首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Rats were treated with either coprine or disulfiram and the inhibition of aldehyde dehydrogenase (ALDH) in liver and brain mitochondria was measured with acetaldehyde, 3,4-dihydroxyphenylacetaldehyde (DOPAL), and succinate semialdehyde at different concentrations. The inhibition pattern was similar for both inhibitors, but the degree of inhibition was lower with disulfiram. The ALDH activity both in the liver and the brain was inhibited at low concentrations of acetaldehyde and DOPAL, but not with succinate semialdehyde. The high- K m enzyme activities with acetaldehyde were not inhibited in liver and brain. The activity at high concentration of DOPAL was inhibited in the liver, but only slightly affected in the brain, suggesting the presence of a brain enzyme with an intermediate K m value for DOPAL. In contrast with the results observed in viva, it was found that the high- K m activities with acetaldehyde and DOPAL in brain mitochondrial preparations were more sensitive to the inhibitors in vitro than the low- K m activities. Kinetic studies on ALDH preparations from brain and liver mitochondria suggested that acetaldehyde and DOPAL are metabolized by the same low- K m ALDH.  相似文献   

2.
Intra‐neuronal metabolism of dopamine (DA) begins with production of 3,4‐dihydroxyphenylacetaldehyde (DOPAL), which is toxic. According to the ‘catecholaldehyde hypothesis,’ DOPAL destroys nigrostriatal DA terminals and contributes to the profound putamen DA deficiency that characterizes Parkinson's disease (PD). We tested the feasibility of using post‐mortem patterns of putamen tissue catechols to examine contributions of altered activities of the type 2 vesicular monoamine transporter (VMAT2) and aldehyde dehydrogenase (ALDH) to the increased DOPAL levels found in PD. Theoretically, the DA : DOPA concentration ratio indicates vesicular uptake, and the 3,4‐dihydroxyphenylacetic acid : DOPAL ratio indicates ALDH activity. We validated these indices in transgenic mice with very low vesicular uptake (VMAT2‐Lo) or with knockouts of the genes encoding ALDH1A1 and ALDH2 (ALDH1A1,2 KO), applied these indices in PD putamen, and estimated the percent decreases in vesicular uptake and ALDH activity in PD. VMAT2‐Lo mice had markedly decreased DA:DOPA (50 vs. 1377, p < 0.0001), and ALDH1A1,2 KO mice had decreased 3,4‐dihydroxyphenylacetic acid:DOPAL (1.0 vs. 11.2, p < 0.0001). In PD putamen, vesicular uptake was estimated to be decreased by 89% and ALDH activity by 70%. Elevated DOPAL levels in PD putamen reflect a combination of decreased vesicular uptake of cytosolic DA and decreased DOPAL detoxification by ALDH.

  相似文献   


3.
Y Aoki  H Itoh 《Enzyme》1989,41(3):151-158
The effects of long-term and short-term exposure of rats to ethanol on aldehyde dehydrogenase (ALDH) activity in the liver mitochondria were investigated. The specific activities of mitochondrial high Km ALDH and low Km ALDH after the prolonged administration of ethanol were both increased to levels about 2.5 times that of the control group. In contrast, high Km and low Km ALDH showed maximum activity 12 h after administration of a single large dose of ethanol, increasing 21 and 4.4 times, respectively, over the level in the control group. When ethanol was administered for a long time, the two ALDH isoenzyme levels showed approximately the same increase, while the high Km ALDH level was more significantly increased than the low Km ALDH level after a single large dose. These results suggest that the high Km ALDH level of the outer membrane was increased as a result of a transient increase in the level of acetaldehyde around the liver mitochondria after a single large dose of ethanol, and that high Km ALDH plays an important role in acetaldehyde metabolism. However, when ethanol was administered for a long time, the mitochondria were exposed to low concentrations of acetaldehyde over a long time, leading to an increase in levels of low and high Km ALDH in the matrix.  相似文献   

