首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The trypanocidal effects of aqueous gold(III) and palladium(II) and their metalloporphyrin derivatives on Trypanosoma brucei brucei growth in culture have been studied using an Alamar Blue indicator assay. All the experiments were conducted in the dark. As previously described for mercury(II), cadmium(II) and lead(II) porphyrins [Chem.-Biol. Interact. 139 (2002) 177], the toxicity of the metalloporphyrin complex of palladium(II) to T. b. brucei parasites was much higher compared to the aqueous free palladium(II) and free base porphyrin. Palladium(II) porphyrin, free palladium(II), and the free base porphyrin were trypanocidal to T. b. brucei at concentrations >1.5 x 10(-6), >6.1 x 10(-6) and >1.9 x 10(-5) M, respectively. While gold(III) porphyrin was effective against the parasites at concentrations >4.8 x 10(-6) M, its aqueous gold(III) was toxic at concentrations as low as 2.0 x 10(-7) M due to the generation of free radicals in the presence of this metal ion which enhanced its toxicity to the T. b. brucei parasites. Although some cell division was observed in some of the cells treated with palladium(II) porphyrin, some dividing cells had no nucleus due to unequal division and delivery of the nuclei into the daughter cells. As a result, the rate of cell division decreased with time and cell death occurred within 24 h. Interestingly, trypanosomes treated with metalloporphyrin complexes displayed different morphological features from those cells treated with free base porphyrin or metal ions. Of all the porphyrins and free metal ions tested, only mercury(II) porphyrin and aqueous gold(III) ion were toxic to the trypanosomes in the 10(-7) M range. The chemotherapeutic potential of these observations is discussed.  相似文献   

2.
3.
In aqueous solutions, thallium(I) ions and 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin form a kinetically labile metalloporphyrin of 2 : 1 composition (Tl(2)P(4-)). The formation constant of this sitting-atop (SAT) complex is relatively low (beta2/[H+]2= 3.55 x 10(3) M(-2) at pH = 7), due to the large size and rather small charge of Tl+. As a consequence of the considerably weak metal-ligand interaction in this system, the 1 : 1 species does not appear in detectable concentration. Both the absorption and the emission properties of the Tl(2)P(4-) complex are characteristic for the typical SAT metalloporphyrins. Compared to the corresponding values of the free-base porphyrin, the diminished fluorescence quantum efficiency (Qfl= 0.0131 vs. 0.056) of Tl(2)P(4-) can be accounted for by the heavy-atom effect, while the larger Stokes shift (442 vs. 282 cm(-1)) indicates a stronger distortion of the ligand plane. Both Soret- and Q-band irradiations of the Tl(2)P(4-) complex lead to the degradation of the porphyrin with quantum yields of magnitude 3 x 10(-4). The primary photochemical step in this process is ligand-to-metal charge transfer reaction, which is unusual for normal (coplanar) metalloporphyrins. In the case of SAT complexes, the kinetic lability facilitates the separation of the primary redox products, followed by an irreversible ring-opening of the oxidized porphyrin. Photoinduced electron ejection as a considerable step in the degradation mechanism could be ruled out.  相似文献   

4.
Interactions of the water soluble Fe(III)- and Zn(II)-tetra(4-sulfonatophenyl) porphyrins, FeTPPS(4) and ZnTPPS(4), with ionic and nonionic micelles in aqueous solutions have been studied by optical absorption, fluorescence, resonance light-scattering (RLS), and 1H NMR spectroscopies. The presence of three different species of both Fe(III)- and Zn(II)TPPS(4) in cationic cetyltrimethylammonium chloride (CTAC) solution has been unequivocally demonstrated: free metalloporphyrin monomers or dimers (pH 9), metalloporphyrin monomers or aggregates (possibly micro-oxo dimers) bound to the micelles, and nonmicellar metalloporphyrin/surfactant aggregates. The surfactant:metalloporphyrin ratio for the maximum nonmicellar aggregate formation is around 5-8 for Fe(III)TPPS(4) both at pH 4.0 and 9.0; for Zn(II)TPPS(4) this ratio is 8, and the spectral changes are practically independent of pH. In the case of zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and non-ionic polyoxyethylene lauryl ether (Brij-35) and t-octylphenoxypolyethoxyetanol (Triton X-100), the nonmicellar aggregates were not observed in the pH range from 2.0 to 12.0. Binding constants were calculated from optical absorption data and are of the order of 10(4) M(-1) for both CTAC and HPS, values which are similar to those previously obtained for the porphyrin in the free base form. For Brij-35 and Triton X-100 the binding constant for ZnTPPS(4) at pH 4.0 is a factor of 3-5 lower than those for CTAC and HPS, while in the case of FeTPPS(4) they are two orders of magnitude lower. Our data show that solubilization of ZnTPPS(4) within nonpolar regions of micelles is determined, in general, by nonspecific hydrophobic interactions, yet it is modulated by electrostatic factors. In the case of FeTPPS(4), the electrostatic factor seems to be more relevant. NMR data indicated that Fe(III)TPPS(4) is bound to the micelles predominantly as a monomer at pH 4.0, and at pH 9.0 the bound aggregated form (possibly micro-oxo dimers) remains. The metalloporphyrins were incorporated into the micelles near the terminal part of their hydrocarbon chains, as evidenced by a strong upfield shift of the corresponding peaks of the surfactants.  相似文献   

