首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ebola virus causes lethal hemorrhagic fever in humans, but currently there are no effective vaccines or antiviral compounds for this infectious disease. Passive transfer of monoclonal antibodies (MAbs) protects mice from lethal Ebola virus infection (J. A. Wilson, M. Hevey, R. Bakken, S. Guest, M. Bray, A. L. Schmaljohn, and M. K. Hart, Science 287:1664-1666, 2000). However, the epitopes responsible for neutralization have been only partially characterized because some of the MAbs do not recognize the short synthetic peptides used for epitope mapping. To identify the amino acids recognized by neutralizing and protective antibodies, we generated a recombinant vesicular stomatitis virus (VSV) containing the Ebola virus glycoprotein-encoding gene instead of the VSV G protein-encoding gene and used it to select escape variants by growing it in the presence of a MAb (133/3.16 or 226/8.1) that neutralizes the infectivity of the virus. All three variants selected by MAb 133/3.16 contained a single amino acid substitution at amino acid position 549 in the GP2 subunit. By contrast, MAb 226/8.1 selected three different variants containing substitutions at positions 134, 194, and 199 in the GP1 subunit, suggesting that this antibody recognized a conformational epitope. Passive transfer of each of these MAbs completely protected mice from a lethal Ebola virus infection. These data indicate that neutralizing antibody cocktails for passive prophylaxis and therapy of Ebola hemorrhagic fever can reduce the possibility of the emergence of antigenic variants in infected individuals.  相似文献   

3.
Vesicular stomatitis virus (VSV) forms pseudotypes with envelope components of reticuloendotheliosis virus (REV). The VSV pseudotype possesses the limited host range and antigenic properties of REV. Approximately 70% of the VSV, Indiana serotype, and 45% of VSV, New Jersey serotype, produced from the REV strain T-transformed chicken bone marrow cells contain mixed envelope components of both VSV and REV. VSV pseudotypes with mixed envelope antigens can be neutralized with excess amounts of either anti-VSV antiserum or anti-REV antiserum.  相似文献   

4.
5.
P R Grigera  W Keil    R R Wagner 《Journal of virology》1992,66(6):3749-3757
Intrachain disulfide bonds between paired cysteines in the glycoprotein (G) of vesicular stomatitis virus (VSV) are required for the recognition of discontinuous epitopes by specific monoclonal antibodies (MAbs) (W. Keil and R. R. Wagner, Virology 170:392-407, 1989). Cleavage by Staphylococcus aureus V8 protease of the 517-amino-acid VSV-New Jersey G protein, limited to the glutamic acid at residue 110, resulted in a protein (designated GV8) with greatly retarded migration by polyacrylamide gel electrophoresis (PAGE) under nonreducing conditions. By Western blot (immunoblot) analysis, protein GV8 was found to lose discontinuous epitope IV, which maps within the first 193 NH2-terminal amino acids. These data, coupled with those obtained by PAGE migration of a vector-expressed, truncated protein (G1-193) under reducing and nonreducing conditions, lead us to postulate the existence of a major loop structure within the first 193 NH2-terminal amino acids of the G protein, possibly anchored by a disulfide bond between cysteine 108 and cysteine 169, encompassing epitope IV. Site-directed mutants in which 10 of the 12 cysteines were individually converted to serines in vaccinia virus-based vectors expressing these single-site mutant G proteins were also constructed, each of which was then tested by immunoprecipitation for its capacity to recognize epitope-specific MAbs. These results showed that mutations in NH2-terminal cysteines 130, 174, and, to a lesser extent, 193 all resulted in the loss of neutralization epitope VIII. A mutation at NH2-terminal cysteine 130 also resulted in the loss of neutralization epitope VII, as did a mutation at cysteine 108 to a lesser extent. Both epitopes VII and VIII disappeared when mutations were made in COOH-distal cysteine 235, 240, or 273, the general map locations of epitopes VII and VIII. These studies also reveal that distal, as well as proximal, cysteine residues markedly influence the disulfide-bond secondary structure, which ostensibly determines the conformational structure of the VSV-New Jersey G protein required for presentation of the major discontinuous epitopes recognized by neutralizing MAbs.  相似文献   