4.
Most mammalian species express high concentrations of ALDH3A1 in corneal epithelium with the exception of the rabbit, which expresses high amounts of ALDH1A1 rather than ALDH3A1. Several hypotheses that involve catalytic and/or structural functions have been postulated regarding the role of these corneal ALDHs. The aim of the present study was to characterize the biochemical properties of the rabbit ALDH1A1. We have cloned and sequenced the rabbit ALDH1A1 cDNA, which is 2,073 bp in length (excluding the poly(A+) tail), and has 5' and 3' nontranslated regions of 46 and 536 bp, respectively. This ALDH1A1 cDNA encodes a protein of 496 amino acids (Mr = 54,340) that is: 86-91% identical to mammalian ALDH1A1 proteins, 83-85% identical to phenobarbital-inducible mouse and rat ALDH1A7 proteins, 84% identical to elephant shrew ALDH1A8 proteins (eta-crystallins), 69-73% identical to vertebrate ALDH1A2 and ALDH1A3 proteins, 65% identical to scallop ALDH1A9 protein (omega-crystallin), and 55-57% to cephalopod ALDH1C1 and ALDH1C2 (omega-crystallins). Recombinant rabbit ALDH1A1 protein was expressed using the baculovirus system and purified to homogeneity with affinity chromatography. We found that rabbit ALDH1A1 is catalytically active and efficiently oxidizes hexanal (Km = 3.5 microM), 4-hydroxynonenal (Km = 2.1 microM) and malondialdehyde (Km = 14.0 microM), which are among the major products of lipid peroxidation. Similar kinetic constants were observed with the human recombinant ALDH1A1 protein, which was expressed and purified using similar experimental conditions. These data suggest that ALDH1A1 may contribute to corneal cellular defense against oxidative damage by metabolizing toxic aldehydes produced during UV-induced lipid peroxidation.  相似文献   

5.
Abstract: Kinetic studies suggested the presence of several forms of NAD-dependent aldehyde dehydrogenase (ALDH) in rat brain. A subcellular distribution study showed that low- and high- K m activities with acetaldehyde as well as the substrate-specific enzyme succinate semialdehyde dehydrogenase were located mainly in the mitochondrial compartment. The low- K m activity was also present in the cytosol (<20%). The low- K m activity in the homogenate was only 10–15% of the total activity with acetaldehyde as the substrate. Two K m values were obtained with both acetaldehyde (0.2 and 2000 μ m ) and 3,4-dihydroxyphenylacetaldehyde (DOPAL) (0.3 and 31 μ m ), and one K m value with succinate semialdehyde (5 μ m ). The main part of the aldehyde dehydrogenase activities with acetaldehyde, DOPAL, and succinate semialdehyde, but only little activity of the marker enzyme for the outer membrane (monoamine oxidase, MAO), was released from a purified mitochondrial fraction subjected to sonication. Only small amounts of the ALDH activities were released from mitochondria subjected to swelling in a hypotonic buffer, whereas the main part of the marker enzyme for the intermembrane space (adenylate kinase) was released. These results indicate that the ALDH activities with acetaldehyde, DOPAL and succinate semialdehyde are located in the matrix compartment. The low- K m activity with acetaldehyde and DOPAL, but not the high- K m activities and succinate semialdehyde dehydrogenase, was markedly stimulated by Mg2+ and Ca2+ in phosphate buffer. The low- and high- K m activities with acetaldehyde showed different pH optima in pyrophosphate buffer.  相似文献   

6.
4-(O-Benzylphenoxy)-N-methylbutylamine (Bifemelane, BP-N-methylbutylamine), a new psychotropic drug, was found to inhibit monoamine oxidase (MAO) in human brain synaptosomes. It inhibited type A MAO (MAO-A) competitively and type B (MAO-B) noncompetitively. BP-N-methylbutylamine had a much higher affinity to MAO-A than an amine substrate, kynuramine, and it was a more potent inhibitor of MAO-A than of MAO-B. The Ki values of MAO-A and -B were determined to be 4.20 and 46.0 microM, respectively, while the Km values of MAO-A and -B with kynuramine were 44.1 and 90.0 microM, respectively. The inhibition of MAO-A and -B by BP-N-methylbutylamine was found to be reversible by dialysis of the incubation mixture. MAO-A in human placental and liver mitochondria and in a rat clonal pheochromocytoma cell line, PC12h, was inhibited competitively by BP-N-methylbutylamine, while MAO-B in human liver mitochondria was inhibited noncompetitively, as in human brain synaptosomes. BP-N-methylbutylamine was not oxidized by MAO-A and -B. The effects of other BP-N-methylalkylamines, such as BP-N-methylethylamine, -propylamine, and -pentanylamine, on MAO activity were examined. BP-N-methylbutylamine was the most potent inhibitor of MAO-A, and BP-N-methylethylamine and -propylamine inhibited MAO-B competitively, whereas BP-N-methylbutylamine and -pentanylamine inhibited it noncompetitively. Inhibition of these BP-N-methylalkylamines on MAO-A and -B is discussed in relation to their chemical structure.  相似文献   

