首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Interferon regulatory factor 5 (IRF-5) plays an important role in the innate antiviral and inflammatory response. Specific IRF-5 haplotypes are associated with dysregulated expression of type I interferons and predisposition to autoimmune disorders. IRF-5 is activated by Toll-like receptor 7 (TLR7) and TLR9 via the MyD88 pathway, where it interacts with both MyD88 and the E3 ubiquitin ligase, TRAF6. To understand the role of these interactions in the regulation of IRF-5, we examined the role of ubiquitination and showed that IRF-5 is subjected to TRAF6-mediated K63-linked ubiquitination, which is important for IRF-5 nuclear translocation and target gene regulation. We show that while the murine IRF-5 and human IRF-5 variant 4 (HuIRF-5v4) and HuIRF-5v5 are ubiquitinated, an IRF-5 bone marrow variant mutant containing an internal deletion of 288 nucleotides is not ubiquitinated. Lysine residues at positions 410 and 411 in a putative TRAF6 consensus binding domain of IRF-5 are the targets of K63-linked ubiquitination. Mutagenesis of these two lysines abolished IRF-5 ubiquitination, nuclear translocation, and the IFNA promoter-inducing activity but not the IRF-5-TRAF6 interaction. Finally, we show that IRAK1 associates with IRF-5 and that this interaction precedes and is required for IRF-5 ubiquitination and activation. Thus, our findings offer a new mechanistic insight into IRF-5 gene induction program through hitherto unknown processes of IRF-5 ubiquitination.  相似文献   

2.
3.
4.
VISA is an adapter protein required for virus-triggered IFN-beta signaling   总被引:14,自引:0,他引:14  
Xu LG  Wang YY  Han KJ  Li LY  Zhai Z  Shu HB 《Molecular cell》2005,19(6):727-740
  相似文献   

5.
Lipopolysaccharide (LPS) is an agonist for Toll-like receptor (TLR) 4 and expresses many genes including NF-kappaB- and interferon regulatory factor (IRF)-3/IFN-inducible genes in macrophages and dendritic cells (DCs). TICAM-1/TRIF was identified as an adapter that facilitates activation of IRF-3 followed by expression of interferon (IFN)-beta genes in TLR3 signaling, but TICAM-1 does not directly bind TLR4. Although MyD88 and Mal/TIRAP adapters functions downstream of TLR4, DC maturation and IFN-beta induction are independent of MyD88 and Mal/TIRAP. In this investigation, we report the identification of a novel adapter, TICAM-2, that physically bridges TLR4 and TICAM-1 and functionally transmits LPS-TLR4 signaling to TICAM-1, which in turn activates IRF-3. In its structural features, TICAM-2 resembled Mal/TIRAP, an adapter that links TLR2/4 and MyD88. However, TICAM-2 per se exhibited minimal ability to activate NF-kappaB and the IFN-beta promoter. Hence, in LPS signaling TLR4 recruits two types of adapters, TIRAP and TICAM-2, to its cytoplasmic domain that are indirectly connected to two effective adapters, MyD88 and TICAM-1, respectively. We conclude that for LPS-TLR4-mediated activation of IFN-beta, the adapter complex of TICAM-2 and TICAM-1 plays a crucial role. This results in the construction of MyD88-dependent and -independent pathways separately downstream of the two distinct adapters.  相似文献   

6.
Toll-like receptors (TLRs) are pattern recognition receptors that sense a variety of pathogens, initiate innate immune responses, and direct adaptive immunity. All TLRs except TLR3 recruit the adaptor MyD88 to ultimately elicit inflammatory gene expression, whereas TLR3 and internalized TLR4 use TIR-domain-containing adaptor TRIF for the induction of type I interferon and inflammatory cytokines. Here, we identify the WD repeat and FYVE-domain-containing protein WDFY1 as a crucial adaptor protein in the TLR3/4 signaling pathway. Overexpression of WDFY1 potentiates TLR3- and TLR4-mediated activation of NF-κB, interferon regulatory factor 3 (IRF3), and production of type I interferons and inflammatory cytokines. WDFY1 depletion has the opposite effect. WDFY1 interacts with TLR3 and TLR4 and mediates the recruitment of TRIF to these receptors. Our findings suggest a crucial role for WDFY1 in bridging the TLR–TRIF interaction, which is necessary for TLR signaling.  相似文献   

