total DAG mass. The failure to detect stimulation of protein kinase C by glucose could be due to both the limited amount and to the different fatty acid composition of the metabolically generated DAG. The latter was in part supported by experiments performed on protein kinase C partially purified from HIT cells. Indeed, 1,2-dipalmitoylglycerol, presumed to be the main DAG species generated by glucose, was only one-third as active as 1,2-dioleoylglycerol and 1-stearoyl-2-arachidonylglycerol in stimulating the isolated enzyme at physiological Ca2+ concentration. It is therefore unlikely that DAG and protein kinase C play a major role in glucose-stimulated insulin secretion.  相似文献   

11.
Phospholipase activity was studied in the protozoan Tetrahymena pyriformis NT-1 by using exogenous phosphatidylethanolamine and phosphatidylcholine. Several phospholipase activities were found in Tetrahymena homogenates. They were distinguished with respect to pH optimum, activity dependence on Ca2+, substrate specificity and positional specificity. Ca2+-Dependent phospholipase activity had an optimal pH around 9 and gave rise to free fatty acid and lysophospholipid. This enzyme hydrolyzes phosphatidylethanolamine but not phosphatidylcholine. The alkaline phospholipase with A1 activity was located mainly in the surface membrane (pellicle fraction). The enzyme activity had a pH optimum ranging from 8 to 9, and required 2 mM CaCl2 for the maximal activity. All detergents tested inhibited the enzyme activity. Ca2+-Independent phospholipase activity had an optimal pH from 4 to 5 and gave rise to free fatty acid, lysophospholipid, diacylglycerol, and monoacylglycerol. We concluded that there are at least three phospholipase in Tetrahymena homogenates, i.e., alkaline phospholipase A and acidic phospholipases A and C.  相似文献   

12.
Phospholipase A2 activity was studied in the renal cortex and medulla of stroke-prone spontaneously hypertensive rat (SHRSP) and normotensive rat (WKY), and the subcellular localization of its activity was determined. Enhanced activity was found in both the cortical and medullary microsomes in SHRSP kidneys. In SHRSP, but not in WKY, phospholipase A2 activity progressively increased with age. This phospholipase A2 had substrate specificity toward phosphatidylethanolamine. There were no differences in optimal pH, substrate specificity, heat lability, and responses to Triton X-100 and deoxycholate between SHRSP and WKY. Ca2+ stimulated phospholipase A2 activity in both animals. The maximal activation was achieved at 5 mM Ca2+, and EDTA strongly inhibited the activity. But the response to Ca2+ was different in each. Ca2+ enhanced this activity in SHRSP markedly compared with WKY. It seems that Ca2+ is specifically required for phospholipase A2 activity in SHRSP. Though the influx of Ca2+ into microsomal membranes was not enhanced, the Ca2+ efflux of microsomal membranes decreased in SHRSP. This results in increases of intramicrosomal Ca2+, which may cause the subsequent activation of phospholipase A2. The Ca2+ permeability may be one of the factors in the increased phospholipase A2 activity in SHRSP.  相似文献   

13.
Phospholipase A activity was determined in homogenates and subcellular fractions of trypsin-dispersed cat adrenocortical cells. At pH 7.4 homogenate phospholipid hydrolysis was activated by added Ca2+ and inhibited by EGTA. Phospholipid degradation in the presence and absence of Synacthen was completely blocked by EGTA. Ca2+-dependent activation of a membrane-bound phospholipase may be a critical control mechanism for regulating the molecular changes taking place during stimulation by Synacthen.  相似文献   