6.
Cytotoxic T lymphocytes (CTL) generated in mice against a particular serotype of vesicular stomatitis virus (VSV) were previously shown to cross-reactively lyse syngeneic target cells infected with serologically distinct types of VSV. To analyze the antigenic basis of this T cell cross-reactivity, we generated CTL against VSV-Indiana (VSV-Ind) and established them by limiting dilution as cloned in vitro cell lines. The cells continuously proliferate in medium containing concanavalin A-induced T cell growth factors. All of the cells are Thy-1.2+ and Lyt-2.2+. Lysis by these cells is H-2Dd-restricted, no natural killer cell activity is detectable, and all the clones cross-reactively lyse target cells infected with either VSV-Ind or VSV-New Jersey (VSV-NJ). In addition, no specific blocking of primary, secondary, or cloned anti-VSV CTL was achieved with the use of several monoclonal antibodies specific for the glycoprotein of VSV and capable of neutralizing either VSV-Ind or VSV-NJ. These results suggest that VSV serotype-specific neutralizing antibodies may recognize immunodominant determinants of VSV glycoprotein that are distinct from those recognized by the majority of VSV-specific CTL.  相似文献   

7.
8.
Glycosylation sites of vesicular stomatitis virus glycoprotein.   总被引:16,自引:8,他引:8       下载免费PDF全文
Detailed analysis on DEAE-Sephadex of the tryptic digestion products of the glycoprotein from vesicular stomatitis virus grown in HeLa suspension cultures revealed the presence of two major and several minor sugar-labeled species. The minor tryptic glycopeptides were converted to one of the two major glycopeptide species by treatment with neuraminidase. Thus, vesicular stomatitis virus glycoprotein contains only two oligosaccharide side chains that are heterogeneous in their sialic acid content.  相似文献   

9.
Stereo images of vesicular stomatitis virus assembly.   总被引:2,自引:12,他引:2       下载免费PDF全文
Viral assembly was studied by viewing platinum replicas of cytoplasmic and outer plasma membrane surfaces of baby hamster kidney cells infected with vesicular stomatitis virus. Replicas of the cytoplasmic surface of the basilar plasma membrane revealed nucleocapsids forming bullet-shaped tight helical coils. The apex of each viral nose cone was anchored to the membrane and was free of uncoiled nucleocapsid, whereas tortuous nucleocapsid was attached to the base of tightly coiled structures. Using immunoelectron microscopy, we identified the nucleocapsid (N) viral protein as a component of both the tight-coil and tortuous nucleocapsids, whereas the matrix (M) protein was found only on tortuous nucleocapsids. The M protein was not found on the membrane. Using immunoreagents specific for the viral glycoprotein (G protein), we found that the amount of G protein per virion varied. The G protein was consistently localized at the apex of viral buds, whereas the density of G protein on the shaft was equivalent to that in the surrounding membrane. These observations suggest that G-protein interaction with the nucleocapsid via its cytoplasmic domain may be necessary for the initiation of viral assembly. Once contact is established, nucleocapsid coiling proceeds with nose cone formation followed by formation of the helical cylinder. M protein may function to induce a nucleocapsid conformation favorable for coiling or may cross-link adjacent turns in the tight coil or both.  相似文献   

