首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Forty-three isolates of Aspergillus caelatus, whose vegetative compatibility groups (VCGs) have been identified, were assessed by DNA fingerprinting using a repetitive sequence DNA probe (pAF28) cloned from A. flavus. Thirteen distinct DNA fingerprint groups or genotypes were identified among the 43 isolates. Twenty-four isolates belonging to VCG 1 produced identical DNA fingerprints and included isolates from the United States and Japan. Four other DNA fingerprint groups had multiple isolates sharing identical fingerprints corresponding to VCGs 2, 3, 12 and 13. Eight of the 13 fingerprint groups corresponding to VCGs 4-11 were represented by a single isolate with a unique fingerprint pattern. These results provide further confirmation that the pAF28 probe can distinguish VCGs of species within Aspergillus section Flavi based on DNA fingerprint patterns and that the probe can be used to estimate the number of VCGs in a sample population. Most of the A. caelatus isolates produced fewer restriction fragments and weakly hybridized with the repetitive DNA probe pAF28 compared to hybridization patterns obtained with A. flavus, suggesting less homology of the probe to A. caelatus genomic DNA.  相似文献   

2.
We examined the vegetative compatibility of 56 Japanese isolates provisionally assigned to four subgroups ofV. dahliae to estimate the genetic relatedness with testers of the standardized VCGs. Subgroup J1 was assigned to VCG 2A/B as a new category of assignment. Subgroup J2, except isolate Vdt 110, was assigned to VCG 2A, and subgroup J3, except isolate Vdf 1, was assigned to VCG 2B. Isolates Vdf 1 and Vdt 110 were assigned to VCG 2A/B. Subgroup J4 was assigned to two subgroups, VCG 4B for Vde 1 and VCG 4A/B for FY 3 and HR 1. Four isolates were compatible with both VCG 2 and 4. Isolate U56 was compatible with VCG 2A/B and 4A. Isolates of VCG 2A, Vdt 9 and FF1, were compatible with either VCG 4A or 4A/B. One isolate of VCG 2B, Vdp-4, was compatible with VCG 4A. Three isolates of subgroup J2 showed weak reactions with the testers of VCG 4. These isolates may be “bridging strains”. Japanese isolates were composed of two VCGs, 2 and 4, “bridging strains” compatible with these VCGs, and some self-incopatible isolates. Testers of VCG 1 and VCG 3 did not show any reactions with the Japanese isolates.  相似文献   

3.
Aspergillus flavus infects both plants and humans and contaminates diverse agricultural crops with aflatoxins, highly carcinogenic fungal metabolites. We describe 24 microsatellite markers developed to assess genetic diversity and recombination within and between three vegetative compatibility groups (VCGs) of Aspergillus flavus. These loci are polymorphic within at least one VCG or between VCGs. For loci polymorphic across all three VCGs, the number of alleles ranged from two to 19. These markers will be useful for genetic studies of this economically important pathogen.  相似文献   

4.
Fusarium wilt is an endemic disease in El Barco de Avila (Castilla y León, west-central Spain), where high-quality common bean cultivars have been cultured for the last century. We used intergenic spacer (IGS) region polymorphism of ribosomal DNA, electrophoretic karyotype patterns, and vegetative compatibility and pathogenicity analyses to assess the genetic diversity within Fusarium oxysporum isolates recovered from common bean plants growing in fields around El Barco de Avila. Ninety-six vegetative compatibility groups (VCGs) were found among 128 isolates analyzed; most of these VCGs contained only a single isolate. The strains belonging to pathogenic VCGs and the most abundant nonpathogenic VCGs were further examined for polymorphisms in the IGS region and electrophoretic karyotype patterns. Isolates belonging to the same VCG exhibited the same IGS haplotype and very similar electrophoretic karyotype patterns. These findings are consistent with the hypothesis that VCGs represent clonal lineages that rarely, if ever, reproduce sexually. The F. oxysporum f. sp. phaseoli strains recovered had the same IGS haplotype and similar electrophoretic karyotype patterns, different from those found for F. oxysporum f. sp. phaseoli from the Americas, and were assigned to three new VCGs (VCGs 0166, 0167, and 0168). Based on our results, we do not consider the strains belonging to F. oxysporum f. sp. phaseoli to be a monophyletic group within F. oxysporum, as there is no correlation between pathogenicity and VCG, IGS restriction fragment length polymorphism, or electrophoretic karyotype.  相似文献   