7.
Phenolic steroid sulphotransferase activity for both oestradiol and oestrone was identified in male rat liver cytosol in the 30 000-40 000 Mr fractions on gel filtration when activity was assayed at pH 5.5 (pH optimum 5.5-6.0). Activity for oestradiol but not oestrone was found in the 60 000-70 000-Mr range when assayed at pH 8.0 (pH optimum biphasic, 5.5-6.0 and 7.0-8.0). Km for oestradiol (1.3 microM) was lower than published values for hydroxysteroid sulphotransferases (15-35 microM) and previously reported oestradiol sulphotransferases (71-85 microM). At above 2 microM-oestradiol phenolic sulphotransferase activity exhibited substrate inhibition. The phenolic steroid sulphotransferase activity was found to be distinct in chromatofocusing from organic-anion-binding and bile acid-binding proteins previously identified in this Mr range. Further purification on hydroxyapatite yielded a 44-fold enriched fraction that contained two monomeric bands, Mr 32 500 and 29 500.  相似文献   

8.
Dephosphorylation of neuromodulin by calcineurin   总被引:8,自引:0,他引:8  
Neuromodulin (p57, GAP-43, F1, B-50) is a major neural-specific, calmodulin binding protein found in brain, spinal cord, and retina that is associated with membranes. Phosphorylation of neuromodulin by protein kinase C causes a significant reduction in its affinity for calmodulin (Alexander, K. A., Cimler, B. M., Meirer, K. E., and Storm, D. R. (1987) J. Biol. Chem. 262, 6108-6113). It has been proposed that neuromodulin may function to bind and concentrate calmodulin at specific sites within neurons and that activation of protein kinase C causes the release of free calmodulin at high concentrations near its target proteins. It was the goal of this study to determine whether bovine brain contains a phosphoprotein phosphatase that will utilize phosphoneuromodulin as a substrate. Phosphatase activity for phosphoneuromodulin was partially purified from a bovine brain extract using DEAE-Sephacel and Sephacryl S-200 gel filtration chromatography. The neuromodulin phosphatase activity was resolved into two peaks by Affi-Gel Blue chromatography. One of these phosphatases, which represented approximately 60% of the total neuromodulin phosphatase activity, was tentatively identified as calcineurin by its requirement for Ca2+ and calmodulin (CaM) and inhibition of its activity by chlorpromazine. Therefore, bovine brain calcineurin was purified to homogeneity and examined for its phosphatase activity against bovine phosphoneuromodulin. Calcineurin rapidly dephosphorylated phosphoneuromodulin in the presence of micromolar Ca2+ and 3 microM CaM. The apparent Km and Vmax for the dephosphorylation of neuromodulin, measured in the presence of micromolar Ca2+ and 2 microM CaM, were 2.5 microM and 70 nmol Pi/mg/min, respectively, compared to a Km and Vmax of 4 microM and 55 nmol Pi/mg/min, respectively, for myosin light chain under the same conditions. Dephosphorylation of neuromodulin by calcineurin was stimulated 50-fold by calmodulin in the presence of micromolar free Ca2+. Half-maximal stimulation was observed at a calmodulin concentration of 0.5 microM. We propose that phosphoneuromodulin may be a physiologically important substrate for calcineurin and that calcineurin and protein kinase C may regulate the levels of free calmodulin available in neurons.  相似文献   