5.
The interaction of transition metal complexes of cationic porphyrins bearing five membered rings, meso-tetrakis(1,2-dimethylpyrazolium-4-yl)porphyrin (MPzP, M=Mn(III), Ni(II), Cu(II) or Zn(II)), with calf thymus DNA (ctDNA) has been studied. Metalloporphyrins NiPzP and CuPzP are intercalated into the 5'GC3' step of ctDNA. MnPzP is bound edge-on at the 5'TA3' step of the minor groove of ctDNA, while ZnPzP is bound face-on at the 5'TA3' step of the major groove of ctDNA. The binding constants of the metalloporphyrins to ctDNA range from 1.05x10(5) to 2.66x10(6) M(-1) and are comparable to those of other reported cationic porphyrins. The binding process of the metallopyrazoliumylporphyrins to ctDNA is endothermic and entropically driven. These results have revealed that the kind of central metal ions of metalloporphyrins influences the binding characteristics of the porphyrin to DNA.  相似文献   

6.
The feasibility of using coffee beans after being dripped and degreased (DCB) as an adsorbent for base metals such as copper(II), zinc(II), lead(II), iron(III) and cadmium(II) were examined. The compositions of the DCB were characterized by Fourier transform infrared spectroscopy, scanning electronic micrograph and fluorescent X-ray. It was found that DCB contain sulfur and calcium from the analysis using fluorescent X-ray. The plant cell wall in DCB has the porous structure from the scanning electron microscopy (SEM) analysis, and the specific surface area was determined to be 1.2 m2/g using the specific surface area analyzer. Batch adsorption experiments on DCB were carried out at various pHs in order to elucidate the selectivity of metal ions. All metals were adsorbed at low pH region (3.0-5.0). Of particular interest was the adsorption characteristics of cadmium(II) on DCB. The adsorption isotherm for cadmium(II) at pH 8 fitted with a Langmuir equation to yield an adsorption equilibrium constant of 55.2 mmol dm(-3) and an adsorption capacity of 5.98 x 10(-2) mmol g(-1). The desorption of cadmium(II) was easily achieved over 90% by a single batchwise treatment with an aqueous solution of hydrochloric acid or nitric acid at more than 0.01 mol dm(-3). These results suggested that DCB behaves as a cation exchanger.  相似文献   

7.
S(IV) (SO(2),HSO(3)(-)andSO(3)(2-)) autoxidation catalyzed by Cu(II)/tetraglycine complexes in the presence of DNA or 2'-deoxyguanosine (dGuo) resulted in DNA strand breaks and formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), respectively. Ni(II), Co(II) or Mn(II) (1.0x10(-4)M) complexes had much smaller effects. Cu(II)/tetraglycine (1.0x10(-4)M) in the presence of Ni(II) or Mn(II) (10(-7)-10(-6)M) and S(IV) showed remarkable synergistic effect with these metal ions producing a higher yield of 8-oxodGuo. Oxidation of dGuo and DNA damage were attributed to oxysulfur radicals formed as intermediates in S(IV) autoxidation catalyzed by transition metal ions. SO*(3)(-) and HO* radicals were detected by EPR-spin trapping experiments with DMPO (5,5-dimethyl-1-pyrroline-N-oxide).  相似文献   