7.
The adaptor molecule MyD88 is necessary for responses to all Toll-like receptors except TLR3 and a subset of TLR4 signaling events, which are mediated by the adaptor molecule TRIF. To determine the role of TRIF in host inflammatory responses, corneal epithelium of C57BL/6, TLR3(-/-), TRIF(-/-), and MyD88(-/-) mice was abraded and stimulated with the synthetic TLR3 ligand poly(I:C). We found that poly(I:C) induced a pronounced cellular infiltration into the corneal stroma, which was TLR3- and TRIF-dependent. Unexpectedly, the inflammatory response was exacerbated in MyD88(-/-) mice, with enhanced neutrophil and F4/80(+) cell infiltration into the corneal stroma and elevated corneal haze, which is an indicator of loss of corneal transparency. To determine whether MyD88-dependent inhibition of TLR3/TRIF responses is a general phenomenon, we examined cytokine production by MyD88(-/-) bone marrow-derived macrophages; however, no significant difference was observed between MyD88(+/+) or MyD88(-/-) macrophages. In contrast, human corneal epithelial cells (HCECs) transfected with MyD88 small interfering RNA had significantly increased (2.5-fold) CCL5/RANTES production compared with control HCECs, demonstrating a negative regulatory role for MyD88 in TLR3/TRIF responses in these cells. Finally, knockdown of MyD88 in HCECs resulted in increased phosphorylation of c-Jun N-terminal kinase (JNK), but not p38, IRF-3, or NF-kappaB. Consistent with this finding, the JNK inhibitor SP600125, but not p38 inhibitor SB203580, ablated this response. Taken together, these findings demonstrate a novel JNK-dependent inhibitory role for MyD88 in the TLR3/TRIF activation pathway.  相似文献   

8.
9.
G-protein coupled receptor kinase-5 (GRK5) is a recently described NFκB regulator in TLR4 signaling pathway. To determine whether the role of GRK5 is MyD88- or TRIF-dependent, we injected wild type and GRK5 knockout mice with Pam3CSK4 (MyD88-dependent TLR1/2 ligand) and Poly(I:C) (TRIF-dependent TLR3 ligand) and examined the in vivo systemic inflammatory response. Our results demonstrate that GRK5 regulates IL-12p40 and G-CSF via a mechanism that is common to both MyD88 and TRIF. However, GRK5 regulates IL-5 and MCP-1 in a MyD88-dependent but TNFα in a TRIF-dependent manner. Together, our results demonstrate multiple roles of GRK5 in TLR signaling.  相似文献   

10.
Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in infants. In human infants, plasmacytoid dendritic cells (pDC) are recruited to the nasal compartment during infection and initiate host defense through the secretion of type I IFN, IL-12, and IL-6. However, RSV-infected pDC are refractory to TLR7-mediated activation. In this study, we used the rodent-specific pathogen, pneumonia virus of mice (PVM), to determine the contribution of pDC and TLR7 signaling to the development of the innate inflammatory and early adaptive immune response. In wild-type, but not TLR7- or MyD88-deficient mice, PVM inoculation led to a marked infiltration of pDC and increased expression of type I, II, and III IFNs. The delayed induction of IFNs in the absence of TLR7 or MyD88 was associated with a diminished innate inflammatory response and augmented virus recovery from lung tissue. In the absence of TLR7, PVM-specific CD8(+) T cell cytokine production was abrogated. The adoptive transfer of TLR7-sufficient, but not TLR7-deficient pDC to TLR7 gene-deleted mice recapitulated the antiviral responses observed in wild-type mice and promoted virus clearance. In summary, TLR7-mediated signaling by pDC is required for appropriate innate responses to acute pneumovirus infection. It is conceivable that as-yet-unidentified defects in the TLR7 signaling pathway may be associated with elevated levels of RSV-associated morbidity and mortality among otherwise healthy human infants.  相似文献   

11.
12.
Antiviral immunity requires early and late mechanisms in which IFN-alpha and IL-12 play major roles. However, the initial events leading to their production remain largely unclear. Given the crucial role of TLR in innate recognition, we investigated their role in antiviral immunity in vivo. Upon murine CMV (MCMV) infection, both MyD88-/- and TLR9-/- mice were more susceptible and presented increased viral loads compared with C57BL/6, TLR2-/-, TLR3-/-, or TLR4-/- mice. However, in terms of resistance to infection, IFN-alpha production and in many other parameters of early inflammatory responses, the MyD88-/- mice showed a more defective response than TLR9-/- mice. In the absence of the TLR9/MyD88 signaling pathway, cytokine production was dramatically impaired with a complete abolition of bioactive IL-12p70 serum release contrasting with a high flexibility for IFN-alpha release, which is initially (36 h) plasmacytoid dendritic cell- and MyD88-dependent, and subsequently (44 h) PDC-, MyD88-independent and, most likely, TLR-independent. NK cells from MCMV-infected MyD88-/- and TLR9-/- mice displayed a severely impaired IFN-gamma production, yet retained enhanced cytotoxic activity. In addition, dendritic cell activation and critical inflammatory cell trafficking toward the liver were still effective. In the long term, except for isotype switching to MCMV-specific IgG1, the establishment of Ab responses was not significantly altered. Thus, our results demonstrate a critical requirement of TLR9 in the process of MCMV sensing to assure rapid antiviral responses, coordinated with other TLR-dependent and -independent events that are sufficient to establish adaptive immunity.  相似文献   