5.
《Experimental mycology》1995,19(2):120-128
Appel, D. J., and Gordon, T. R. 1995. Intraspecific variation within populations of Fusarium oxysporum based on RFLP analysis of the intergenic spacer region of the rDNA. Experimental Mycology 19, 120-128. Fifty-six isolates of Fusarium oxysporum, including F. oxysporum f. sp. melonis and nonpathogenic strains, were chosen from a larger collection to represent diversity in vegetative compatibility groups (VCGs), mitochondrial DNA (mtDNA) haplotype, geographic distribution, and virulence. Using PCR, a 2.6-kb fragment including the intergenic spacer (IGS) region of the ribosomal DNA was amplified from each isolate. The enzymes EcoRI, Sau 3A, Cfo1, and Ava1I, cut this fragment differentially, revealing 5, 6, 6, and 7 patterns, respectively. Among the 56 isolates, a total of 13 unique IGS haplotypes was identified. Among most F. o. melonis isolates. IGS haplotype correlated with VCG and mtDNA haplotype, but did not differentiate among races. However, a race 1 isolate found in VCG 0131 shared virulence, mtDNA, and IGS haplotypes characteristic of VCG 0134; this isolate may represent a conversion in VCG from 0134 to 0131. Four nonpathogens shared the pathogen vegetative compatibility phenotypes. One race 1,2 isolate associated with VCG 0134 shared both IGS haplotype and VCG with a nonpathogen, but these isolates did not share the same mtDNA haplotype. Another nonpathogenic isolate shared mtDNA and IGS haplotypes with pathogen group 0131 and may simply be an avirulent mutant of a pathogenic strain. For the other two nonpathogenic isolates, vegetative compatibility indicated a close relationship to the pathogen, but differences in both mtDNA and IGS haplotype suggest otherwise. Overall, the IGS haplotype was more variable among the nonpathogenic F. oxysporum VCGs among which 12 of the 13 IGS haplotypes were found. Nonpathogenic isolates that shared a common mtDNA haplotype, but were associated with different VCGs, often had different IGS haplotypes.  相似文献   

6.
Verticillium dahliae is one of the most important pathogens causing Verticillium wilt. We studied the characterisation of the genetic relationship between virulence, vegetative compatibility groups (VCGs) and inter-simple sequence repeat (ISSR). A total of 48 V. dahliae isolates, in which 16 are collected from different cotton growing regions in China and 4 isolates belonged to all known VCGs, are used. Half of them were found highly virulent. Mutants (565) were obtained using the nitrate non-utilising mutant. These mutants were grouped into three VCGs: VCG1 (27 isolates), VCG 2 (14 isolates) and VCG 3 (7 isolates). Use of ISSR indicated two main clusters that were related to VCG and virulence. Genetic diversity lineages were obviously correlated to VCGs and ISSRs according to their geographical origin, virulence and ISSR genetic variation. This study could be useful to design and develop effective management strategies beside for quarantine purposes on Verticillium wilt control.  相似文献   

7.
Fusarium wilt is an endemic disease in El Barco de Avila (Castilla y León, west-central Spain), where high-quality common bean cultivars have been cultured for the last century. We used intergenic spacer (IGS) region polymorphism of ribosomal DNA, electrophoretic karyotype patterns, and vegetative compatibility and pathogenicity analyses to assess the genetic diversity within Fusarium oxysporum isolates recovered from common bean plants growing in fields around El Barco de Avila. Ninety-six vegetative compatibility groups (VCGs) were found among 128 isolates analyzed; most of these VCGs contained only a single isolate. The strains belonging to pathogenic VCGs and the most abundant nonpathogenic VCGs were further examined for polymorphisms in the IGS region and electrophoretic karyotype patterns. Isolates belonging to the same VCG exhibited the same IGS haplotype and very similar electrophoretic karyotype patterns. These findings are consistent with the hypothesis that VCGs represent clonal lineages that rarely, if ever, reproduce sexually. The F. oxysporum f. sp. phaseoli strains recovered had the same IGS haplotype and similar electrophoretic karyotype patterns, different from those found for F. oxysporum f. sp. phaseoli from the Americas, and were assigned to three new VCGs (VCGs 0166, 0167, and 0168). Based on our results, we do not consider the strains belonging to F. oxysporum f. sp. phaseoli to be a monophyletic group within F. oxysporum, as there is no correlation between pathogenicity and VCG, IGS restriction fragment length polymorphism, or electrophoretic karyotype.  相似文献   