8.
9.
Ghosh D  Lee KH  Demeler B  Pecoraro VL 《Biochemistry》2005,44(31):10732-10740
Investigators have studied how proteins enforce nonstandard geometries on metal centers to assess the question of how protein structures can define the coordination geometry and binding affinity of an active-site metal cofactor. We have shown that cysteine-substituted versions of the TRI peptide series [AcG-(LKALEEK)(4)G-NH(2)] bind Hg(II) and Cd(II) in geometries that are different from what is normally found with thiol ligands in aqueous solution. A fundamental question has been whether this structural perturbation is due to protein influence or a change in the metal geometry preference. To address this question, we have completed linear free-energy analyses that correlate the association of three-stranded coiled coils in the absence of a metal with the binding affinity of the peptides to the heavy metals, Hg(II) and Cd(II). In this paper, six new members of this family have been synthesized, replacing core leucine residues with smaller and less hydrophobic residues, consequently leading to varying degrees of self-association affinities. At the same time, studies with some smaller and longer sequenced peptides have also been examined. All of these peptides are seen to sequester Hg(II) and Cd(II) in an uncommon trigonal environment. For both metals, the binding is strong with micromolar dissociation constants. For binding of Hg(II) to the peptides, the dissociation constants range from 2.4 x 10(-)(5) M for Baby L12C to 2.5 x 10(-)(9) M for Grand L9C for binding of the third thiolate to a linear Hg(II)(pep)(2) species. The binding of Hg(II) to the peptide Grand L9C is similar in energetics for metal binding in the metalloregulatory protein, mercury responsive (merR), displaying approximately 50% trigonal Hg(II) formation at nanomolar metal concentrations. Approximately, 11 kcal/mol of the Hg(II)(Grand L9C)(3)(-) stability is due to peptide interactions, whereas only 1-4 kcal/mol stabilization results from Hg(II)(RS)(2) binding the third thiolate ligand. This further validates the hypothesis that the favorable tertiary interactions in protein systems such as merR go a long way in stabilizing nonnatural coordination environments in biological systems. Similarly, for the binding of Cd(II) to the TRI family, the dissociation constants range from 1.3 x 10(-)(6) M for Baby L9C to 8.3 x 10(-)(9) M for TRI L9C, showing a similar nature of stable aggregate formation.  相似文献   

10.
Adsorption of mercury(II) by an extracellular biopolymer, poly(gamma-glutamic acid) (gamma-PGA), was studied as a function of pH, temperature, agitation time, ionic strength, light and heavy metal ions. An appreciable adsorption occurred at pH>3 and reached a maximum at pH 6. Isotherms were well predicted by Redlich-Peterson model with a dominating Freundlich behavior, implying the heterogeneous nature of mercury(II) adsorption. The adsorption followed an exothermic and spontaneous process with increased orderliness at solid/solution interface. The adsorption was rapid with 90% being attained within 5 min for a 80 mg/L mercury(II) solution, and the kinetic data were precisely described by pseudo second order model. Ionic strength due to added sodium salts reduced the mercury(II) binding with the coordinating ligands following the order: Cl(-) >SO(4)(2-) >NO(3)(-). Both light and heavy metal ions decreased mercury(II) binding by gamma-PGA, with calcium(II) ions showing a more pronounced effect than monovalent sodium and potassium ions, while the interfering heavy metal ions followed the order: Cu(2+) > Cd(2+) > Zn(2+). Distilled water adjusted to pH 2 using hydrochloric acid recovered 98.8% of mercury(II), and gamma-PGA reuse for five cycles of operation showed a loss of only 6.5%. IR spectra of gamma-PGA and Hg(II)-gamma-PGA revealed binding of mercury(II) with carboxylate and amide groups on gamma-PGA.  相似文献   