9.
Kathmann EC  Naylor S  Lipsky JJ 《Biochemistry》2000,39(36):11170-11176
Rat liver contains two class 1 aldehyde dehydrogenases (ALDHs): a constitutive isozyme (ALDH1) and a phenobarbital-inducible isozyme (ALDH-PB). Defining characteristics of mammalian class 1 ALDHs include a homotetrameric structure, high expression in liver, sensitivity to the inhibitor disulfiram, and high activity for the oxidation of retinal. It is often presumed that ALDH-PB is the rat ortholog of mammalian ALDH1, and the identity of rat ALDH-PB is commonly interchanged with ALDH1. In this study, we characterized recombinant rat liver cytosolic ALDH1 and ALDH-PB. Previous reports indicate that ALDH-PB is a homodimer; however, we found by mass spectrometry and gel electrophoresis that it is a homotetramer. ALDH1 mRNA was highly expressed in untreated rat liver, while ALDH-PB had very weak expression, in contrast to a previous report that ALDH-PB mRNA is expressed in untreated rat liver. Rat liver ALDH1 had a high affinity for retinal (K(m) = 0.6 microM), while no oxidation by ALDH-PB could be detected with 20 microM retinal. ALDH1 was more efficient at oxidizing acetaldehyde, propionaldehyde, and benzaldehyde and was more sensitive to disulfiram inhibition. We conclude that rat liver ALDH1 is the ortholog of mammalian liver ALDH1. Furthermore, despite a high level of sequence identity and classification as a class 1 ALDH, ALDH-PB does not function like ALDH1. ALDH-PB is not merely an inducible ALDH1 isozyme; it is a distinct ALDH isozyme.  相似文献   

10.
E Schultz 《Life sciences》1991,49(10):721-725
Human gastrointestinal samples from the corpus, antrum, bulbus, jejunum and ileum were assayed for soluble and membrane-bound catechol-O-methyltransferase (COMT) and aromatic L-amino acid decarboxylase (AADC) activity in vitro. The mean soluble COMT activities with 3,4-dihydroxybenzoic acid (DBA) and 3,4-dihydroxyphenylalanine (L-DOPA) as substrate were 70-242 and 70-174 pmol/min mg, respectively. The membrane-bound COMT activities ranged from 33 to 60 pmol/min mg in the different parts of the intestine. The AADC activities, measured with L-DOPA as the substrate, increased from 114 pmol/min mg in the corpus to 3488 pmol/min mg in the jejunum. The affinity of the soluble COMT was approximately 20 times higher for DBA (Km 15-19 microM) than for L-DOPA (Km 300-600 microM). The Km-values for L-DOPA of AADC and COMT were of the same order of magnitude. The specific COMT inhibitors, nitecapone and OR-611, effectively inhibited in vitro the human intestinal COMT activity. Nanomolar concentrations caused 50% inhibition with both DBA and L-DOPA as substrate.  相似文献   

11.
Abstract: Aldehyde dehydrogenase (ALDH) activity was measured in brains, livers, and hearts of 23–26-month-old and 3-month-old rats. A significant increase of ALDH activity was found in whole brain of old rats with both acetaldehyde (39%) and propionylaldehyde (15%) used as substrates. In different brain areas of old rats, with acetaldehyde used as substrate, a significant increase of ALDH activity was found in striatum (30–50%) and cerebral cortex (37%). However, no significant difference in ALDH activity was found in livers and hearts of young and old rats. Preliminary experiments showed a significant increase of aldehyde reductase activity (52%) with p -nitrobenzaldehyde used as substrate in whole brain of old rats compared with young rats. The present work indicates that an increase of ALDH activity in brain of old rats may be an adaptive phenomenon.  相似文献   

12.
Using phosphatidylinositol-glycan (PtdIns-glycan) anchored acetylcholinesterase from bovine erythrocytes as substrate, we found PtdIns-glycan-anchor-degrading activity in rat liver and serum [corrected]. The hepatic enzyme was only soluble in detergents, whereas the serum enzyme occurs as soluble, slightly amphiphilic protein. Using 3-trifluoromethyl-3-(m- [125I]iodophenyl)diazirine-labelled acetylcholinesterase as substrate, we showed that the hepatic anchor-degrading enzyme had a cleavage specificity of a phospholipase C, whereas the serum enzyme was a phospholipase D. Both enzyme exhibited maximal activity in slightly acidic conditions and at low ionic strength. They had a high affinity for the PtdIns-glycan anchor of the substrate (Km = 0.1 microM and 0.16 microM, respectively). Both hepatic PtdIns-glycan-specific phospholipase C and serum PtdIns-glycan-specific phospholipase D gave a large increase in activity between 0.1-10 microM Ca2+, indicating that PtdIns-glycan-specific phospholipases are only marginally active at physiological intracellular Ca2+ concentrations. The enzymes were inhibited by heavy metal chelating agents such as 1,10-phenanthroline and 2,2'-bipyridyl but not by the corresponding Fe2+ complexes or non-chelating analogues, indicating that they both require a heavy metal ion for the expression of catalytic activity in addition to Ca2+. Another interesting property of PtdIns-glycan-specific phospholipases is their inactivation by bicarbonate and cyanate. The inactivation was time- and pH-dependent and could be reversed by dialysis. These observations are in agreement with a covalent modification of the enzymes by carbamoylation.  相似文献   