13.
14.
15.
Activation of the host antibacterial defenses by the toll-like receptors (TLR) also selectively activates energy-sensing and metabolic pathways, but the mechanisms are poorly understood. This includes the metabolic and mitochondrial biogenesis master co-activators, Ppargc1a (PGC-1α) and Ppargc1b (PGC-1β) in Staphylococcus aureus (S. aureus) sepsis. The expression of these genes in the liver is markedly attenuated inTLR2(-/-) mice and markedly accentuated in TLR4(-/-) mice compared with wild type (WT) mice. We sought to explain this difference by using specific TLR-pathway knockout mice to test the hypothesis that these co-activator genes are directly regulated through TLR2 signaling. By comparing their responses to S. aureus with WT mice, we found that MyD88-deficient and MAL-deficient mice expressed hepatic Ppargc1a and Ppargc1b normally, but that neither gene was activated in TRAM-deficient mice. Ppargc1a/b activation did not require NF-kβ, but did require an interferon response factor (IRF), because neither gene was activated in IRF-3/7 double-knockout mice in sepsis, but both were activated normally in Unc93b1-deficient (3d) mice. Nuclear IRF-7 levels in TLR2(-/-) and TLR4(-/-) mice decreased and increased respectively post-inoculation and IRF-7 DNA-binding at the Ppargc1a promoter was demonstrated by chromatin immunoprecipitation. Also, a TLR2-TLR4-TRAM native hepatic protein complex was detected by immunoprecipitation within 6 h of S. aureus inoculation that could support MyD88-independent signaling to Ppargc1a/b. Overall, these findings disclose a novel MyD88-independent pathway in S. aureus sepsis that links TLR2 and TLR4 signaling in innate immunity to Ppargc1a/b gene regulation in a critical metabolic organ, the liver, by means of TRAM, TRIF, and IRF-7.  相似文献   

16.
17.
18.
Interferon regulatory factors (IRFs) are critical components of virus-induced immune activation and type I interferon regulation. IRF3 and IRF7 are activated in response to a variety of viruses or after engagement of Toll-like receptor (TLR) 3 and TLR4 by double-stranded RNA and lipopolysaccharide, respectively. The activation of IRF5, is much more restricted. Here we show that in contrast to IRF3 and IRF7, IRF5 is not a target of the TLR3 signaling pathway but is activated by TLR7 or TLR8 signaling. We also demonstrate that MyD88, interleukin 1 receptor-associated kinase 1, and tumor necrosis factor receptor-associated factor 6 are required for the activation of IRF5 and IRF7 in the TLR7 signaling pathway. Moreover, ectopic expression of IRF5 enabled type I interferon production in response to TLR7 signaling, whereas knockdown of IRF5 by small interfering RNA reduced type I interferon induction in response to the TLR7 ligand, R-848. IRF5 and IRF7, therefore, emerge from these studies as critical mediators of TLR7 signaling.  相似文献   

19.
20.
Inhibition of host-directed gene expression by the matrix (M) protein of vesicular stomatitis virus (VSV) effectively blocks host antiviral responses, promotes virus replication, and disables the host cell. However, dendritic cells (DC) have the capacity to resist these effects and remain functional during VSV infection. Here, the mechanisms of DC resistance to M protein and their subsequent maturation were addressed. Flt3L-derived murine bone marrow dendritic cells (FDC), which phenotypically resemble resident splenic DC, continued to synthesize cellular proteins and matured during single-cycle (high-multiplicity) and multicycle (low-multiplicity) infection with VSV. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived myeloid DC (GDC), which are susceptible to M protein effects, were nevertheless capable of maturing, but the response was delayed and occurred only during multicycle infection. FDC resistance was manifested early and was type I interferon (IFN) receptor (IFNAR) and MyD88 independent, but sustained resistance required IFNAR. MyD88-dependent signaling contributed to FDC maturation during single-cycle infection but was dispensable during multicycle infection. Similar to FDC, splenic DC were capable of maturing in vivo during the first 24 h of infection with VSV, and neither Toll-like receptor 7 (TLR7) nor MyD88 was required. We conclude that FDC resistance to M protein is controlled by an intrinsic, MyD88-independent mechanism that operates early in infection and is augmented later in infection by type I IFN. In contrast, while GDC are not intrinsically resistant, they can acquire resistance during multicycle infection. In vivo, splenic DC resist the inhibitory effects of VSV, and as in multicycle FDC infection, MyD88-independent signaling events control their maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号