11.
Methionine is an essential amino acid for both prokaryotic and eukaryotic organisms; however, little is known concerning its utilization in African trypanosomes, protozoa of the Trypanosoma brucei group. This study explored the Michaelis-Menten kinetic constants for transport and pool formation as well as metabolic utilization of methionine by two divergent strains of African trypanosomes, Trypanosoma brucei brucei (a veterinary pathogen), highly sensitive to trypanocidal agents, and Trypanosoma brucei rhodesiense (a human pathogenic isolate), highly refractory to trypanocidal arsenicals. The Michaelis-Menten constants derived by Hanes-Woolf analysis for transport of methionine for T. b. brucei and T. b. rhodesiense, respectively, were as follows: K(M) values, 1. 15 and 1.75 mM; V(max) values, 3.97 x 10(-5) and 4.86 x 10(-5) mol/L/min. Very similar values were obtained by Lineweaver-Burk analysis (K(M), 0.25 and 1.0 mM; V(max), 1 x 10(-5) and 2.0 x 10(-5) mol/L/min, T. b. brucei and T. b. rhodesiense, respectively). Cooperativity analyses by Hill (log-log) plot gave Hill coefficients (n) of 6 and 2 for T. b. brucei and T. b. rhodesiense, respectively. Cytosolic accumulation of methionine after 10-min incubation with 25 mM exogenous methionine was 1.8-fold greater in T. b. rhodesiense than T. b. brucei (2.1 vs 1.1 mM, respectively). In African trypanosomes as in their mammalian host, S-adenosylmethionine (AdoMet) is the major product of methionine metabolism. Accumulation of AdoMet was measured by HPLC analysis of cytosolic extracts incubated in the presence of increasing cytosolic methionine. In trypanosomes incubated for 10 min with saturating methionine, both organisms accumulated similar amounts of AdoMet (approximately 23 microM), but the level of trans-sulfuration products (cystathionine and cysteine) in T. b. rhodesiense was double that of T. b. brucei. Methionine incorporation during protein synthesis in T. b. brucei was 2.5 times that of T. b. rhodesiense. These results further confirm our belief that the major pathways of methionine utilization, for polyamine synthesis, protein transmethylation and the trans-sulfuration pathway, are excellent targets for chemotherapeutic intervention against African trypanosomes.  相似文献   

12.
Molecular mechanics (MM) calculations were used to analyze the puckering of metalloporphyrins as a function of metal ion size and the position of substituents on the porphyrin periphery, on a three series of octa- and tetrabromo tetraphenylporphyrins: without metal, and with Ni(II), and Tb(III) as representative small and large metal ions, respectively. Molecular energy optimization calculations were carried out using the Consistent Force Field (CFF) program, with the parameters developed previously and new parameters for bromine atom. Normal-coordinate structural decomposition (NSD) analysis was performed on the equilibrium structures obtained by MM calculations. The conformers are also stereochemically characterized, compared with available X-ray structures and with the conformers obtained in our previous MM study using chloro instead of bromo beta-pyrrole substituents.  相似文献   

13.
The binding of cadmium(II) to human serum transferrin in 0.01 M N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid with 5 mM bicarbonate at 25 degrees C has been evaluated by difference ultraviolet spectroscopy. Equilibrium constants were determined by competition versus three different low molecular weight chelating agents: nitrilotriacetic acid, ethylenediamine-N,N'-diacetic acid, and triethylenetetramine. Conditional equilibrium constants for the sequential binding of two cadmium ions to transferrin under the stated experimental conditions are log K1 = 5.95 +/- 0.10 and log K2 = 4.86 +/- 0.13. A linear free energy relationship for the complexation of cadmium and zinc has been prepared by using equilibrium data on 243 complexes of these metal ions with low molecular weight ligands. The transferrin binding constants for cadmium and zinc are in good agreement with this linear free energy relationship. This indicates that the larger size of the cadmium(II) ion does not significantly hinder its binding to the protein.  相似文献   

14.
The porphyrin, meso-5-(pentafluorophenyl)-10, 15, 20-tris(4-pyridyl)porphyrin has been used to synthesize two new metalloporphyrin complexes. Insertion of copper(II) into the porphyrin center gives the copper(II) porphyrin. Coordination of three [Ru(bipy)2Cl]+ moieties (where bipy = 2,2′-bipyridine) to the pyridyl nitrogens of the copper(II) porphyrin gives the target complex. Electronic transitions associated with the copper(II) porphyrin and the triruthenium copper(II) porphyrin include an intense Soret band and a less intense Q-band in the visible region of the spectrum. An intense π-π∗ transition in the UV region associated with the bipyridyl groups and a metal to ligand charge transfer (MLCT) band appearing as a shoulder to the Soret band are observed for the ruthenated copper(II) porphyrin. Electrochemical properties associated with the multimetallic complex include a redox couple in the cathodic region with E1/2 = −0.86 V versus Ag/AgCl attributed to the porphyrin and a redox couple in the anodic region E1/2 = 0.88 V versus Ag/AgCl due to the RuIII/II couple. DNA titrations indicate the triruthenium copper(II) porphyrin interacts with DNA potentially through a groove binding mechanism. Irradiation of aqueous solutions of the target complex and supercoiled DNA at a 10:1 base pair to complex ratio with visible light above 400 nm indicates that the complex causes nicking of the DNA helix.  相似文献   