13.
Kynurenine-3-monooxygenase (KM), the third enzyme in the kynurenine (KYN) pathway from tryptophan to quinolinic acid (QA), is a monooxygenase requiring oxygen, NADPH and FAD for the catalytic oxidation of L-kynurenine to 3-hydroxykynurenine and water. KM is innately low in the brain and similar in activity to indoleamine oxidase, the rate-limiting pathway enzyme. Accumulation in the CNS of QA, a known excitotoxin, is proposed to cause convulsions in several pathologies. Thus, we theorized that hyperbaric oxygen (HBO) induced convulsions arise from increased QA via oxygen K, effects on this pathway [Brown OR, Draczynska-Lusiak. Oxygen activation and inactivation of quinolinate-producing and iron-requiring 3-hydroxyanthranilic acid oxidase: a role in hyperbaric oxygen-induced convulsions? Redox Report 1995; 1: 383-385]. To complement prior studies on the effects of oxygen on pathway enzymes, in this paper we report the effects of oxygen on KM. Brain and liver KM enzyme are not known to be identical, and some systemically-produced KYN pathway intermediates can permeate the brain and might stimulate the brain pathway. Thus, KM from both brain and liver was assayed at various oxygen substrate concentrations to evaluate, in vitro, the potential effects of increases in oxygen, as would occur in mammals breathing therapeutic and convulsive HBO. In crude tissue extracts, KM was not activated during incubation in HBO up to 6 atm. The effects of oxygen as substrate on brain and liver KM activity was nearly identical: activity was nil at zero oxygen with an apparent oxygen Km of 20-22 microM. Maximum KM activity occurred at about 1000 microM oxygen and decreased slightly to plateau from 2000 to 8000 microM oxygen. This compares to approximately 30-40 microM oxygen typically reported for brain tissue of humans or rats breathing air, and an unknown but surely much lower value (perhaps below 1 microM) intracellularly at the site of KM. Thus HBO, as used therapeutically and at convulsive pressures, likely stimulates flux through the KM-catalyzed step of the KYN pathway in liver and in brain and could increase brain QA, by Km effects on brain KM, or via increased KM pathway intermediates produced systemically (in liver) and transported into the brain.  相似文献   

14.
Sulfation appears to be an important pathway for the reversible inactivation of thyroid hormone during fetal development. The rat is an often used animal model to study the regulation of fetal thyroid hormone status. The present study was done to determine which sulfotransferases (SULTs) are important for iodothyronine sulfation in the rat, using radioactive T4, T3, rT3, and 3,3'-T2 as substrates, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) as cofactor, and rat liver, kidney and brain cytosol, and recombinant rat SULT1A1, -1B1, -1C1, -1E1, -2A1, -2A2, and -2A3 as enzymes. Recombinant rat SULT1A1, -1E1, -2A1, -2A2, and -2A3 failed to catalyze iodothyronine sulfation. For all tissue SULTs and for rSULT1B1 and rSULT1C1, 3,3'-T2 was by far the preferred substrate. Apparent Km values for 3,3'-T2 amounted to 1.9 microM in male liver, 4.4 microM in female liver, 0.76 microM in male kidney, 0.23 microM in male brain, 7.7 microM for SULT1B1, and 0.62 microM for SULT1C1, whereas apparent Km values for PAPS showed less variation (2.0-6.9 microM). Sulfation of 3,3'-T2 was inhibited dose dependently by other iodothyronines, with similar structure-activity relationships for most enzymes except for the SULT activity in rat brain. The apparent Km values of 3,3'-T2 in liver cytosol were between those determined for SULT1B1 and -1C1, supporting the importance of these enzymes for the sulfation of iodothyronines in rat liver, with a greater contribution of SULT1C1 in male than in female rat liver. The results further suggest that rSULT1C1 also contributes to iodothyronine sulfation in rat kidney, whereas other, yet-unidentified forms appear more important for the sulfation of thyroid hormone in rat brain.  相似文献   