14.
Ca2+ dependence of stimulated 45Ca efflux in skinned muscle fibers   总被引:7,自引:4,他引:3       下载免费PDF全文
Stimulation of sarcoplasmic reticulum Ca release by Mg reduction of caffeine was studied in situ, to characterize further the Ca2+ dependence observed previously with stimulation by Cl ion. 45Ca efflux and isometric force were measured simultaneously at 19 degrees C in frog skeletal muscle fibers skinned by microdissection; EGTA was added to chelate myofilament space Ca either before or after the stimulus. Both Mg2+ reduction (20 or 110 microM to 4 microM) and caffeine (5 mM) induced large force responses and 45Ca release, which were inhibited by pretreatment with 5 mM EGTA. In the case of Mg reduction, residual efflux stimulation was undetectable, and 45Ca efflux in EGTA at 4 microM Mg2+ was not significantly increased. Residual caffeine stimulation at 20 microM Mg2+ was substantial and was reduced further in increased EGTA (10 mM); at 600 microM Mg2+, residual stimulation in 5 mM EGTA was undetectable. Caffeine appears to initiate a small Ca2+-insensitive efflux that produces a large Ca2+-dependent efflux. Additional experiments suggested that caffeine also inhibited influx. The results suggest that stimulated efflux is mediated mainly or entirely by a channel controlled by an intrinsic Ca2+ receptor, which responds to local [Ca2+] in or near the channel. Receptor affinity for Ca2+ probably is influenced by Mg2+, but inhibition is weak unless local [Ca2+] is very low.  相似文献   

15.
Actinobacillus pleuropneumoniae serotype 1, strain Shope 4074, was grown on agar medium containing 10 mM Ca2+ and under Ca2+ limiting conditions by addition of 2 and 5 mM EGTA to the growth medium. Hemolysis of washed bovine erythrocytes was observed from the culture grown in Ca2+ excess but not from the two cultures where Ca2+ was chelated from the growth medium by using EGTA. However, the hemolytic activity of these latter two cultures could be restored if 10 mM Ca2+ was added to the dilution buffer. This restored hemolytic activity could be neutralized with a rabbit homologous polyclonal antiserum specific for the 104-kDa hemolysin of serotype 1 but not with preimmune serum from the same rabbit. Stained SDS-PAGE gels and immunoblots showed the 104-kDa protein hemolysin in fractions from each of the three growth conditions. Thus, the restored hemolytic activity was associated with the 104-kDa protein in the three cultures. In addition, the 104-kDa protein, when electroblotted onto nylon membranes, bound 45Ca, indicating that the molecule has binding sites for Ca2+. The results indicate that Ca2+ is required for the biological activity of the 104-kDa hemolysin of A. pleuropneumoniae serotype 1.  相似文献   

16.
The involvement of platelet glycoprotein (GP) IIb-IIIa complex in calcium channel activity on the plasma membrane was investigated using an electrophysiological approach. Plasma membrane vesicles were prepared from thrombin-stimulated platelets and incorporated into planar lipid bilayers. Voltage-independent Ca2+ channel currents with a conductance of about 10 pS (in 53 mM Ba2+) were observed, in membranes derived from thrombin-stimulated, but not unstimulated platelet membranes. These channel activities were markedly reduced by exposure of membranes to EGTA at 37 degrees C. This reduction was specifically related to the dissociation of the GPIIb-IIIa complex since preincubation of the membranes with a monoclonal antibody to the GPIIb-IIIa complex (AP-2) could protect the channel activities from the effect of EGTA. Thrombasthenic platelets, which lack the GPIIb-IIIa complex, showed impaired channel activities characterized by decreased open probability and lowered conductance states. Furthermore, when platelets were stimulated by thrombin in the presence of EGTA, AP2, or the synthetic peptide RGDS, to prevent fibrinogen binding to the GPIIb-IIIa complex, open probabilities of the channel currents in these membrane vesicles were also decreased. These results suggest that the GPIIb-IIIa complex is involved in platelet Ca2+ channel activation and that ligand binding to the complex during platelet activation may modify the activation of Ca2+ channels.  相似文献   

17.
Phosphorylation of human erythrocyte ghost membrane proteins was found to be affected by micromolar calcium concentrations. Increasing Ca2+ concentration to 0.2 microM decreased spectrin (band 2) phosphorylation to 30 +/- 6% of control (to which no calcium was added). Decreasing calcium concentration by adding EGTA (0.2mM) to the standard membrane preparation increased spectrin phosphorylation to 575% control. This effect of Ca2+ was more pronounced at higher temperature. At 0 degree C, Ca2+ (0.05mM) had no effect on protein phosphorylation. Sodium fluoride like EGTA caused a four to five fold increase in phosphorylation. Pyrophosphate, a phosphoprotein phosphatase inhibator, had no effect. Once spectrin was phosphorylated in the presence of [gamma-32P]ATP the addition of Ca2+ or EGTA did not decrease or increase its phosphorylation. It is suggested that calcium regulates spectrin phosphorylation either by decreasing kinase activity or by decreasing substrate availability.  相似文献   