15.
A fluorescence sensor based on the supermolecular recognition by glycosylated metalloporphyrin for levamisole (LEV) assay is reported. For the preparation of a LEV-sensitive active material, 5, 10, 15, 20-tetrakis[2-(2, 3, 4, 6-tetraacetyl-beta-D-glucopyranosyl)-1-O-phenyl] porphyrin and its metal complexes were synthesized and used in an optode membrane prepared by including glycosylated metalloporphyrin in chitosan matrice. The immobilized glycosylated metalloporphyrin is shown to be weakly fluorescent as a result of the inhibiting of the electron tansfer by central metal. The fluorescence enhancement of the metalloporphyrin modified optode membrane by LEV is based on the complexation with the central metal moiety of metalloporphyrin and weakening the inhibiting of the electron tansfer for metalloporphyrin. The glycosylated metalloporphyrin/chitosan optode membrane showed excellent selectivity toward LEV with respect to a number of interferents and exhibited stable response. The calibration graph obtained with the proposed sensor was linear over the range of 1.3x10(-5)-3.5x10(-7)ML(-1), with a detection limit of 3.5x10(-7)ML(-1) for LEV. The prepared sensor is applied for the determination of LEV in pharmaceutical preparations and the results agreed with the values obtained by the pharmacopoeia method.  相似文献   

16.
The interactions of caffeine and theophylline with divalent cadmium, mercury, strontium and barium ions were studied in aqueous solution and physiological pH. Fourier transform infrared spectroscopy (FTIR) and absorption spectra were used to determine the cation binding mode and association constants. Spectroscopic results showed that Cd(2+), Hg(2+), Sr(2+) and Ba(2+) bind strongly to caffeine and theophylline. Direct and indirect (through metal hydration shell) interactions were observed for caffeine and theophylline with Cd(2+), Hg(2+), Sr(2+) and Ba(2+) through O6 and N9 (caffeine) and O6, N9 and N7 atoms (theophylline). The overall binding constants are:k(Cd-caffeine) = 1.24 x 10(5) M(-1), k(Hg-caffeine) = 1.74 x 10(5) M(-1), k(Sr- caffeine) = 3.3 x 10(4) M(-1), k(Ba-caffeine) = 1.8 x 10(4) M(-1), k(Cd-theophylline) = 5.75 x 10(5) M(-1), k(Hg-theophylline) = 2.14 x 10(5) M(-1), k(Sr-theophylline) = 4.6 x 10(4) M(-1), k(Ba-theophylline) = 3 x 10(4) M(-1). These k values are evidence for weak and strong cation interactions in these metal complexes.  相似文献   

17.
The cells of psychrotrophic Pseudomonas fluorescens BM07 were found to secrete large amounts of exobiopolymer (EBP) composed of mainly hydrophobic (water insoluble) polypeptide(s) (as contain approximately 50 mol% hydrophobic amino acids, lacking cysteine residue) when grown on fructose containing limited M1 medium at the temperatures as low as 0-10 degrees C but trace amount at high (30 degrees C, optimum growth) temperature. Two types of nonliving BM07 cells (i.e., cells grown at 30 degrees C and 10 degrees C) as well as the freeze-dried EBP were compared for biosorption of mercury (Hg(II)) and cadmium (Cd(II)). The optimum adsorption pH was found 7 for Hg(II) but 6 for Cd(II), irrespective of the type of biomass. Equilibrium adsorption data well fitted the Langmuir adsorption model. The maximum adsorption (Q (max)) was 72.3, 97.4, and 286.2 mg Hg(II)/g dry biomass and 18.9, 27.0, and 61.5 mg Cd(II)/g dry biomass for cells grown at 30 degrees C and 10 degrees C and EBP, respectively, indicating major contribution of heavy metal adsorption by cold-induced EBP. Mercury(II) binding induced a significant shift of infrared (IR) amide I and II absorption of EBP whereas cadmium(II) binding showed only a very little shift. These IR shifts demonstrate that mercury(II) and cadmium(II) might have different binding sites in EBP, which was supported by X-ray diffraction and differential scanning calorimetric analysis and sorption results of chemically modified biomasses. This study implies that the psychrotrophs like BM07 strain may play an important role in the bioremediation of heavy metals in the temperate regions especially in the inactive cold season.  相似文献   