15.
1. Polyamine oxidase (PAO) activity was found in the brain, intestine, kidney and liver of the siluroid catfish using N1-acetylspermine as substrate. It was highest in the intestine and lowest in the brain. 2. Substrate specificity of the enzyme was tested in the intestine and liver and the highest activity was found with N1-acetylspermine, followed by N1-acetylspermidine and N1,N12-diacetylspermine. 3. The apparent Km values for N1-acetylspermine were 19.6 and 46.9 microM for the intestine and liver, respectively. 4. These results suggest the presence of a system of polyamine reutilization after their acetylation in fishes.  相似文献   

16.
The activation of docosahexaenoic acid by rat brain microsomes was studied using an assay method based on the extraction of unreacted [1-14C]docosahexaenoic acid and the insolubility of [1-14C]docosahexaenoyl-CoA in heptane. This reaction showed a requirement for ATP, CoA, and MgCl2 and exhibited optimal activity at pH 8.0 in the presence of dithiothreitol and when incubated at 45 degrees C. The apparent Km values for ATP (185 microM), CoA (4.88 microM), MgCl2 (555 microM) and [1-14C]docosahexaenoic acid (26 microM) were determined. The presence of bovine serum albumin or Triton X-100 in the incubation medium caused a significant decrease in the Km and Vm values for [1-14C]docosahexaenoic acid. The enzyme was labile at 45 degrees C (t1/2:3.3 min) and 37 degrees C (t1/2:26.5 min) and lost 36% of its activity after freezing and thawing. The transition temperature (Tc) obtained from Arrhenius plot was 27 degrees C with the activation energies of 74 kJ/mol between 0 degrees C and 27 degrees C and 30 kJ/mol between 27 degrees C and 45 degrees C. [1-14C]Palmitic acid activation in rat brain and liver microsomes showed apparent Km values of 25 microM and 29 microM respectively, with V values of 13 and 46 nmol X min-1 X mg protein-1. The presence of Triton X-100 (0.05%) in the incubation medium enhanced the V value of the liver enzyme fourfold without affecting the Km value. Brain palmitoyl-CoA synthetase, on the other hand, showed a decreased Km value in the presence of Triton X-100 with unchanged V. The Tc obtained were 25 degrees C and 28 degrees C for brain and liver enzyme with an apparent activation energy of 109 and 24 kJ/mol below and above Tc for brain enzyme and 86 and 3.3 kJ/mol for liver enzyme. The similar results obtained for the activation of docosahexaenoate and palmitate in brain microsomes suggest the possible existence of a single long-chain acyl-CoA synthetase. The differences observed in the activation of palmitate between brain and liver microsomes may be due to organ differences. Fatty acid competition studies showed a greater inhibition of labeled docosahexaenoic and palmitic acid activation in the presence of unlabeled unsaturated fatty acids. The Ki values for unlabeled docosahexaenoate and arachidonate were 38 microM and 19 microM respectively for the activation of [1-14C]docosahexaenoate. In contrast, the competition of unlabeled saturated fatty acids for activation of labeled docosahexaenoate is much less than that for activation of labeled palmitate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Ten different strains of Thermomyces lanuginosus, isolated from composting soils were found to produce phytase when grown on PSM medium. The wild type strain CM was found to produce maximum amount ofphytase (4.33 units/g DW substrate). Culturing T. lanuginosus strain CM on medium containing wheat bran and optimizing other culture conditions (carbon source, media type, nitrogen source, level of nitrogen, temperature, pH, inoculum age, inoculum level and moisture), increased the phytase yield to 13.26 units/g substrate. This culture was further subjected to UV mutagenesis for developing phytase hyperproducing mutants. The mutant (TL-7) showed 2.29-fold increase in phytase activity as compared to the parental strain. Employing Box-Behnken factor factorial design of response surface methodology resulted in optimized phytase production (32.19 units/g of substrate) by mutant TL-7. A simple two-step purification (40.75-folds) ofphytase from mutant TL-7 was achieved by anion exchange and gel filtration chromatography. The purified phytase (approximately 54 kDa) was characterized to be optimally active at pH 5.0 and temperature 70 degrees C, though the enzyme showed approximately 70% activity over a wide pH and temperature range (2.0-10.0 and 30-90 degrees C, respectively). The phytase showed broad substrate specificity with activity against sodium phytate, ADP and riboflavin phosphate. The phytase from T. lanuginosus was thermoacidstable as it showed up to 70% residual activity after exposure to 70 degrees C at pH 3.0 for 120 min. The enzyme showed Km 4.55 microM and Vmax 0.833 microM/min/mg against sodium phytate as substrate.  相似文献   

