共查询到20条相似文献,搜索用时 0 毫秒
1.
M. Pravenec D. Gauguier J. -J. Schott J. Buard V. Křen V. Bílá C. Szpirer J. Szpirer J. -M. Wang H. Huang E. St.Lezin M. A. Spence P. Flodman M. Printz G. M. Lathrop G. Vergnaud T. W. Kurtz 《Mammalian genome》1996,7(2):117-127
We have constructed a genetic linkage map in the rat by analyzing the strain distribution patterns of 500 genetic markers in a large set of recombinant inbred strains derived from the spontaneously hypertensive rat and the Brown-Norway rat (HXB and BXH recombinant inbred strains). 454 of the markers could be assigned to specific chromosomes, and the amount of genome covered by the mapped markers was estimated to be 1151 centimorgans. By including a variety of morphologic, biochemical, immunogenetic, and molecular markers, the current map integrates and extends existing linkage data and should facilitate rat gene mapping and genetic studies of hypertension and other complex phenotypes of interest in the HXB and BXH recombinant inbred strains. Received: 21 June 1995 / Accepted: 11 September 1995 相似文献
2.
3.
4.
5.
A comparative genome analysis on exon-intron distribution profiles is performed for human and mouse genomes to deduce similarities and differences between them. Interestingly, both in human and mouse genomes, the total length in introns and intergenic DNA on each chromosome is significantly correlated to the chromosome size. The results presented provide a framework for understanding the nature and patterns of exon-intron length distributions, the constraints on them and their role in genome design and evolution. 相似文献
6.
The development and refinement of the rat genome map is a prerequisite for a continued qualified and fruitful use of this
model system for the study of complex traits. In two distinct rat cancer models, recurrent amplification affecting the proximal
region of rat Chr 4 was detected. To further characterize this region, we turned to the evolutionarily conserved chromosome
segments in human Chr 7 and mouse Chrs 5 and 6 to identify functional and positional candidate genes. By means of single-
and dual-color FISH on metaphase, prometaphase, and interphase chromatin, 15 genes in rat Chr 4q11-q23 (Cdk5, Hgf, Dmtf1, Abcb1, Cyp51, Cdk6, Tac1, Asns, Cav1, Met, Wnt2, Cftr, Smoh, Braf, Arhgef5) were mapped and aligned. In the course of this work, six cancer-related rat genes were isolated de novo and partly sequenced.
Ten loci were also mapped by FISH in the mouse. The map provides the framework for a more detailed genetic characterization
of individual tumor amplicons, but may also be valuable for the analysis of this region in other rat models of human complex
disease. In addition, our data facilitate the analysis of events in mammalian chromosomal evolution affecting the region.
In a comparison with human sequence data, we found that there is considerable conservation in this region both in gene order
and in distances between genes. There is a single evolutionary breakpoint between rat and mouse and two between rat and human.
Since our analysis shows that the three breaks all occurred in different positions, they must be independent of one another.
The data tend to support the notion that the genomic configuration in rat Chr 4 is ancestral compared with that in humans
and mice.
Received: 7 June 2001 / Accepted: 7 August 2001 相似文献
7.
We have examined the mouse genome sequence to determine its VH gene segment repertoire. In all, 141 segments are mapped to a 3 Mb region of chromosome 12. There is evidence that 92 of these are functional in the mouse strain used for the genome sequence, C57BL/6J; 12 are functional in other mouse strains, and 37 are pseudogenes. The mouse VH gene segment repertoire is therefore twice the size of that in humans. The mouse and human loci bear no large-scale similarity to each other. The 104 functional segments belong to one of the 15 known sequence subgroups, which have been further clustered into eight sets here. Seven of these sets, comprising 101 sequences, are related to five of the human VH families and have the same canonical structures in their hypervariable regions. Duplication of members of one set in the distal half of the locus is mainly responsible for the larger size of the mouse repertoire. Phylogenetic analysis of the VH segments indicates that most of the sequences in the human and mouse VH loci have arisen subsequent to the divergence of the two organisms from their common ancestor. 相似文献
8.