10.
The phosphoprotein NS of vesicular stomatitis virus which accumulates within the infected cell cytoplasm is phosphorylated at multiple serine and threonine residues (G. M. Clinton and A. S. Huang, Virology 108:510-514, 1981; Hsu et al., J. Virol. 43:104-112, 1982). Using incomplete chemical cleavage at tryptophan residues, we mapped the major phosphorylation sites to the amino-terminal half of the protein. Analysis of phosphate-labeled tryptic peptides suggests that essentially all of the label is within the large trypsin-resistant fragment predicted from the sequence of Gallione et al. (J. Virol. 39:52-529, 1981). A similar result has been obtained for NS protein isolated from the virus particle by C.-H. Hsu and D. W. Kingsbury (J. Biol. Chem., in press). Analysis of phosphodipeptides utilizing the procedures of C. E. Jones and M. O. J. Olson (Int. J. Pept. Protein Res. 16:135-142, 1980) enabled us to detect as many as six distinct phosphate-containing dipeptides. From these studies, together with the known sequence data, we conclude that the major phosphate residues on cytoplasmic NS protein are located in the amino third of the NS molecule and most probably between residues 35 and 106, inclusive. The studies also provide formal chemical proof that NS protein has a structure consistent with a monomer of the sequence of Gallione et al. as modified by J. K. Rose (personal communication). The low electrophoretic mobility of this protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis is not therefore due to dimerization.  相似文献   

11.
12.
Vesicular stomatitis virus was disrupted by a combination of freezing and thawing, osmotic shock, and sonic treatment. Subviral components were separated by isopycnic centrifugation. The low-density, lipid-rich fractions were pooled and shown to contain primarily viral glycoprotein. Further purification of this material resulted in the isolation of a preparation of vesicles which contained only the G protein and the same phospholipids as in the intact virions and exhibited spikelike structures similar to those on intact vesicular stomatitis virions. We conclude that we have isolated fragments of native vesicular stomatitis virus envelopes.  相似文献   

13.
Biophysical studies of vesicular stomatitis virus   总被引:24,自引:0,他引:24       下载免费PDF全文
McCombs, Robert M. (Baylor University College of Medicine, Houston, Tex.), Matilda Benyesh-Melnick, and Jean P. Brunschwig. Biophysical studies of vesicular stomatitis virus: J. Bacteriol. 91:803-812. 1966.-The infectivity and morphology of vesicular stomatitis virus (VSV) were studied after density gradient centrifugation in cesium chloride (CsCI), potassium tartrate (KT), and sucrose. Centrifugation in CsCl revealed two equally infectious bands corresponding to densities of 1.19 and 1.22 g/ml, and a third (density, 1.26 g/ml) band of low infectivity. Two bands (densities of 1.16 and 1.18 g/ml) were observed in the KT gradient, in which the lighter band contained most of the infectivity. Centrifugation in sucrose resulted in a single broad infectious band (density, 1.16 g/ml). The typical rod-shaped VSV particles were found mainly in the lighter bands obtained in CsCl (1.19 g/ml) and KT (1.16 g/ml) and in the single sucrose gradient band (1.16 g/ml). Bent particles equally as infectious as the rod-shaped particles were a constant finding in the CsCl preparations, and were observed mainly in the second band (density, 1.19 g). Numerous strands 15mmu wide were found in the third CsCl (density, 1.26 g/ml) and the second KT (1.18 g/ml) bands. Similar strands could be liberated from VSV particles after treatment with deoxycholate. Internal transverse striations were found to be a regular feature of VSV particles examined with the pseudoreplication negative-staining technique. For crude virus stocks, the physical particle-to-infectivity ratio ranged from 73 to 194. Several morphological similarities between VSV and myxoviruses were observed, including 10 mmu surface projections, pleomorphic morphological forms, and 15 mmu seemingly nucleoprotein strands.  相似文献   

14.
15.
We used vesicular stomatitis virus to test the effect of complementation on the relative fitness of a deleterious mutant, monoclonal antibody-resistant mutant (MARM) N, in competition with its wild-type ancestor. We carried out competitions of MARM N and wild-type populations at different multiplicities of infection (MOIs) and initial ratios of the wild type to the mutant and found that the fitness of MARM N relative to that of the wild type is very sensitive to changes in the MOI (i.e., the degree of complementation) but depends little, if at all, on the initial frequencies of MARM N and the wild type. Further, we developed a mathematical model under the assumption that during coinfection both viruses contribute to a common pool of protein products in the infected cell and that they both exploit this common pool equally. Under such conditions, the fitness of all virions that coinfect a cell is the average fitness in the absence of coinfection of that group of virions. In the absence of coinfection, complementation cannot take place and the relative fitness of each competitor is only determined by the selective value of its own products. We found good agreement between our experimental results and the model predictions, which suggests that the wild type and MARM N freely share all of their gene products under coinfection.  相似文献   