8.
Seventy‐five isolates of Fusarium oxysporum f.sp. cepae, the causal agent of basal plate rot on onion, were obtained from seven provinces of Turkey. The isolates were characterized by vegetative compatibility grouping (VCGs) and restriction fragment length polymorphism (RFLP) analysis of the nuclear ribosomal DNA intergenic spacer region (IGS). Forty‐eight vegetative compatibility groups were found, each containing a single isolate. Only one isolate formed strong heterokaryons with the reference isolates of VCG 0423. Five isolates were heterokaryon self‐incompatible. Restriction fragment analysis with six different enzymes revealed 13 IGS types among 75 F. oxysporum isolates from Turkey as well as 16 reference isolates from Colorado, USA. The majority of single‐member VCGs produced identical RFLP banding patterns with minor deviations, considerably different from those of the reference VCG isolates. These results suggested that isolates of F. oxysporum f.sp. cepae in Turkey derived from distinct clonal lineages and mutations at one or more vegetative compatibility loci restrict heterokaryon formation.  相似文献   

9.
Strains of Fusarium species belonging to section Liseola cause stalk and ear rot of maize and produce important mycotoxins, such as fumonisins. We isolated two species, Fusarium verticillioides (Gibberella fujikuroi mating population A) and Fusarium proliferatum (G. fujikuroi mating population D) from maize cultivated under no-till conditions at five locations in the Córdoba province of Argentina. We determined the effective population number for mating population A (N(e)) and found that the N(e) for mating type was 89% of the count (total population) and that the N(e) for male or hermaphrodite status was 36%. Thus, the number of strains that can function as the female parent limits N(e), and sexual reproduction needs to occur only once every 54 to 220 asexual generations to maintain this level of sexual fertility. Our results indicate that the fungal populations isolated from no-till maize are similar to those recovered from maize managed with conventional tillage. We placed 36 strains from mating population A into 28 vegetative compatibility groups (VCGs). Of the 13 strains belonging to five multimember VCGs, only 2 isolates belonging to one VCG were clones based on amplified fragment length polymorphism (AFLP) fingerprints. Members of the other four multimember VCGs had an average similarity index of 0.89, and members of one VCG were no more closely related to other members of the same VCG than they were to other members of the population as a whole. This finding suggests that the common assumption that strains in the same VCG are either clonal or very closely related needs to be examined in more detail. The variability observed with AFLPs and VCGs suggests that sexual reproduction may occur more frequently than estimated by N(e).  相似文献   

10.
Anthracnose, or leaf-curl disease of anemone, caused by Colletotrichum sp., has been reported to occur in Australia, western Europe, and Japan. Symptoms include tissue necrosis, corm rot, leaf crinkles, and characteristic spiral twisting of floral peduncles. Three epidemics of the disease have been recorded in Israel: in 1978, in 1990 to 1993, and in 1996 to 1998. We characterized 92 Colletotrichum isolates associated with anthracnose of anemone (Anemone coronaria L.) for vegetative compatibility (72 isolates) and for molecular genotype (92 isolates) and virulence (4 isolates). Eighty-six of the isolates represented the three epidemics in Israel, one isolate was from Australia, and five isolates originated from western Europe. We divided these isolates into three vegetative-compatibility groups (VCGs). One VCG (ANE-A) included all 10 isolates from the first and second epidemics, and 13 of 62 examined isolates from the third epidemic in Israel, along with the isolate from Australia and 4 of 5 isolates from Europe. Another VCG (ANE-F) included most of the examined isolates (49 of the 62) from the third epidemic, as well as Colletotrichum acutatum from strawberry, in Israel. Based on PCR amplification with species-specific primers, all of the anemone isolates were identified as C. acutatum. Anemone and strawberry isolates of the two VCGs were genotypically similar and indistinguishable when compared by arbitrarily primed PCR of genomic DNA. Only isolate NL-12 from The Netherlands, confirmed as C. acutatum but not compatible with either VCG, had a distinct genotype; this isolate represents a third VCG of C. acutatum. Isolates from anemone and strawberry could infect both plant species in artificial inoculations. VCG ANE-F was recovered from natural infections of both anemone and strawberry, but VCG ANE-A was recovered only from anemone. This study of C. acutatum from anemone illustrates the potential of VCG analysis to reveal distinct subspecific groups within a pathogen population which appears to be genotypically homogeneous by molecular assays.  相似文献   