A radiation hybrid map of the RN region in pigs demonstrates conserved gene order compared with the human and mouse genomes 总被引:2,自引:0,他引:2
Annie Robic Virginie Seroude Jin-Tae Jeon Martine Yerle Luc Wasungu Leif Andersson Joël Gellin Denis Milan 《Mammalian genome》1999,10(6):565-568
We recently constructed a 7000-rad porcine whole-genome radiation hybrid (RH) panel with the primary objective of integrating linkage maps of microsatellites with evolutionary conserved genes into one ordered map. In order to evaluate the resolution of this RH panel, we have now constructed a radiation hybrid map of the Chromosome (Chr) 15q2.3-q2.6 region containing the RN gene. This gene has large effects on glycogen content in muscle and meat quality. Ten microsatellites covering a region of 55 centiMorgans and eight genes (AE3, FN1, IGFBP5, INHA, IRS1, PAX3, TNP1, and VIL1) were placed on the Sscr15 RH map. All the genes, except IRS1, were mapped on the RH map between microsatellites located in 15q2.5. The relative order of AE3 and INHA was inverted on the porcine physical map in comparison with the mouse linkage map. The order of other genes already mapped in the mouse (FN1, IGFBP5, TNP1, VIL1, INHA/AE3, and PAX3) was identical in pigs. We found no clear difference between the gene order on pig Chr 15 and human Chr 2q. Received: 4 November 1998 / Accepted: 8 February 1999 相似文献
9.
Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes 总被引:2,自引:1,他引:2
Huang H Winter EE Wang H Weinstock KG Xing H Goodstadt L Stenson PD Cooper DN Smith D Albà MM Ponting CP Fechtel K 《Genome biology》2004,5(7):R47-15
Background
Model organisms have contributed substantially to our understanding of the etiology of human disease as well as having assisted with the development of new treatment modalities. The availability of the human, mouse and, most recently, the rat genome sequences now permit the comprehensive investigation of the rodent orthologs of genes associated with human disease. Here, we investigate whether human disease genes differ significantly from their rodent orthologs with respect to their overall levels of conservation and their rates of evolutionary change.Results
Human disease genes are unevenly distributed among human chromosomes and are highly represented (99.5%) among human-rodent ortholog sets. Differences are revealed in evolutionary conservation and selection between different categories of human disease genes. Although selection appears not to have greatly discriminated between disease and non-disease genes, synonymous substitution rates are significantly higher for disease genes. In neurological and malformation syndrome disease systems, associated genes have evolved slowly whereas genes of the immune, hematological and pulmonary disease systems have changed more rapidly. Amino-acid substitutions associated with human inherited disease occur at sites that are more highly conserved than the average; nevertheless, 15 substituting amino acids associated with human disease were identified as wild-type amino acids in the rat. Rodent orthologs of human trinucleotide repeat-expansion disease genes were found to contain substantially fewer of such repeats. Six human genes that share the same characteristics as triplet repeat-expansion disease-associated genes were identified; although four of these genes are expressed in the brain, none is currently known to be associated with disease.Conclusions
Most human disease genes have been retained in rodent genomes. Synonymous nucleotide substitutions occur at a higher rate in disease genes, a finding that may reflect increased mutation rates in the chromosomal regions in which disease genes are found. Rodent orthologs associated with neurological function exhibit the greatest evolutionary conservation; this suggests that rodent models of human neurological disease are likely to most faithfully represent human disease processes. However, with regard to neurological triplet repeat expansion-associated human disease genes, the contraction, relative to human, of rodent trinucleotide repeats suggests that rodent loci may not achieve a 'critical repeat threshold' necessary to undergo spontaneous pathological repeat expansions. The identification of six genes in this study that have multiple characteristics associated with repeat expansion-disease genes raises the possibility that not all human loci capable of facilitating neurological disease by repeat expansion have as yet been identified. 相似文献10.