18.
Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) isozyme phenotypes were determined in surgical and endoscopic biopsies of the stomach and duodenum by agarose isoelectric focusing. gamma-ADH was found to be the predominant form in the mucosal layer whereas beta-ADH was predominant in the muscular layer. Low-Km ALDH1 and ALDH2 were found in the stomach and duodenum. High-Km ALDH3 isozymes occurred only in the stomach but not in the duodenum. The isozyme patterns of gastric mucosal ALDH2 and ALDH3 remained unchanged in the fundus, corpus, and antrum. The stomach ALDH3 isozymes exhibited a Km value for acetaldehyde of 75 mM, and an optimum for acetaldehyde oxidation at pH 8.5. Since the Km value was high, ALDH3 contributed very little, if any, to gastric ethanol metabolism. The activities of ALDH in the gastric mucosa deficient in ALDH2 were 60-70% of that of the ALDH2-active phenotypes. These results indicate that Chinese lacking ALDH2 activity may have a lower acetaldehyde oxidation rate in the stomach during alcohol consumption.  相似文献   

19.
Acetaldehyde and biogenic aldehydes were used as substrates to investigate the subcellular distribution of aldehyde dehydrogenase activity in autopsied human brain. With 10 microM acetaldehyde as substrate, over 50% of the total activity was found in the mitochondrial fraction and 38% was associated with the cytosol. However, with 4 microM 3,4-dihydroxyphenylacetaldehyde and 10 microM indoleacetaldehyde as substrates, 40-50% of the total activity was found in the soluble fraction, the mitochondrial fraction accounting for only 15-30% of the total activity. These data suggested the presence of distinct aldehyde dehydrogenase isozymes in the different compartments. The mitochondrial and cytosolic fractions were, therefore, subjected to salt fractionation and ion-exchange chromatography to purify further the isozymes present in both fractions. The kinetic data on the partially purified isozymes revealed the presence of a low Km isozyme in both the mitochondria and the cytosol, with Km values for acetaldehyde of 1.7 microM and 10.2 microM, respectively. However, the cytosolic isozyme exhibited lower Km values for the biogenic aldehydes. Both isozymes were activated by Mg2+ and Ca2+ in phosphate buffers (pH 7.4). Also, high Km isozymes were found in the mitochondria and in the microsomes.  相似文献   

20.
Ro JS  Lee SS  Lee KS  Lee MK 《Life sciences》2001,70(6):639-645
The inhibitory effects of coptisine, a protoberberine isoquinoline alkaloid, on type A and type B monoamine oxidase (MAO-A and MAO-B) activities in mouse brain were investigated. Coptisine showed an inhibitory effect on MAO-A activity in a concentration-dependent manner using a substrate kynuramine, but coptisine did not inhibit MAO-B activity. Coptisine exhibited 54.3% inhibition of MAO-A activity at 2 microM. The values of Km and Vmax of MAO-A were 151.9 +/- 0.6 microM and 0.40 +/- 0.03 nmol/min/mg protein, respectively (n=5). Coptisine competitively inhibited MAO-A activity with kynuramine. The Ki value of coptisine was 3.3 microM. The inhibition of MAO-A by coptisine was found to be reversible by dialysis of the incubation mixture. These results suggest that coptisine is a potent reversible inhibitor of MAO-A, and that coptisine functions to regulate the catecholamine content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号