16.
Extreme heterogeneity in populations of vesicular stomatitis virus.   总被引:19,自引:12,他引:7       下载免费PDF全文
Vesicular stomatitis virus (VSV) sequence evolution and population heterogeneity were examined by T1 oligonucleotide mapping. Individual clones isolated from clonal pools of wild-type Indiana serotype VSV displayed identical T1 maps. This was observed even after one passage at high concentrations of the potent viral mutagen 5-fluorouracil. Under low-multiplicity passage conditions, the consensus T1 fingerprint of this virus remained unchanged after 523 passages. Interestingly, however, individual clones from this population (passage 523) differed significantly from each other and from consensus sequence. When virus population equilibria were disrupted by high-multiplicity passage (in which defective interfering particle interference is maximized) or passage in the presence of mutagenic levels of 5-fluorouracil, rapid consensus sequence evolution occurred and extreme population heterogeneity was observed (with some members of these population differing from others at hundreds of genome positions). A limited sampling of clones at one stage during high-multiplicity passages suggested the presence of at least several distinct master sequences, the related subpopulations of which exhibit at least transient competitive fitness within the total virus population (M. Eigen and C.K. Biebricher, p. 211-245, in E. Domingo, J.J. Holland, P. Ahlquist, ed., RNA Genetics, vol. 3, 1988). These studies further demonstrate the important role of selective pressure in determining the genetic composition of RNA virus populations. This is true under equilibrium conditions in which little consensus sequence evolution is observed owing to stabilizing selection as well as under conditions in which selective pressure is driving rapid RNA virus genome evolution.  相似文献   

17.
18.
Interferon production in mice by vesicular stomatitis virus.   总被引:3,自引:3,他引:0       下载免费PDF全文
  相似文献   

19.
Sub-cellular localization of vesicular stomatitis virus messenger RNAs.   总被引:7,自引:0,他引:7  
Vesicular stomatitis virus (VSV) messenger RNAs (mRNAs) appear to be compartmentalized within the infected HeLa cells. Analysis by polyacrylamide gel electrophoresis in formamide of the RNA associated with the membrane bound polyribosomes from VSV-infected cytoplasmic extracts shows predominantly one size class of VSV mRNA, which is absent from the remaining cytoplasm. These results are consistent with the mRNA for the viral glycoprotein being exclusively associated with membrane bound polysomes since the latter have been shown to synthesize mainly the virion glycoprotein in an in vitro translation system.  相似文献   

20.
Activation of mouse lymphocytes by vesicular stomatitis virus.   总被引:8,自引:3,他引:5       下载免费PDF全文
Vesicular stomatitis virus (VSV) is a mitogen for mouse spleen cells, and infectious virus is not required for mitogenesis. At concentrations between 10 and 100 microgram per culture, VSV stimulated DNA synthesis and blast transformation. Maximal activation by VSV occurred 48 h after culture initiation. Spleen cells depleted of T-lymphocytes by treatment with anti-Thy 1.2 and complement and those obtained from congenitally athymic BALB/c nu/nu mice were activated by VSV, suggesting that VSV is a B-cell mitogen. Activation of spleen cells was independent of the host in which the virus was grown, since VSV grown in BHK-21, HKCC, or MDBK cells was mitogenic. The mitogenesis was specific for VSV, since MDBK cell-grown WSN influenza virus was not a mitogen in this in vitro activation system, VSV-specific antibody prevented VSV mitogenesis, and VSV was mitogenic for spleen cells from C3H/HeJ mice which were resistant to mitogenesis by endotoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号