S A Shabalina A Y Ogurtsov V A Kondrashov A S Kondrashov 《Trends in genetics : TIG》2001,17(7):373-376
We aligned and analyzed 100 pairs of complete, orthologous intergenic regions from the human and mouse genomes (average length approximately 12 000 nucleotides). The alignments alternate between highly similar segments and dissimilar segments, indicating a wide variation of selective constraint. The average number of selectively constrained nucleotides within a mammalian intergenic region is at least 2000. This is threefold higher than within a nematode intergenic region and at least twofold higher than the number of selectively constrained nucleotides coding for an average protein. Because mammals possess only two- to threefold more proteins than Caenorhabditis elegans, the higher complexity of mammals might be primarily because of the functioning of intergenic DNA. 相似文献
11.
Kaisaki PJ Rouard M Danoy PA Wallis RH Collins SC Rice M Levy ER Lathrop M Bihoreau MT Gauguier D 《Genomics》2000,64(1):32-43
We report the localization of 92 new gene-based markers assigned to rat chromosome 1 by linkage or radiation hybrid mapping. The markers were chosen to enrich gene mapping data in a region of the rat chromosome known to contain several of the principal quantitative trait loci in rodent models of human multifactorial disease. The composite map reported here provides map information on a total of 139 known genes, including 80 that have been localized in mouse and 109 that have been localized in human, and integrates the gene-based markers with anonymous microsatellites. The evolutionary breakpoints identifying 16 segments that are homologous regions in the human genome are defined. These data will facilitate genetic and comparative mapping studies and identification of novel candidate genes for the quantitative trait loci that have been localized to the region. 相似文献
12.
Linkages among three biochemical loci (Acol, Ahd2, and Mup1) and four microsatellite loci (A8, Glut1, Jun, and Pnd) were determined to construct a linkage map of rat Chromosome (Chr) 5. Consequently, an extensive linkage map on rat Chr 5 was constructed with the following gene order: A8-Aco1-Mup1-Jun-Glut1-Ahd2-Pnd. In this linkage map, the Jun and A8 loci are newly placed, and two previously reported linkage groups on rat Chr 5 are connected by the Jun locus. The linkage map indicates an extensive linkage conservation between the loci on rat Chr 5 and those on mouse Chr 4. 相似文献
13.
To refine the linkage map of distal mouse Chromosome 12, we have identified DNA restriction fragment variants associated with a creatine kinase gene (Ck-3), the Akt proto-oncogene, an Abelson proviral integration site (D12N1), and the immunoglobulin heavy chain VH3609 variable region family (Igh-V36). The patterns of inheritance of these markers in backcross progeny and recombinant inbred mouse strains allowed their localization with respect to previously mapped genes to yield the linkage map: Aat-15.8 cM-Ck-3-0.9 cM-(Crip, Akt, Igh-C)-0.3 cM-(D12N1, Igh-V). This map confirms genetically the localization of the Igh-V gene complex distal to Igh-C on the chromosome. It differs from previous maps in placing D12N1 distal to Igh-C, and in suggesting that the Igh-V gene complex spans less than one centiMorgan (cM).Other DNA sequence variants detected with the creatine kinase probe allowed definition of four additional genetic loci: Ck-1 near Lmyc-1 on Chromosome 4; Ck-2 between Upg-1 and Hprt-ps1 (D17Rp10) on distal Chromosome 17; Ck-4 near Mpmv-17 and Mls-3 on Chromosome 16; and Ck-5 near Hba on Chromosome 11. 相似文献
14.
15.
A multilocus linkage map of mouse chromosome 8 总被引:1,自引:0,他引:1
We present a genetic linkage map of mouse chromosome 8 that spans 53 cM and includes eight cloned loci. This map was derived from analysis of 100 progeny of an interspecific backcross between Mus spretus and Mus musculus domesticus. Genes that were mapped in this analysis include L7, Plat, Lpl, Ucp, Es, Mt-1, Um, and Tat. This analysis positions a new extremely proximal marker on chromosome 8, which is discussed as a potential candidate gene for the nervous locus. These linkage data will be useful for the mapping of additional loci on chromosome 8. 相似文献
16.