11.
冯红  张义正   《微生物学通报》2000,27(5):341-345
将从杉木和大叶黄杨上分离获得的8个胶孢炭疽菌(Colletoctrichum gloeosporioides)分离物培养在含氯酸钾的平板上,得到快速生长抗氯酸钾的不利用硝酸盐的突变体(Nit)。所有的突变体经鉴定分属于3种表现型,即硝酸还原酶结构位点(nit1),硝酸盐同化途径的专化调节位点(nit3),和钼辅因位点(nitM)。分离物发生突变的频率随氯酸钾浓度的增加而提高,并且不同的氮源在一定程度上会影响突变表型种类。除CC3外,所有的分离物都是自身亲和的,即不同表型的突变体能遗传互补,其  相似文献   

12.
Vegetative compatibility using nitrate nonutilizing ( nit ) mutants was analysed between 44 isolates of Colletotrichum kahawae from Kenya, one each from Ethiopia and Malawi, one of Colletotrichum gloeosporioides and one of Colletotrichum acutatum . Another isolate of C. kahawae did not generate mutants and thus could not be utilized. The results showed that all the C. kahawae isolates, except a white sector mutant (VCG2), belonged to one vegetative compatibility group (VCG4). The other species belonged to their own unique groups (VCGs 1 and 3). Implications of the results and future research needs on the subject are discussed.  相似文献   

13.
A collection of 24 isolates of Verticillium dahliae and 10 isolates of Verticillium longisporum originating from nine different host plants and from several geographic regions was tested for host specificity on 11 economically important crops such as potato, tomato, strawberry, linseed, three legumes and four Brassica species. In order to reveal host specificity the potential of each isolate to induce disease and affect plant yield was recorded for all isolate–host combinations. The collected data were statistically processed by means of a cluster analysis. As a result, the host range of individual isolates was found to be more dependent on the vegetative compatibility group (VCG) of the isolate than on its original host plant provenance. Twenty‐two out of 24 V. dahliae isolates belonged to either VCG 2B or 4B. VCG 2B isolates showed specificity for legumes, strawberry, potato and linseed, whereas VCG 4B was specifically virulent on potato, strawberry and linseed. Subgroups within VCG 2B and 4B almost lacking any host preference were designated 2B* and 4B*. Three isolates from VCG 2B*, however, severely attacked tomato which is a host outside the authentic host range of VCG 2B. The pathogenicity of V. longisporum isolates was restricted to cruciferous hosts. Conversely, cruciferous plants were not affected by isolates from VCGs 2B and 4B of V. dahliae. This lack of cross‐infectivity of certain subpopulations of V. dahliae and of V. longisporum may be useful in the management of this soil‐borne wilt disease.  相似文献   

14.
The causal agent of common bean anthracnose, Colletotrichum lindemuthianum, has considerable genetic and pathogenic variability, which makes the development of resistant cultivars difficult. We examined variability within and between Brazilian pathotypes of C. lindemuthianum through the identification of vegetative compatibility groups (VCGs) and by RAPD analysis. Two hundred and ninety-five nit mutants were obtained from 47 isolates of various pathotypes of the fungus collected from different regions, host cultivars and years. In complementation tests, 45 VCGs were identified. Eighteen RAPD primers were employed in the molecular analyses, producing 111 polymorphic bands. Estimates of genetic similarities, determined from the Sorence-Dice coefficient, ranged from 0.42 to 0.97; the dendrogram obtained by cluster analysis revealed 18 groups of isolates. RAPD and VCG markers presented high genotypic diversity. The number of significant associations (P=0.05) between RAPD, VCG and pathogenicity markers ranged from 0 (VCG) to 80% (pathogenicity). The test of multilocus association (rd) for RAPD markers was significantly different from zero (P<0.001), suggesting linkage disequilibrium. However, the results for VCG markers show the presence of recombination mechanisms. In conclusion, RAPD markers and VCGs were useful for detecting genetic variability among isolates of C. lindemuthianum. We found considerable diversity among isolates from the same geographic origin within a short interval; this suggests rapid evolution. There is a need for further studies to elucidate the population structure of this pathogen in agro-ecosystems.  相似文献   