18.
The effect of copper(II), lead(II) and chromium(VI) ions on the growth and bioaccumulation properties of Aspergillus niger was investigated as a function of initial pH and initial metal ion concentration. The optimum pH values for growth and metal ion accumulation were determined as 5.0, 4.5 and 3.5 for copper(II), lead(II) and chromium(VI) ions, respectively. Although all metal ion concentrations caused an inhibition effect on the growth of A. niger, it was capable of removing of copper(II) and lead(II) with a maximum specific uptake capacity of 15.6 and 34.4 mg g−1 at 100 mg dm−3 initial copper(II) and lead(II) concentration, respectively. Growth of A. niger was highly effected by chromium(VI) ions and inhibited by 75 mg dm−3 initial chromium(VI) concentration since some inhibition occurred at lower concentrations.  相似文献   

19.
Influence of metal ions on structure and catalytic activity of papain   总被引:1,自引:0,他引:1  
Papain is an endoprotease belonging to cysteine protease family. The catalytic activity of papain in presence of two different metal ions namely zinc and cadmium has been investigated. Both the metal ions are potent inhibitors of the enzyme activity in a concentration dependent manner. The enzyme loses 50% of its activity at 2 x 10(-4) M of CdCl2 and 4 x 10(-4) M of ZnCl2. It is completely inactivated above 1 x 10(-3) M concentration of either ZnCl2 or CdCl2. Of the two metal ions zinc with a ki value of 5 x 10(-5) M is a more potent inhibitor than cadmium which has a ki value of 8 x 10(-5) M. Both the metal ions have higher affinity for active site than the substrate. At concentrations above 1 x 10(-2) M of metal ions the inhibition is not reversible. Calorimetric studies showed decreased thermal stability of papain upon binding of these metal ions. Far UV circular dichroic spectral data showed only small changes in the beta-structure content upon binding of these metal ions. These data are also supported by decrease in the apparent thermal transition temperature of papain by 5 degrees C upon binding of metal ions indicating destabilization of the papain molecule. The mechanism of both partial and complete inactivation of papain in presence of these two metal ions both at lower and higher concentration has been explained.  相似文献   

20.
A unicellular green microalga, Chlorella sorokiniana, was immobilized on loofa (Luffa cylindrica) sponge and successfully used as a new biosorption system for the removal of lead(II) ions from aqueous solutions. The biosorption of lead(II) ions on both free and immobilized biomass of C. sorokiniana was investigated using aqueous solutions in the concentration range of 10–300 mg/L. The biosorption of lead(II) ions by C. sorokiniana biomass increased as the initial concentration of lead(II) ions increased in the medium. The maximum biosorption capacity for free and immobilized biomass of C. sorokiniana was found to be 108.04 and 123.67 mg lead(II)/g biomass, respectively. The biosorption kinetics were found to be fast, with 96 % of adsorption within the first 5 min and equilibrium reached at 15 min. The adsorption of lead(II) both by free and immobilized C. sorokiniana biomass followed the Langmuir isotherm. The biosorption capacities were detected to be dependent on the pH of the solution; and the maximum adsorption was obtained at a solution pH of about 5. The effect of light metal ions on lead(II) uptake was also studied and it was shown that the presence of light metal ions did not significantly affect lead(II) uptake. The loofa sponge‐immobilized C. sorokiniana biomass could be regenerated using 0.1 M HCl, with up to 99 % recovery. The desorbed biomass was used in five biosorption‐desorption cycles, and no noticeable loss in the biosorption capacity was observed. In addition, fixed bed breakthrough curves for lead(II) removal were presented. These studies demonstrated that loofa sponge‐immobilized biomass of C. sorokiniana could be used as an efficient biosorbent for the treatment of lead(II) containing wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号