18.
Cardiac glycosides stimulate phospholipase C activity in rat pinealocytes   总被引:1,自引:0,他引:1  
Ouabain and related cardiac glycosides stimulate phospholipase C activity 5-fold in rat pinealocytes. The combined treatment of ouabain and norepinephrine, which also stimulates phospholipase C, produces an additive effect. The effects of either ouabain or norepinephrine are blocked by EGTA. However, there are notable differences. The stimulatory effect of ouabain is lost when extracellular Na+ is reduced to 20 mM and is not blocked by prazosin. In contrast, the stimulatory effect of norepinephrine is not blocked when extracellular Na+ is reduced to 20 mM but is blocked by prazosin. Ouabain appears to increase phospholipase C activity through a mechanism involving inhibition of Na+,K+-ATPase, and an accumulation of intracellular Na+ and Ca2+, not involving alpha 1-adrenoceptors. These findings raise the possibility that activation of phospholipase C might be a more general effect of cardiac glycosides.  相似文献   

19.
Biosynthesis of phosphatidylinositol in Crithidia fasciculata   总被引:1,自引:0,他引:1  
Microsomal preparations from the protozoan (Crithidia fasciculata were shown to incorporate myo-[2-3H]inositol into phosphatidylinositol by both the CDPdiacylglycerol:myo-inositol phosphatidyltransferase reaction and by a myo-inositol exchange reaction. Non-ionic detergent and Mg2+ were necessary for the measurement of transferase activity. Untreated preparations could not be saturated with Mg2+, even at very high concentrations (50-75 mM). However, low concentrations of EGTA (75 micro M) both stimulated the activity 3-fold and reduced the Mg2+ required for saturation to 15-20 mM. EGTA also increased the apparent Km for CDPdiacylglycerol while increasing the sensitivity to substrate inhibition above 1 mM. The transferase activity was inhibited by relatively low concentrations of Ca2+ (50 micro M). This and the EGTA effect suggest a possible role for Ca2+ in the modulation of phosphatidylinositol synthesis. The myo-inositol exchange activity required Mn2+, was insensitive to Ca2+ inhibition and was only slightly stimulated by detergents and EGTA. This activity was preferentially inactivated by heating at 50 degrees C in the presence of Triton X-100. In a detergent solubilized preparation the exchange activity but not the transferase exhibited a non-specific requirement for phospholipid. The differences in properties of the two activities suggest the presence of a separate exchange enzyme.  相似文献   

20.
The platelet membrane glycoproteins IIb and IIIa normally exist as a complex which forms a predominant immunoprecipitate after crossed immunoelectrophoresis of Triton-X-100-solubilized platelets. Dissociation of the complex occurs by solubilization in the presence of EDTA or EGTA at pH 8.7 and is readily verified by crossed immunoelectrophoresis. Incubations of isolated membranes with EDTA or EGTA at various pH levels were performed. Removal of the chelators and solubilization showed no dissociation of the glycoprotein IIb-IIIa complex in membranes incubated at pH below 8.0. At pH above 8.0 a dissociation which increased with increasing pH was seen. Under these conditions, dissociation appears to take place already in the intact membranes. The tendency of the glycoprotein IIb-IIIa complex to become dissociated with EDTA or EGTA at increasing pH seems to be due to increased chelating capacity of the chelators concomitant with a decreased chelating capacity of glycoprotein IIb and IIIa. The divalent cations Ca2+ and Mg2+, but not Cu2+, Zn2+, Mn2+ or Sr2+, in molar concentrations below that of EGTA were able to prevent the dissociation of the glycoprotein IIb-IIIa complex by the chelator at pH 9.0, indicating that Ca2+ as well as Mg2+ can be used to keep the complex together. In some experiments it was possible to reverse the dissociation in the membranes after removal of EDTA. At pH 7.5 reassociation occurred within 15 min whether divalent cations were added or not. At pH 9.0. reassociation occurred within 2 h provided Ca2+ was present. The tendency of glycoprotein IIb and IIIa to form a complex thus appeared to be most pronounced over the physiological pH range and to be a rapid process in platelet membranes under such conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号