David A Fitzpatrick Mary E Logue Jason E Stajich Geraldine Butler 《BMC evolutionary biology》2006,6(1):99-15
Background
To date, most fungal phylogenies have been derived from single gene comparisons, or from concatenated alignments of a small number of genes. The increase in fungal genome sequencing presents an opportunity to reconstruct evolutionary events using entire genomes. As a tool for future comparative, phylogenomic and phylogenetic studies, we used both supertrees and concatenated alignments to infer relationships between 42 species of fungi for which complete genome sequences are available. 相似文献17.
A genetic linkage map of the human genome 总被引:164,自引:0,他引:164
H Donis-Keller P Green C Helms S Cartinhour B Weiffenbach K Stephens T P Keith D W Bowden D R Smith E S Lander 《Cell》1987,51(2):319-337
We report the construction of a linkage map of the human genome, based on the pattern of inheritance of 403 polymorphic loci, including 393 RFLPs, in a panel of DNAs from 21 three-generation families. By a combination of mathematical linkage analysis and physical localization of selected clones, it was possible to arrange these loci into linkage groups representing 23 human chromosomes. We estimate that the linkage map is detectably linked to at least 95% of the DNA in the human genome. 相似文献
18.
ZOO-FISH with chromosome-specific DNA libraries (CSLs) from individual flow-sorted human chromosomes was applied on porcine metaphase chromosomes to establish segment homology between the pig and human karyotypes. Forty-seven porcine chromosomal segments corresponding to all human chromosomes except the Y were delineated, resulting in a nearly complete coverage of the porcine karyotype. The syntenic segments detected were further confirmed by the gene mapping information available in the two species. A map demarcating physical boundaries of human homologies on individual pig chromosomes is complemented with a detail survey of the physical and genetic linkage mapping data in the two species. The resultant map, thus, provides a comprehensive and updated comparative status of the human and porcine genomes. Received: 9 September 1995 / Accepted: 4 December 1995 相似文献
19.
A molecular genetic linkage map of mouse chromosome 7 总被引:6,自引:0,他引:6
The homology between mouse chromosome 7 and human chromosomes 11, 15, and 19 was examined using interspecific backcross animals derived from mating C3H/HeJ-gld/gld and Mus spretus mice. In an earlier study, we reported on the linkage relationships of 16 loci on mouse chromosome 7 and the homologous relationship between this chromosome and the myotonic dystrophy gene region on human chromosome 19. Segregation analyses were used to extend the gene linkage relationships on mouse chromosome 7 by an additional 21 loci. Seven of these genes (Cyp2a, D19F11S1h, Myod-1, Otf-2, Rnu1p70, Rnu2pa, and Xrcc-1) were previously unmapped in the mouse. Several potential mouse chromosome 7 genes (Mel, Hkr-1, Icam-1, Pvs) did not segregate with chromosome 7 markers, and provisional chromosomal assignments were made. This study establishes a detailed molecular genetic linkage map of mouse chromosome 7 that will be useful as a framework for determining linkage relationships of additional molecular markers and for identifying homologous disease genes in mice and humans. 相似文献
20.
We have mapped 13 loci on mouse Chromosome 18 by Southern blot analysis of restriction fragment length polymorphisms among progeny from an interspecific backcross: (C57BL/6J X Mus spretus) X M. spretus. Complete haplotype analysis of 136 of these progeny was used to establish gene order and estimate genetic distances between loci. The gene order (from centromere to telomere) and recombination distances (in centimorgans) were as follows: PGK-1rs5-4.3-Tpi-10-11.8-(Egr-1, Hmg17-rs9)-2.1-Fgfa-2.2-Grl-1-10.1-(Cdx-1, Csfmr, Pdgfrb, Pdea, Rps14)-2.1-Adrb-2-22.9-Mbp. Pgk-1rs5, Tpi-10, Hmg17-rs9, and Rps14 had not been previously mapped in the mouse; Egr-1 had only been syntenically assigned to mouse Chr 18. Nine of the loci, spanning 18 cM, have homologs on the distal long arm of human Chr5--a region rich in genes encoding growth factors and receptors. An additional previously unmapped gene, Drd-1, predicted to be on mouse Chr 18 based on its human chromosomal location, was mapped to the middle region of mouse Chr 13. 相似文献