15.
Molecular approaches for the assessment of intraspecific diversity within an economically important plant pathogen were compared with traditional physiological methods (vegetative compatibility testing). The vegetative compatibility groups (VCGs) of 14 isolates of Fusarium oxysporum f.sp. cubense (FOC) from Kenya were first assessed using nitrate non-utilizing mutants. Nine of these isolates, from different areas of the country, were compatible with one or more of VCGs 0124, 0125, 0128 and 01220, i.e. they formed a single clonal lineage. Three isolates, all originating from the banana growing district of Kisii, were compatible with the VCG 01212 and formed a second distinct clonal lineage. Mutants could not be recovered from one isolate (62) and two isolates (27 and 30) were not vegetatively compatible with any of the VCG testers and may represent two novel VCGs. Polymerase chain reaction (PCR) fingerprinting, especially when using the M13 derived primer, was found to produce banding patterns that correlated with clonal lineage and also distinguished isolates 27 and 30 when analysed by unweighted pair group method analysis and principle co-ordinate analysis. This approach also distinguished FOC from F. oxysporum IMI350438 isolated from Triticum sp. and from isolates of Colletotrichum gloeosporioides . Total protein profiles were analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and although clonal lineages were not separated, isolates 27 and 30 were again distinguishable and FOC produced a different profile to F. oxysporum (IMI 350438) and C. gloeosporioides.  相似文献   

16.
Isolates of Colletotrichum gloeosporioides obtained from yam‐based cropping systems in Nigeria, previously characterized on the basis of morphology, virulence and rDNA internal transcribed spacer (ITS) sequence variation were further compared for vegetative compatibility (VC). Chlorate‐resistant nitrate non‐utilizing (nit) mutants were generated from the isolates and used in complementation (heterokaryon) tests. Tests of VC between complementary mutants from different isolates indicated the presence of several genotypes within a single field, suggesting limited clonal spread. In some cases, isolates obtained from the same lesion were observed to belong to different vegetative compatibility groups (VCGs). No compatibility was observed between isolates of the highly virulent slow‐growing grey (SGG), the moderately virulent fast‐growing salmon (FGS) and the avirulent/weakly virulent fast‐growing grey (FGG) strains. Forty‐one C. gloeosporioides isolates belonged to 28 VCGs, giving a genotype diversity estimate of 0.68. This diversity confirmed the high variability of the pathogen population as revealed by previous characterization studies, however, a correlation between VCGs and isolate groupings based on morphology and virulence was not found. The finding that an isolate from weed was compatible with yam isolates indicated that transfer of important traits, such as virulence, may take place between isolates from yam and non‐yam hosts. The VCG diversity revealed by this study suggests that in addition to asexual reproduction, sexual reproduction may play an important role in the epidemiology of anthracnose on yam.  相似文献   

17.
Genetic variation within and among vegetative compatibility groups (VCGs) of Stereum sanguinolentum isolates was investigated with various geographical distances. DNA fingerprints were made using the M13 core sequence as a primer. A total of 113 isolates from 12 plots in Sweden, Finland and Lithuania were studied. Each VCG produced a discrete group of banding patterns. Among 20 isolates from the largest VCG, G1, the incidence of identical banding patterns was 24% within a sample plot, 8% among sample plots within a country, and 0% among countries. In the other 15 VCGs that comprised two and more isolates, corresponding percentages were 42%, 30% and 0%. Average band-sharing indices (ABSIs) within VCGs decreased with increasing geographical distance: for isolates from VCG G1, ABSI was 91.3% within sample plots, 85.4% among sample plots within a country, and 79.2% among countries. Corresponding figures for the other 15 VCGs were 97.0%, 92.7% and 80.4%, respectively. Among VCGs similarities were significantly lower ( P < 0.001) and the trend of decreasing similarity with larger geographical distances was less pronounced: ABSI within sample plots was 73.7%, among sample plots within countries 73.8%, and among countries 71.1%. However, the similarity of populations as compared within and between countries differed significantly ( P < 0.001), suggesting geographical differentiation between S. sanguinolentum populations separated by 400 km and the Baltic sea. Calculations of G ST clearly indicated geographical population subdivision within the large VCG but not among the total sample. In summary, the results show population structure of inbred lines within VCGs containing closely related strains in local populations and more distant relationships among populations.  相似文献   

18.
Anthracnose, or leaf-curl disease of anemone, caused by Colletotrichum sp., has been reported to occur in Australia, western Europe, and Japan. Symptoms include tissue necrosis, corm rot, leaf crinkles, and characteristic spiral twisting of floral peduncles. Three epidemics of the disease have been recorded in Israel: in 1978, in 1990 to 1993, and in 1996 to 1998. We characterized 92 Colletotrichum isolates associated with anthracnose of anemone (Anemone coronaria L.) for vegetative compatibility (72 isolates) and for molecular genotype (92 isolates) and virulence (4 isolates). Eighty-six of the isolates represented the three epidemics in Israel, one isolate was from Australia, and five isolates originated from western Europe. We divided these isolates into three vegetative-compatibility groups (VCGs). One VCG (ANE-A) included all 10 isolates from the first and second epidemics, and 13 of 62 examined isolates from the third epidemic in Israel, along with the isolate from Australia and 4 of 5 isolates from Europe. Another VCG (ANE-F) included most of the examined isolates (49 of the 62) from the third epidemic, as well as Colletotrichum acutatum from strawberry, in Israel. Based on PCR amplification with species-specific primers, all of the anemone isolates were identified as C. acutatum. Anemone and strawberry isolates of the two VCGs were genotypically similar and indistinguishable when compared by arbitrarily primed PCR of genomic DNA. Only isolate NL-12 from The Netherlands, confirmed as C. acutatum but not compatible with either VCG, had a distinct genotype; this isolate represents a third VCG of C. acutatum. Isolates from anemone and strawberry could infect both plant species in artificial inoculations. VCG ANE-F was recovered from natural infections of both anemone and strawberry, but VCG ANE-A was recovered only from anemone. This study of C. acutatum from anemone illustrates the potential of VCG analysis to reveal distinct subspecific groups within a pathogen population which appears to be genotypically homogeneous by molecular assays.  相似文献   

19.
In warm regions, agricultural fields are occupied by complex Aspergillus flavus communities composed of isolates in many vegetative compatibility groups (VCGs) with varying abilities to produce highly toxic, carcinogenic aflatoxins. Aflatoxin contamination is reduced with biocontrol products that enable atoxigenic isolates from atoxigenic VCGs to dominate the population. Shifts in VCG frequencies similar to those caused by the introduction of biocontrol isolates were detected in Sonora, Mexico, where biocontrol is not currently practiced. The shifts were attributed to founder events. Although VCGs reproduce clonally, significant diversity exists within VCGs. Simple sequence repeat (SSR) fingerprinting revealed that increased frequencies of VCG YV150 involved a single haplotype. This is consistent with a founder event. Additionally, great diversity was detected among 82 YV150 isolates collected over 20 years across Mexico and the United States. Thirty-six YV150 haplotypes were separated into two populations by Structure and SplitsTree analyses. Sixty-five percent of isolates had MAT1-1 and belonged to one population. The remaining had MAT1-2 and belonged to the second population. SSR alleles varied within populations, but recombination between populations was not detected despite co-occurrence at some locations. Results suggest that YV150 isolates with opposite mating-type have either strongly restrained or lost sexual reproduction among themselves.  相似文献   

20.
来自全国39个地区的70株新月弯孢菌Curvularialunata在WAC培养基上诱导培养后,随机挑取10197个抗KClO3突变体,经CDA鉴定获得2207株nit突变体,nit突变体频率为21.64%。在这些nit突变体中,1397个为nit1,占63.30%;734个为NitM,占33.26%;76个为nit3,占3.44%。70个菌株全部获得了稳定的nit突变体,其中52个菌株获得了NitM突变体。结果表明WAC比先前报道的KPS更适合用于C.lunatanit突变体的筛选。通过不同菌株间互补nit突变体配对测试,将其中的65个C.lunata菌株划分为22个营养体亲和群(VCGS),而另外5个菌株因未获得NitM突变体暂时无法确定其VCG。划分出的22个VCGs中,有11个VCGs是由多菌株组成的,VCG3为优势类群,含18个菌株,其地理来源最复杂,主要为致病性中等以上的菌株;其余11个VCGs内均仅有1个自身亲和的菌株。以上结果初步表明,在C.lunata群体内存在丰富的VCG多样性,VCG3可能是与致病性相关的优势VCG,但营养体亲和性与菌株地理来源没有明显的直接关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号